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To high accuracy, an electron in ultrarelativistic motion "sees" an external field in its rest frame 
as a crossed field (E = H, E.H=O). In this case, quantum expressions allow the introduction 
of a local intensity of the radiation, which determines the radiative term of the force of radiative 
reaction. For y= (1 -v2)-lt2% 1 this term is much larger than the mass term, i.e., the term 
with jl: Under these conditions, the reduced Lorentz-Dirac equation, which is obtained from the 
full Lorentz-Dirac equation by eliminating the terms x and x on the right side using the 
equation of motion without taking into account the force of radiative reaction, is equivalent to 
good accuracy to the original Lorentz-Dirac equation. Exact solutions to the reduced 
Lorentz-Dirac equation are obtained for a constant field and the field of a plane wave. For y--1 
a local expression for the radiative term cannot be obtained quantitatively from the quantum 
expressions. In this case the mass (Lorentz-Dirac) terms in the original and reduced Lorentz- 
Dirac equations are not small compared to the radiative term. The predictions of these 
equations, which depend appreciably on the mass terms, are therefore less reliable. O 1996 
American Institute of Physics. [S 1063-776 1 (96)01208-51 

1. INTRODUCTION 

In Ref. 1, Nikishov and Ritus reported the discovery of a 
relation between the emission of scalar quanta by an accel- 
erated mirror in 1 + 1 space and the emission of photons by a 
classical electron moving along an analogous path. This dis- 
covery accentuates the need for additional and better under- 
standing of the properties of the Lorentz-Dirac equation. In 
Ref. 1 we found that the renormalized energy-momentum 
tensor of the field created by an accelerated mirror is related 
to the force of radiation reaction. In particular, the vanishing 
of the radiative reaction force when an electron moves along 
a hyperbolic path corresponds to vanishing of the energy- 
momentum tensor of the field created by a mirror undergoing 
such motion. This implies that although particles are radi- 
ated, the energy density of the field everywhere equals zero. 
This is a manifestation of the nontrivial nature of the relation 
between energy-momentum of a field and particles: the pres- 
ence of particles does not imply the presence of energy (see 
Ref. 2). For an electron, there is the further difficulty that 
radiation during hyperbolic motion takes place without radia- 
tive rea~tion.~ 

In this paper we will discuss the status of the x problem 
in the Lorentz-Dirac equation. We begin the discussion with 
a more general question: under what circumstances may we 
expect that the predictions of the Lorentz-Dirac equation 
will be the classical limit of quantum physics? To address 
this question, we will deal not only with the Lorentz-Dirac 
equation but also the reduced equation obtained by using the 
equation of motion without taking into account the force of 
radiative reaction to eliminate the x and x terms from the 
right side (see Sec. 76 in Ref. 4). We will see that these 
equations are equivalent to good accuracy in the region of 
applicability of the classical theory, and in particular in the 
ultrarelativistic case. This is important because exact solu- 
tions to the Lorentz-Dirac equations are almost unknown in 

the relativistic region, while such solutions can be found eas- 
ily for the reduced Lorentz-Dirac equations. In particular, 
we present solutions for a constant field and the field of a 
plane wave. 

Finally, we will discuss one special case for which an 
exact solution to the Lorentz-Dirac equation is known.5 This 
solution explicitly reveals which terms exhibit a difference 
from the reduced Lorentz-Dirac equation. This example is 
important for a better understanding of the connection be- 
tween classical and quantum expressions for the radiation. 

The introduction of a radiative reaction force is based on 
the possibility of determining the instantaneous intensity of 
the radiation in classical theory. The concept of an instanta- 
neous intensity is foreign to quantum physics, because the 
measurement of energy requires time. This is in agreement 
with the fact that we cannot always even approximately find 
the intensity of radiation by interpreting the spectrum of the 
radiation, as is done in the classical limit of quantum 
theory.637 Thus, for one-dimensional motion, where we 
clearly have a connection with the radiation of a mirror in 
1 + 1 space, only the order of magnitude of the intensity of 
the radiation is determined. This is related to the fact that for 
any interval of time in which we attempt to determine the 
average intensity, the duration of the interval turns out to 
equal the length over which the radiation is generated in 
order of magnitude: i.e., this interval, and with it the inten- 
sity of the radiation, is ill-defined. 

By analogy we may conclude that the renormalized 
energy-momentum tensor of the field of a mirror also corre- 
sponds to the possibility of determining the instantaneous 
intensity of the radiation. This does not agree with the finite- 
ness of the length over which the main portion of the radia- 
tion is generated. Furthermore, for paths with a finite interval 
of acceleration we can determine the energy-momentum ten- 
sor of the field of the mirror by using normal ordering. This 
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method, which gives the energy-momentum tensor of the 
field including acceleration, does not require regularization. 
The expression obtained does not coincide with the regular- 
ized one.' However, the same total energy of the field is 
given by both tensors. For an electron moving along the 
same path, the total radiated energy is also well defined. 

In Sec. 2 we argue that the intensity of the radiation 
obtained from the Lorentz-Dirac equation coincides to good 
accuracy with the quantity given by the reduced Lorentz- 
Dirac equation. In Secs. 3-6 we present exact solutions to 
the reduced Lorentz-Dirac equation for several configura- 
tions of external fields. It is shown that the change in the 
momentum of a particle due to radiation coincides with the 
expected change corresponding to the classical limit of the 
quantum expressions for radiation when y S  1. With mass 
terms (i.e., with x terms in the Lorentz-Dirac equation or 
terms derived from x in the reduced Lorentz-Dirac equation) 
the situation is less satisfactory: there are arguments that in- 
dicate that no quantitative analogs to these terms exist in 
quantum electrodynamics. 

In Sec. 7 we discuss a plane wave propagating along a 
constant electric field. For this configuration a special solu- 
tion to the Lorentz-Dirac equations is known. As far as we 
know, this is the only exact solution to this equation. A com- 
parison with solutions of the reduced Lorentz-Dirac equa- 
tion show that the parameters of these solutions differ very 
little. 

2. BASIC PROPERTIES OF THE LORENTZ-DIRAC 
EQUATION AND THE REDUCED LORENTZ-DIRAC 
EQUATION 

In this section we reproduce some key elements of the 
theory of these equations,4'9y'0 while emphasizing that they 
have clear analogs in quantum physics. One unusual property 
of the Lorentz-Dirac equation is the fact that physically rea- 
sonable solutions are obtained by specifying the condition 
that acceleration in the future be absent. This was first shown 
for general one-dimensional motion in Ref. 11. These solu- 
tions exhibit a violation of causality (pre-acceleration) at dis- 
tances of the same order as the classical electron radius 
ro=e2/m. The unusual properties of the Lorentz-Dirac 
equations cause them to be viewed as un~atisfactory.~~'~.'~ In 
Ref. 14, an attempt was made to find solutions without pre- 
acceleration. The solutions found there are incorrect, and are 
easily shown to include runaway solutions; in the most gen- 
eral formulation, a particle expends more energy over micro- 
scopic intervals than it can obtain from work done by an 
external force.'' 

All physically reasonable solutions should satisfy an in- 
tegrodifferential equation that takes into account the condi- 
tion that there should be no acceleration after the external 
field is turned ~ f f . ~ O ~ ' ~ * ' ~  It is possible to have an external 
field that does not switch off, but in order to check whether a 
solution satisfies the integrodifferential equation in this case 
on some interval, it is necessary to know the solution for 
somewhat longer times (in fact, over an interval longer than 
several ro). 

Thus, in the integrodifferential equation1' 

a central role is played by the classical electron radius 
ro= e2/m, which is 137 times smaller than the Compton 
length hlmc which determines the "size" of an electron in 
quantum physics. We would like the error in the electron 
position, which is much larger than hlmc, to have almost no 
effect on the law of motion of the electron in the classical 
limit. Then, recalling that 

we can obtain only two "reliable" terms from the right side 
of (1): 

The quantity R transforms according to the following rule 
(see Sec. 73 in Ref. 4): 

The arrow implies that the replacement can be made with 
good accuracy. This rule agrees with quantum electrodynam- 
ics in the sense that during the generation of radiation we can 
neglect attenuation of the original state due to radiation be- 
cause the fine structure constant is much smaller than unity: 
a= e 2 / h c e  1. Furthermore, in the general case, an ultrarela- 
tivistic particle "sees" the external field as almost a crossed 
field ( E = H ,  EH=O). The distance over which radiation is 
emitted is small compared to the distance over which the 
change in momentum of the particle is the same order as the 
momentum itself. In this case, we can introduce the intensity 
of the radiation into quantum electrodynamics, which is de- 
termined by the quantity standing on the right side of (3), 
and corresponds in the classical limit to the classical 
e ~ ~ r e s s i o n . ~ . ~  

Unfortunately, we cannot limit qurselves only to the 
terms written in (2). We must also satisfy the purely geomet- 
ric condition u2= - 1 and the condition u i  = O  that follows 
from it. Then from (2) and (3) we obtain the reduced 
Lorentz-Dirac equation:4 

This does not lead to a violation of causality or to runaway 
solutions. Hence, there is no longer any basis for assuming 
that this equation is less accurate than the Lorentz-Dirac 
equation. 
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As we already mentioned in the Introduction, the re- 
duced Lorentz-Dirac equation was obtained in Ref. 4 by 
eliminating u and u .  The derivation we present here empha- 
sizes that the radiative term (the last term in (4)) follows 
from (I) under mild requirements on electron localization, 
whereas the mass terms should either be inserted by hand, so 
that the condition uu= 0 is satisfied, or obtained from the 
next term of the expansion of (1). In the latter case we are 
obliged to accept the existence of preacceleration and the 
possibility of the position of an electron varying over inter- 
vals of order TO. Therefore, predictions connected with the 
mass terms are less reliable. Now let us write down the next 
term of the expansion (2): 

Whether a term with r0 can be observed, along with the 
other terms in the expansion, is a subject for future experi- 
mental and theoretical research. Here we limit ourselves to 
the term with TO. This term describes the electromagnetic 
"cloud" around a classical electron. Combining it with the 
left side converts the mass into a mass tensor, and the elec- 
tron velocity u' into the velocity of an electron together with 
its cloud: 

Then (2) leads to the semireduced Lorentz-Dirac equation 

This discussion shows that a classical electron together with 
its cloud is described by the kinetic momentum 

Now, the quantitative analog of this quantity is not obvious 
in quantum theory. If, nevertheless, (8) has any relation to 
reality, then it is possible that this quantity plays the role of 
a momentum during the collision of particles in the field, and 
that the intensity of radiation of an electron is determined not 
by the quantities lii&', but rather the quantities u;u', if we 
take bremsstrahlung into account. In this case (3) naturally 
remains valid: the two vectors on the right side of (7) are 
orthogonal and the square of the second is much smaller than 
the square of the first in the classical region, where the 
Lorentz-Dirac equation can be used. 

In the following sections we obtain exact solutions to the 
reduced Lorentz-Dirac equation for a number of external 
field configurations, and show the terms cause the rule (3) to 
be inaccurate in these cases. 

In what follows we assume a;= (a ,a4 ) ,  a,= iao.  

3. CONSTANT ELECTRIC FIELD 

Assuming the field E is directed along the 3-axis, we 
have the following components of the reduced Lorentz- 
Dirac equation: 

Multiplying the first component of the equation by u l ,  the 
second by u2, and adding them, we find 

After integration we have 

Adding and subtracting the 0- and 3-components of the equa- 
tion, we obtain 

Substituting 3(r) from ( 1  1) into (12) and (9) and inte- 
grating, we find 

Directly from (9) we have 

The degree to which the rule (3) is violated is measured by 
the ratio of the second term on the right side of (14) to the 
first. The order of magnitude of this ratio is as follows: 

The quantum expression for the intensity of the radiation 
passes to the classical limit under the  condition^^"^"^ 

Besides this factor, in (15) there is a still smaller factor of 
a2= (e2/hc) ' ,  so that (3) is well fulfilled. 

We can expect that inclusion of the force of radiative 
reaction corresponds in quantum theory to inclusion of the 
decay of the initial state due to radiation. Then the intensity 
of the radiation should decrease. However, the sign of the 
correction in (14) is positive. This once more suggests that 
perhaps when the force of radiative reaction is included the 
intensity is determined by the rate of change of the kinetic 
velocity (7), i.e., essentially the square of the right side of 
(14) without the mass terms. 

In quantum theory, the total probability of radiation is 
determined by the quantum numbers of the initial electron 
state. In classical theory these correspond to integrals of mo- 
tion. We can choose them to be the components of the mo- 
mentum at any instant of time. In the case under discussion, 
we pick p I ,  p2, p3 as quantum numbers? The radiation of a 
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photon with momentum k' takes place with conservation of 
3-momentum 

where p' are the quantum numbers of the final state of the 
electron. When 5% 1 holds, in which case the motion of an 
electron is significantly three-dimensional, the intensity of 
the radiation is well defined.677 In the classical limit the recoil 
is small, and we have from (16) that 

The mean values of @ and reff are determined from the 
relations 

Here W(p) is the total probability of radiation per unit 
proper time, and dP, (p) ldr  is the intensity of radiation of 
the 1-component of the 4-momentum. In the classical limit 
we have4 

Then from (17)-(19) we obtain 

This coincides with the first equation in (9). The same situ- 
ation obtains for the second equation in (9). These two equa- 
tions are recovered exactly because the mass terms give no 
contribution to them. 

That the mass terms contribute to the 3- and 0- compo- 
nents of (9) is indicated by the fact that they contain 1 - 5 
instead of - 5. When <P 1 holds this is unimportant. Be- 
sides, u3 and uo change even without taking radiation reac- 
tion into account. The change in u3 due to radiation is ex- 
plained in the same way as for u , , u2. The change due to the 
mass term cannot be explained in this way. We turn to this 
question in the next section. 

4. CONSTANT MAGNETIC FIELD 

For a field H directed along the 3-axis, we have the 
following reduced Lorentz-Dirac equation: 

u ~ = ~ u ~ - K ' ~ u ~ ,  u ~ = - ~ u ~ - K ' ~ u ~ ,  

u3=-K1(S- 1)U3, u0=- ~ ' ( 5 -  1 ) ~ ~ .  (2 1) 

Here 

v=eHlm, K ' =  rOv2, l= 1 +uf =u:-u:. (22) 

From the first two equations of (21) we have 

1 d -- 
2 d r  

5 = - ~ ' 5 ( [ -  1). (23) 

Integrating, we obtain 

5(7)= <in[bin-(tin- ~ ) ~ x P ( - ~ K ' T ) I -  '. (24) 

Substituting 5(r) into the third and fourth equations of (21) 
and integrating, we find 

U ~ ( T ) = U ~ ~ , , [ ~ ~ ~ - ( ~ ~ ~ - -  1)exp(-2~ ' r ) ] - ' '~ ,  

u ~ ( ~ ) = u ~ ~ ~ [ ~ ~ ~ - ( ~ ~ ~ -  1 )exp( - 2 K' T ) ] - ~ ' ~ -  (25) 

From the first and second equations of (21) we obtain 

2 u 2 u 1 - u , u z = ~ u L .  (26) 

This prompts us to use the same analysis as for K' = 0, i.e., 

u l = u L ( r ) ~ ~ ~ ( ~ r ) ,  u2= -uI(r)sin(vr),  

u1(7)= GmZG. (27) 

For simplicity we set u2(0) = 0. 
We have directly from (21) that 

ciT+zii= v 2 ~ f + ~ ' 2 f . 2 ~ f ,  A ? = -  ~ ' ( 6 -  l ) u 2 ,  

2 
U + U - =  ~ ' ~ ( 5 -  1) U + U - .  

(28) 

From this we find 

.z i2=uf+~;--z i+~-=112({-  1)+ K ' ~ ~ ( L -  1). (29) 

Here the situation is analogous to the case of an electric field; 
cf. (14). 

It is interesting to note that it is easy to obtain an analog 
of Pomeranchuk's result from the 0-component of (21) (see 
Sec. 76 in Ref. 4). Setting u3 = 0, for 5% 1 we have approxi- 
mately that 

Thus, for uii;9 ~ ' t  we have u i l = ~ ' t .  In other words, for 
sufficiently large initial energies, the finite but still ultrarela- 
tivistic energy is determined only by the quantity (K'  t)- ', 
and does not depend on the initial energy. 

We now perform a calculation analogous to Eqs. (16)- 
(20). For the required choice of quantum numbers of the 
electron state, the conservation laws have the form 

In the classical limit, starting from the last equation we have 

From this we obtain 

which agrees with the 0-component of (21). The same thing 
applies to the 3-component of (21) as well. The mass terms 
do not contribute to these components. 

The component ul (and u2) changes even without in- 
cluding the radiation reaction. The additional change caused 
by radiation is described naturally by analogy with (33): 
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6. PLANE MONOCHROMATIC WAVE 

However, it is 5 that enters into the first equation of (21), not 
- 5. The difference is caused by the contribution of the mass 
term. We might think that the mass terms of the Lorentz- 
Dirac equation or the reduced Lorentz-Dirac equation could 
arise from higher-order perturbation theory of quantum 
electr~d~namics, '~ However, this possibility is doubtful, be- 
cause a careful investigation of the mass operator by 
~orentz-~irac" shows that the mass remains unchanged in a 
constant magnetic field, and that the mass shift in a constant 
electric field is only qualitatively similar to the 0-component 
of the Lorentz-Dirac mass tensor in the classical limit; see 
expressions (6) and (8). These facts are sufficient to convince 
us that in those cases where the mass terms in the Lorentz- 
Dirac equations are comparable to the radiative terms, the 
predictions of the equations will be degraded. In particular, 
this applies to one-dimensional motion. 

5. CONSTANT ELECTROMAGNETIC FIELD 

Assuming that the fields E and H are directed along the 
3-axis, we have for the reduced Lorentz-Dirac equation 

Proceeding in the same way as before, we find that ((7) is 
given by Eq. (1 I), in which we must replace K by K +  K'.  

Analogously, u + and u - are obtained from the correspond- 
ing expressions in (13) by the same replacement. The com- 
ponents u, and u2 have the form (27) with 
u, = [<(r) - I]-'. The square of the invariant acceleration 
equals 

The violation of the rule (3) is measured by the ratio of the 
terms depending on K +  K' to the sum of the first two terms 
on the right side of (36). This ratio is always much smaller 
than unity in the classical region. 

Note that in a quantum description of the sort given here 
only the two conservation laws p2-p i=k '  and 
p3-pi = k' introduce the quantum numbers p 2  and p3, 
which besides participating in the conservation laws play 
another role: they determine the center of the wave function 
with respect to x, and t. This implies that the 2- and 
3-components of the reduced Lorentz-Dirac equation con- 
tain a contribution from the mass terms. Therefore, these 
components, as in Secs. 3 and 4, cannot be exactly recovered 
by using the considerations given here. 

Here the new element is the dependence of the field on 
coordinates and time. Let us write the vector potential of the 
field in the form 

~ ~ ( ~ ) = a j ' ) c o s ~ + a j ~ ) s i n  (P, cp= kx= - wx- . (37) 

Then for the field we have 

Fii(cp)=diAj- djAi= -Fj,!)sin ( ~ + F g ) c o s  (P, 

F(!>2)=k,a( . ' ,2 ) -k .a! '>2)  
1 1  ' I , , k=(O,O,w,iw), (38) 

a( ' )= (al,O,O,O), a(')= (0,a2,0,0). 

The wave propagates along the 3-axis. The components of 
the regularized Lorentz-Dirac equation have the form 

2 u2= 7 2 ~ - c o s  (P+PU- v2 sin (P- r0u2u-H, 

2 . 2  H= q1 sm (P+ q i  cos2 (P, = e a ,  wlm,  

v2=ea2wlm, p= rOwu-. 

From (39) we find 
3 u - = - r O ~ - H ,  

From these equations we have 

This is the left side of (3). The right side of (3) equals 
U?H. In the classical region we have p 6  1, and the rule (3) is 
satisfied according to the same considerations as for a con- 
stant field. 

In order to integrate Eq. (39) it is convenient to go from 
the proper time r to the variable (P = kx: 

dui d ( ~  dui dui i.=- -= -ku= -wu--. 
' d p  d r  d q  d (P 

(43) 

Then from (40) we obtain 

This is the analog of the Pomeranchuk formula: compare 
(30) and the remarks after it. Knowing u-((P), we find 
u ,(q) and u2(cp) from (39) and (44), and then uo(q). 

In the remainder of this section we will be interested 
only in the case of a circularly polarized wave. 

Setting a ,  = a , = ~ , 7 7 ~  = v2= q ,  we obtain 
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u1(0)  +=I o u  - ( 0 )  - Ton sin c p +  - ++ 
u - ( 0 )  m u - ( 0 )  ' 

(cos cp  + cp  sin c p )  

In a quantum description of the radiation process, the 
conservation laws have the form17718 

p - = p o - p ; .  

Just as in (16)-(20), we find 

which agrees with (40). Analogous expressions are obtained 
for the additional changes in u and u2: one power of u - on 
the right side of (47) must be replaced by ul  or u2 respec- 
tively. Of course, we cannot explain the change due to the 
mass term containing p in (39) by this method. If the force of 
radiation reaction is not included, u is unchanged for a suit- 
able choice of the constant of motion. It would be interesting 
to experimentally track u3 through its evolution under con- 
ditions where the contribution of the mass term is important. 

When bremsstrahlung is included, the magnetic field of 
the wave accelerates the electron in the direction of propa- 
gation of the wave. As a result, the electron in its rest frame 
"sees" the frequency and intensity of the plane wave de- 
crease. This leads to a decrease in its interaction with the 
wave. The acceleration of the electron along the direction of 
wave propagation can be stopped by applying a constant 
electric field. Thus, we are led to the field configuration dis- 
cussed in the next section. 

7. CIRCULARLY POLARIZED WAVE PROPAGATING ALONG 
A CONSTANT ELECTRIC FIELD 

First let us consider the motion without including the 
force of radiative reaction. This is necessary if we are to 
understand the rule (3)  in this relatively complicated case. 
We will take into account the force of radiative reaction only 
in the special case of a stationary circular orbit, for which the 
exact solution to the Lorentz-Dirac equation is known.' This 
allows us to compare the solutions to the original and re- 
duced Lorentz-Dirac equations in detail. 

Let us assume that a plane wave propagates along the 
3-axis, as in the previous case. In addition, a constant electric 
field E is directed along this axis. The equations of motion 
without including the radiative reaction force have the form 

u ~ = ~ ( u ~  cos c p - U ,  sin cp)+&uo, (48) 

uo= 7 ( u 2  cos cp-ul sin cp)+&u3, 

For this motion the square of the invariant acceleration 
equals 

L i 2 = ( e ~ i k ~ k l m ) 2 =  v2u? + E ~ U + U -  

+27jwu_(u2 cos cp-ul sin cp). (49) 

A feature that is specific to this expression is the fact that the 
third term on the right side of (49), which is proportional to 
V E ,  can cancel an appreciable part of the first two terms. 

By virtue of the equation of motion (48) we have 

u ~ ( T ) = & - (  cos cp, u ~ ( T ) = ~ ~ - (  sin cp, 5 

= e a l m ,  (50) 

where iil and 6 are constants of the motion. Therefore, 

u2 cos c p - U I  sin c p = &  coscp-ii, sin cp. (51) 

From (48) we have 

Analogously, 

u + ( r ) = e u + + 2 v ( u 2  cos p - u l  sin p ) ,  

2 u + = ( l + u , ) l u - .  (53) 

Assuming the charge of the particle is positive, we see that 
u- - ,  0 when r-+m, and, thus, according to (49), 

i.e., as r-,m a particle moving along the wave with a veloc- 
ity close to the velocity of light ceases to "feel" the wave, 
because the frequency and the field of the wave in the rest 
frame of the particle reduce to zero. 

It is clear from (49) that the field of the wave, the elec- 
tric field, and the cross term proportional to V E  all contribute 
to the radiation intensity. The last term can be reduced to 
zero by setting zi, = U2= 0, i.e., motion without drift in the 
1-2 plane [see (51)] .  In the next case of interest to us, the 
cross term plays an important role by strongly decreasing the 
radiation in the far-relativistic limit. 

From (52) and (53) we have the T-dependence of the 
quantity 

Thus, for large negative T a positively charged particle mov- 
ing opposite the electric field is braked and then accelerated 
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along the electric field. For large negative r the intensity of 
the radiation is large, since u - 1. The inclusion of brems- 
strahlung radically changes the character of the particle mo- 
tion in this region. 

A negatively charged particle (e = - lei) arriving from 
x3 = - is initially braked by the constant electric field, and 
feels the effect of the wave field more and more strongly in 
its rest frame. The particle then begins to move opposite the 
momentum of the plane wave, and its radiation continues to 
increase throughout the motion. This leads to braking of the 
motion in the 1-2 plane, a result of which is that the mag- 
netic field of the wave opposes the constant electric field and 
the acceleration counter to the 3-axis ceases. Thus, when 
radiation reaction is included, a stable circular orbit can exist 
for an electron moving in a field with this configuration. The 
losses due to radiation are balanced by the work done by the 
wave electric field. The solution to the Lorentz-Dirac equa- 
tion for such an orbit is found from simple considerations of 
symmetry.5 This solution is valuable to us because it allows 
us to see explicitly how much the original and reduced 
Lorentz-Dirac equations differ and by what terms, and to 
understand why the rule (3) is satisfied even when a stable 
orbit is formed with appreciable participation of the radiative 
reaction force, which is comparable to the Lorentz-Dirac 
force in a strong wave. 

Let us look for the solution to the Lorentz-Dirac equa- 
tion in the form 

ul=-vycos(cp-$), u2=-vysin(p-$),  

u3=0, u0= y=const, (P=-wyr. (56) 

Substitution into the right side of the Lorentz-Dirac equation 
gives 

u l =  - 777 sin p+rOv y3w2(1 + v 2 ~ ) c o s ( ~ - -  $), 

uz= v y  cos c p + r 0 ~ y 3 ~ 2 ( 1  +vZy2)sin(p-$), 

u3=?/vy sin $ - ~ y ,  (57) 

Here, and in what follows, we will set e = lei for conve- 
nience. The use of (56) on the left side as well gives5 

The Lorentz factor y is determined from the condition 
sin2$+cos2$= 1, which leads to the relation 

which can be rewritten in the form 

From this it is clear that 

vy-5 for tan $41,  

t 
5 

Y4- - for tan $ + I .  
TOW 
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In the factor 1 + v 2 y =  -y2 that appears in the first two 
equations of (57), the one comes from ii, and the v2 -y2 comes 
from the radiative term. 

We now see how things stand with rule (3). Omitting the 
radiation reaction terms on the right side of (57), we obtain 
for the right side of (3) 

Taking into account the expression for cosq in (58), it is easy 
to verify that the term with cos2, in (61) gives the left side of 
(3), i.e., u2, in agreement with the solution to the Lorentz- 
Dirac equation. Consequently, the amount of violation of 
rule (3) is the following: 

In the classical region 

and we might think that the discrepancy (62) can lead to a 
rather large amount of scatter in y, even if we remain in 
region (63). However, in this problem y is a function of the 
field, and even in a strong field, according to the second term 
in (60), we have 

(where B is the amplitude of the wave field), which is small 
in the classical region. 

Note that the second term in square brackets in (61) is 
positive, i.e., the instantaneous intensity of the radiation ac- 
cording to the Lorentz-Dirac equation is smaller than the 
intensity when radiation reaction is neglected. 

It remains for us to show that the parameters of the sta- 
tionary orbit (56) for the reduced Lorentz-Dirac equation 
agree closely with the parameters determined in (58) and 
(59). The reduced Lorentz-Dirac equation has the form 

The difference between the 0- and 3-components of the re- 
duced Lorentz-Dirac equation give 
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However, R -  now depends on all the components u j  (see 
(49)), which hinders our search for an exact solution. 

In order to determine the parameters of the stationary 
orbit, we substitute (56) into (64). The first equation of (64) 
(or the second) gives 

(1 + roe)sin (I= p cos 

From the third equation of (64) we obtain the condition that 
there be no motion along the 3-axis. Writing it in the form 

& 
( I+T , ,~v  sin $ -T~E) -=u  sin ( I + T ~ ~  1 - Y C O S  (I), 

'7 i 
(67) 

we see that we need retain only the one in the brackets on the 
left side. The term in brackets on the right side is small for 
(I< 1, since in this case it follows from (65) that v y/5= 1. 
For (I- 1 the second term on the right side of (67) is small 
compared with the first. Therefore, the ratio 81 '7 is the same 
as in (58). 

Finally, from (66), (49), (60), and (61) we have for 
(Ie 1 

which agrees with the sin$ in (58) when (60) is taken into 
account. For (I- 1, i.e., in the ultrarelativistic limit, the mass 
terms do not play a role; therefore, the reduced Lorentz- 
Dirac equation almost coincides with the original Lorentz- 
Dirac equation. For y- 1 the equivalence of these equations 
is ensured by the smallness of the radiative reaction force 
compared to the Lorentz-Dirac force. To sum up, we claim 
that both equations have the same status. If, nevertheless, it 
turns out that the Lorentz-Dirac equation is more accurate 
than the reduced Lorentz-Dirac equation, then the solution 
to the latter can be used as a first approximation, which can 
be refined when necessary. 
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