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A technique for calculating spectroscopic constants of multielectron ions, such as energy levels, 
rates of radiative and collisional transitions, effectively taking into account the continuous 
spectrum and relativistic effects has been proposed. The technique uses a mixed basis composed 
of orbitals of discrete states derived from the Dirac equation and orbitals of the Sturm 
extension. The Sturm extension effectively covers a region of the phase space including an infinite 
set of real bound atomic wave functions as well as continuum states. The convergence of 
the technique in terms of the number of orbitals in the set has been investigated. The effect of 
the continuum on the kinetics of level population is important in calculations of the laser 
gain due to transitions from highly excited states of a multicharged ion. O 1996 American 
Institute of Physics. [S 1063-7761(96)01008-61 

1. INTRODUCTION 

Calculation of emission spectra of plasma ions based on 
high-precision quantum-mechanical techniques is a practical 
tool which may be used instead of very expensive sophisti- 
cated experiments. Given systematic data about intensities of 
spectral lines and respective gains, one can establish basic 
rules of plasma motion in phase space. An important appli- 
cation of the theory of atomic spectra in plasma is determi- 
nation of the optimum plasma excitation condition for lasing 
and discovery of new pumping approaches. Given an ad- 
equate theoretical model, one can, in principle, control 
plasma motion in phase space in order to optimize the lasing 
effect. An investigation of plasma motion over a large vol- 
ume in phase space is necessary for detailed interpretation of 
experimental data on laser gain in plasma. In this connection, 
the relevant problem is to develop an efficient technique for 
calculating atomic constants and plasma kinetics taking into 
account regions of the phase space containing an infinite 
number of states. This technique is also important for the 
plasma diagnostics and understanding the evolution of the 
plasma by comparison between calculated and measured 
spectra. 

Vinogradov et al.' proposed a radiative-collisional 
model of lasing on multicharged Ne-like ion transitions. This 
concept was later confirmed and developed in many 
lab~ratories.~.~ In most of these studies, plasma was the las- 
ing medium. Recently the capillary discharge has proved to 
be a convenient table-top soilrce of far ultraviolet 
rad ia t i~n .~-~  

Dedicated investigations of capillary discharges demon- 
strated that electron velocities in them may be up to ul- 
trarelativistic values under conditions of ultrashort discharge 
times (tdis= 100-1000 ps). The atomic densities and energies 
of these discharges satisfy the conditions of lasing due to 
transitions in ions of the neon isoelectron series, including 
the krypton ion with electron structure similar to that of 
neon. ~ a r l i e r ~  we proposed to use a two-step capillary dis- 
charge with the second ultrashort discharge in order to obtain 

a high laser gain. The basic idea was that the discharge con- 
ditions required to ionize an atom to the neon-like state and 
to excite the resulting ion should be essentially different. The 
first (preliminary) relatively long discharge converts the 
plasma to a quasi-uniform state whose dominant components 
are Na- and Ne-like ions. In the first stage, the electron tem- 
perature and degree of inversion are relatively low. The sec- 
ond ultrashort discharge generates beams of superhot elec- 
trons which transform the plasma to a highly-inverted state. 
Preliminary calculations of the gain due to flows of superhot 
electrons in pure plasn~a of iron: selenium? argon,'' and 
krypton1' demonstrated that the presence of superthermal 
electrons in plasma leads to a considerably higher degree of 
inversion and higher gains due to certain transitions in Ne- 
like ions. This inversion is short-lived (transient), and its 
duration is controlled by the rate of transitions from Ne-like 
ions to F-like ions with a higher ionization. Another charac- 
teristic time of this short stage is the time of electron ther- 
malization (maxwellization). Both these processes directly 
determine the time of the second (ultrashort) discharge. In 
our previous publications'07" we demonstrated that under 
certain conditions it is possible to obtain essential gains (2-3 
cm-') on the line of the 2 ~ 2 ~ ~ 3 ~ [ ~ = 0 ] - 2 ~ ~ 2 ~ ~ 3 s [ ~ =  11 
transition in a Ne-like ion, which is usually called the 
2s-2p transition. Thus the laser wavelength can be short- 
ened by tuning the discharge parameters. In our preliminary 
calculations, we did not take into account Rydberg and au- 
toionizing states of Ne-like ions. In plasma processes involv- 
ing high-energy electrons, however, these states largely de- 
termine the ratios of spectral line intensities. These states 
should be included in calculations of level collisional broad- 
ening, whereas line widths control laser gains in plasma. The 
importance of highly excited states in the kinetics was indi- 
cated by recent calculations of line intensities in the Ne-like 
selenium.12 These calculations demonstrated that hundreds 
of electronic configurations should be included in the kinet- 
ics with due account of all elementary processes which 
change the ionization degree of a given ion by a unit. An 
important point is the consistency of calculations of popula- 
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tion kinetics and decay rate coefficients of atomic states. In 
our previous paper'3 we proposed a radically new approach 
to the problem of inclusion of all elementary processes 
changing the ionization degree by a unit. We considered 
plasma containing Ne- and Na-like ions. The kinetic equa- 
tions explicitly included 37 lower states of the Ne-like ions, 
and a set of Rydberg states (including those of the con- 
tinuum) of the Na-like ion corresponded to each Ne-like 
state. The population as a function of the Rydberg electron 
energy was introduced for each set. All the elementary pro- 
cesses connecting these two ions, as well as those leading to 
transitions within each Rydberg set, were taken into account. 
This approach which effectively takes into account an infi- 
nite set of states of the ion of the previous ionization state 
allowed us to calculate precisely the ionization balance in 
plasma as a function of electron temperature and density.'' 

It is remarkable that practically all existing models of 
ion spectra in plasma yield results which are very different 
from experimental line intensities, even when the time-and- 
space resolution of measurements is fairly good. In our opin- 
ion, there are at least three important factors leading to dis- 
agreement between simulations of plasma spectra and 
experimental data: (1) inconsistency of atomic calculations, 
which leads to large errors in rates of elementary process in 
some cases; (2) uncertainty of the real electron-velocity dis- 
tribution function and its time dependence in nonstationary 
plasma sources; (3) in calculations of the level population 
and atomic decay rates, one should, in principle, take into 
consideration an infinite set of states. Two aspects of the 
latter problem must be considered: (a) the effect of the con- 
tinuum on the atomic decay rate; (b) the inclusion of Ryd- 
berg and autoionizing states of a given ion in the kinetic 
equations. 

The paper is dedicated to the fundamental problem of 
calculating the radiative decay rates of atomic states using 
the technique of Sturm orbitals. The aim of this study is to 
develop an efficient method taking into account the continu- 
ous spectrum and to investigate using numerical techniques 
the convergence of the method as the number of orbitals 
taken into account increases, i.e., as the number of electron 
configurations included in the energy matrix increases. The 
technique is illustrated by a calculation of energy levels, in- 
cluding high-energy states, and rates of radiative transitions 
in a Ne-like argon ion. This is a continuation of our previous 
reSearCh.10,11,13-15 

~ a r l i e r ' ~  we demonstrated that many versions of multi- 
configurational atomic calculations, including their relativis- 
tic generalizations, contradict the principles of the consistent 
quantum-electrodynamic (QED) theory. This may lead to 
enormous errors in calculations of radiative and collisional 
decay rates, and in this case the interpretation of lasing 
plasma spectra will be erroneous. Our technique for calculat- 
ing atomic constants is based on the consistent QED 
t h e ~ r y ' ~ - ' ~  and is, in principle, free from many flaws of mul- 
ticonfigurational techniques. Nevertheless, a correct calcula- 
tion inevitably includes an investigation of the convergence 
with the number of orbitals taken into account. The difficul- 
ties of this investigation are self-evident; they derive prima- 
rily from the large number of components in the energy ma- 

trix. The major problem is to take into account the 
contribution of the continuous spectrum to the matrix ele- 
ments. 

A way of taking into account the effect of the continuum 
using only the states of the discrete spectrum was first indi- 
cated by ~ o c k . ~ '  Later this approach was used in calculations 
of perturbation corrections to states of hydrogen-like 
 atom.^.^'-^^ The Sturm extensions in the Hartree-Fock 
method were used in calculations of the Stark effect?4 static 
and dynamic polarizabilities of atoms and ions.25 

In this paper we suggest to apply the Sturm extension to 
conventional calculations explicitly taking into account 
many-body effects. Section 2 of the paper gives a systematic 
description of the energy approach to calculations of decay 
rates. In Sec. 3 we discuss the spectral representation of the 
Green's function in terms of configuration superposition. 
The method of generating the one-particle basis of the usual 
Dirac orbitals and its Sturm extension is described in Sec. 4. 
Section 5 gives a scheme of calculating the rates of radiative 
transitions between exited states of a Ne-like ion using the 
energy approach within the framework of the QED theory. 
Numerical results are discussed in Sec. 6, where the conver- 
gence of the results with the number of orbitals in different 
bases composed from orbitals of the usual (real) states and 
orbitals of the Sturm extension is investigated. 

2. ENERGY APPROACH TO CALCULATIONS OF 
TRANSITION RATES 

In terms of the energy approach to the consistent QED 
theory, the level width, irrespective of the underlying physi- 
cal cause, is determined by the imaginary part of its energy. 
Strictly speaking, the Dirac equation is only applicable to a 
single-electron atom. Nonetheless, the QED approach which 
uses the Dirac equation with a model (bare) potential as a 
zeroth approximation of the multielectron and is 
exact from the formal viewpoint is valid. The bare potential 
imitates the potential generated by the atomic nucleus and 
core electrons. In this model, the outer electrons and vacan- 
cies in the inner shells (quasi-particles) move in the field of 
the bare potential and interact with each other directly via 
electromagnetic field, via polarized inner shells, and also 
through the polarization of the electron-positron field 
vacuum. In studying a system of two or more quasi-particles 
by using the energy approach, one should calculate a com- 
plex secular matrix for a set of degenerate or nearly degen- 
erate atomic states. In the lowest order of perturbation 
theory, the secular matrix is identical to the energy matrix.28 
In the case of an isolated atom, the imaginary part of the first 
order correction due to the electron-electron interaction (the 
second order of QED) directly yields the spontaneous radia- 
tive decay rate of the The autoionization decay of 
the state can be manifested only in the second order of per- 
turbation theory, in which the imaginary parts of the higher- 
order corrections contain terms due to multiphoton and inter- 
ference  effect^.^^'^' We proposed the energy approach based 
on the consistent QED theory for calculating cross sections 
of electron-atomic collisions in our earlier publication.'8 
Note that the procedure of the consistent QED calculation 
can be always compared to a nonrelativistic quantum- 

259 JETP 83 (2), August 1996 L. N. lvanov and E. P. lvanova 259 



mechanical or quasi-classical calculation, but in the latter 
two cases, the QED prescriptions should be followed 
closely.'4 On the base of these principles, we analyzed the 
processes of light-induced ionization, radiative recombina- 
tion, two-electron and triple recombination in plasma con- 
taining Ne- and Na-like ions.I3 

Initially, the secular matrix is constructed in the repre- 
sentation of the jj-coupling of angular momenta. Excited 
two-quasi-particle 2lnl-states of a Ne-like ion in the 
jj-representation have the form 

where a+ and a are the creation and annihilation operators 
of a quasi-particle, ie=nieliejiemie is the set of quantum 
numbers of one electron over the core, iv =niulivjiumiv is 
the set of quantum numbers of one vacancy in the inner 
shells, J and M are the total angular momentum of a two- 
quasi-particle system and its projection, is the state of the 
core, and the factor c;;:~ contains the Clebsh-Gordan coef- 
ficient and a phase factor to account for tensor properties of 
the annihilation operator ai, .I8 In order to transfer to the 
intermediate coupling scheme, one should diagonalize the 
secular matrix. Since the imaginary parts of the matrix ele- 
ments are much smaller than their real parts, it is sufficient 
only to diagonalize the real matrix in order to determine the 
vectors of eigenstates, i.e., the matrix of the transition 
to the intermediate coupling scheme." The latter is used to 
transform the imaginary part of the secular matrix. As a re- 
sult of this transformation, we obtain a matrix whose diago- 
nal elements are level widths in the intermediate coupling 
scheme. They are sums over the complete set of states in the 
one-quasi-particle representation. Then this sum can be 
transformed to the sum over two-quasi-particle states in the 
intermediate coupling scheme. The entire transformation 
procedure is independent of the physical nature of the level 
width because it only uses the unitary property of the matrix 
relating the one-quasi-particle representation ie, iv to the 
two-quasi-particle representation I." 

The final expression for the level width is interpreted as 
a sum of the contributions from specific transitions between 
states in the intermediate coupling scheme. In the lower or- 
ders of perturbation theory, contributions of radiative, auto- 
ionization, and collisional decays can be ~ e ~ a r a t e d . ' ~ - ' ~ ~ ' ~  

3. SUPERPOSITION OF CONFIGURATIONS AND SPECTRAL 
REPRESENTATION OF GREEN'S FUNCTION 

Perturbation theory corrections to the imaginary and real 
parts of the energy matrix can be expressed in terms of the 
Green's function G(r,  ,rz) of the Dirac equation with a bare 
(model) potential and a convolution of two, three, etc. 
Green's  function^.^' The spectral expansion includes discrete 
and continuous components. Commonly, a reduced spectral 
expansion of the Green's function over a complete set of 
onequasi-particle states, which are solutions of the Dirac 
equation, is used. In what follows, we will call them real 
states. In this case the reduced expansion means that nearly 
degenerate states of the secular matrix are omitted in the 

Green's function expansion. In reality, only a few terms of 
the spectral expansion can be explicitly included. One way to 
refine the calculation technique is to take more terms of the 
spectral expansion. It is well known, however, that the spec- 
tral expansion over one-particle discrete real states does not 
converge to the desired function because there is always a 
contribution from the continuum. Direct calculations 
indicate32 that the continuum contribution to the excitation 
energy of lower levels for almost all atomic systems is at 
least several thousands of reciprocal centimeters. Moreover, 
this assertion is universal for any basis including functions of 
the continuum, i.e., functions of a scattered electron with 
asymptotic forms oscillating as r - t  m. 

An alternative method of refining the calculation tech- 
nique is to increase the matrix dimension by including addi- 
tional states, i.e., by taking a superposition of configurations, 
the order of the perturbation theory for each matrix element 
remaining unchanged. The additional states should be ex- 
cluded from the spectral representation of Green's function 
because these states are explicitly included in all orders of 
the perturbation theory, similarly to multiconfigurational ver- 
sions of the self-consistent field technique. The convergence 
of this calculation procedure with respect to the number of 
states (configurations) explicitly included in the energy ma- 
trix is determined by the convergence of the Green's func- 
tion expansion over real states. The convergence of the latter 
has been discussed previously. The central problem is that in 
both approaches, the complete functional space of atomic 
states is spanned by the one-quasi-particle basis of real 
states, which is not optimal for our purpose. 

Contemporary atomic calculations widely use the tech- 
nique of optimizing the real energy matrix in the first order 
of perturbation theory by introducing variational parameters 
either directly into the functions of real states or into the 
Hamiltonian generating these states. We have in mind vari- 
ous versions of the Dirac-Fock and Hartree-Fock multicon- 
figurational theories. This technique, of course, allows one to 
attain satisfactory accuracy in calculations of energy levels 
using rather limited sets of superposed configurations, the 
accuracy always being better than that deriving from the ap- 
proximate nature of the theory on which the calculation is 
based. At least, the ignored contributions of Green's func- 
tions are usually larger than errors in the energy calculations. 
It is clear that this "superaccuracy" of the varied energies 
leads to errors in matrix elements of other operators calcu- 
lated in the basis of the same real states and also to errors in 
the energy terms of higher orders of the perturbation theory. 

There is another essential flaw inherent in many contem- 
porary versions of multiconfigurational atomic programs. It 
is manifested in calculations of rates of spontaneous radia- 
tive transitions between groups of degenerate or nearly de- 
generate states. We discussed this problem in our earlier 
publication14 taking as an example the 3-3 radiative transi- 
tions in Ne-like iron and argon. In traditional techniques, the 
calculation is performed in three stages: (1) construction of 
the transition-operator matrix in LS- or jj-representation; 
(2) transformation of this matrix to the intermediate 
momentum-coupling scheme; (3) multiplication of squared 
matrix elements of the transformed radiative transition ma- 
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trix by the energy factor E: (in the case of electric dipole 
transition), where E,, is the transition energy determined with 
the highest possible accuracy. ~ a r l i e r ' ~  we demonstrated that 
this scheme contradicts the principles of QED theory. The 
scheme has two basic flaws: (1) inconsistency of the approxi- 
mation for transition matrix elements with that for the tran- 
sition energy; (2) an incorrect sequence of operations, 
namely, first the transformation to the intermediate coupling 
scheme, then multiplication by the energy multiplier. As a 
consequence, correlation effects are not correctly taken into 
account, and terms of different orders of perturbation theory 
in final results may not cancel out. Note that such a cancel- 
lation is an important feature of the atomic perturbation 
theory and demands that formal conditions of the theory 
should be followed ~ l o s e l ~ ? ~ , ' ~  In some cases, which are 
rather rare but apply to practically important systems, devia- 
tions from the formal conditions can lead to enormous errors. 
In this context, the case of two lasing transitions in Ne- 
like ions, 1 ~ ~ 2 s ~ 2 ~ ~ 3 ~ [ ~ = 0 ] +  11 and 
1 s22s22p53p[~= 2]+ 1 s22s22p53s[J= 11 is very instruc- 
tive. The anomalously large contribution of electron correla- 
tions to the higher state 2p3p[J=0] results in a high sus- 
ceptibility of its parameters to the calculation procedure, 
namely the available Dirac-Fock calculations of the radia- 
tive 0-1 transition differ by a factor of several units from 
calculations obtained using the same basis, but the correct 
sequence of  operation^.'^ 

It is well known that the complete basis of atomic func- 
tions can be expressed in terms of the set of Sturm orbitals, 
which is discrete and countable. This allows one to ignore 
the continuum in calculations in the framework of a formally 
exact theory?072' In calculations of atomic parameters, this 
standardizes the procedure and, naturally, makes it easier. In 
the case of kinetic equations for level populations, the 
method allows one to bypass the problem of taking into ac- 
count an infinite set of intermediate states, including those of 
the continuum. 

A set of Sturm orbitals can be introduced with a prede- 
termined asymptotic form, which is fundamentally important 
for the convergence of the spectral expansion. In principle, 
the transition to the Sturm basis resolves the convergence 
problem for the Green's function spectral expansion. It is 
clear that the optimum basis for an expansion of an arbitrary 
function in the form of a discrete set is that in which all the 
functions have the right asymptotic limit. In this context, the 
flaws of the real-state basis composed of an infinite set of 
discrete states and those of the continuum with undesired 
asymptotics are self-evident. Sometimes one can overcome 
this difficulty by replacing a sum over "Rydberg" states and 
adjacent continuum states with an integral of a quasi- 
classical continuous function approximating the spectral dis- 
tribution of the desired function, which is convenient for 
some specific problems. In this paper, however, we are try- 
ing to formulate a universal approach to the kinetic problem 
of atomic transitions, which could be easily refined using a 
formally exact procedure. 

In specific calculations, we will use a mixed basis com- 
posed of several functions of mixed states supplemented 
with Sturm functions. The functions of the mixed basis are 

not orthogonal to one another, which is taken into account in 
constructing the secular matrix. Two-quasi-particle states 
composed only of orbitals of real states are real two-quasi- 
particles states (states of a Ne-like ion in this work). States 
including a 21 vacancy and an electron Sturm function cor- 
respond to fictitious (virtual) states. Diagonalization of the 
secular matrix yields a set of orthonormal two-quasi-particle 
states. The mixing of real and virtual states effectively takes 
into account superposition of an infinite set of real states 
with one excited electron, including scattering states, i.e., 
those in which the ionization degree of the atom is a unit 
larger. 

In this paper, we also effectively take into account su- 
perposition of doubly excited states (corresponding to exci- 
tation of two core electrons). To this end, the matrix element 
of the polarization interaction between two quasi-particles 
(an electron and a vacancy) via the polarizable core of the 
filled shells is calculated similar to Refs. 16 and 17. Polar- 
ization corrections are calculated for both real and imaginary 
parts of the secular matrix elements. 

4. ONE-PARTICLE BASIS OF REAL STATES AND STURM 
EXTENSION 

In what follows we will only discuss radial Green's 
functions and versions of mixed bases for specific calcula- 
tions. All the one-quasi-particle orbitals are generated by 
solving the one-electron Dirac equation 

[K(r)+ Vn(r)+ 4ve l ( r IP i ) -~ i l (~ i=O~ (2) 

where K is the kinetic energy, Vn(r) is the electron-nucleus 
interaction, ve,(rlp) is the bare potential due to the core 
electrons (its construction was described in Refs. 16- 18), 
and pi is the parameter of the bare potential for the ith or- 
bital. In order to generate the Sturm functions, we have in- 
troduced a second parameter S; , which equals unity for all 
functions of real states and is a quantization parameter for 
the additional Sturm functions. In this paper the two param- 
eters pi and 8; correspond to each (ith) orbital of a real or 
Sturm state. In different stages of the calculation, the Dirac 
equation (2) is treated as an eigenvalue problem for the state 
cp; and one of the three quantization parameters p i ,  E; ,  or 
Si, the other two parameters being fixed. 

The smallest basis discussed in this paper includes eight 
one-quasi-particle orbitals of real states. Three of them are 
states with vacancies in the core, 2s 2plI2, and 
and five have electrons in the outer shells, 3slI2, 3plI2, 
3p312, 3d312, and 3d512. The exact (experimental) one-quasi- 
particle energies E~~~ and sglj are substituted into Eq. (2) to 
determine the respective parameters /321j and /331j of the bare 
potential, which are quantization parameters at this stage. 
We recall that a;= 1 holds for real-states orbitals. In what 
follows, this smallest basis is denoted {2;3). In this simplest 
scheme, the secular matrix is calculated on the basis of 36 
functions of two-quasi-particle states 21j; 31j constructed 
from eight orbitals of real states of the (2; 3) basis. The basis 
(2; 3,4) includes five additional 41j (1 = 0,1,2) one-quasi- 
particle real states derived from the Dirac equation (2) with 
"exact" (experimental) one-electron energies e 4 ~  and 
a;= 1. Then by adding five 51j orbitals of real states, we 
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obtain the one-quasi-particle {2;3,4,5) basis. Since the "ex- 
act" energies eslj are not available, we take PSlj= P4Ij . The 
respective energies eslj are derived from the Dirac equation 
(2) by solving the eigenvalue problem for cpslj and E ~ ~ ~ .  The 
secular matrix in the {2;3,4} and {2;3,4,5} bases contains 72 
and 108 states, respectively. For each of the above bases of 
real-state orbitals, the Sturm extension is generated. In the 
case of the {2;3) basis the orbitals cps,nlj (n>3) of the 
Sturm extension satisfy the Dirac equation (2), which is 
solved in this case as an eigenvalue problem for the param- 
eter with given energy E ~ , ~ ~ ~ = E ~ ~ ~  and the bare- 
potential parameter /3s,nlj=P31j, i.e., the energy and bare- 
potential parameter coincide with the respective parameters 
of real-state orbitals of the same symmetry. The spectrum of 
the Sturm extension may contain an infinite but countable set 
of solutions. The eigenvalue S3Ij= 1 corresponds to the or- 
bital qglj of the real state, the other values S< 1 correspond 
to the Sturm-extension orbitals. All the orbitals of the Sturm 
extension for Eq. (2) have an exponential asymptotic form at 
r - w ,  which coincides with the asymptotic form of the last 
real state in the respective basis. The principal quantum 
number n of the extension function is uniquely related to the 
number of nodes in its radial part. 

The Sturm extensions for the {2;3,4} and {2;3,4,5) 
bases are generated similarly, but with different pairs of fixed 
parameters E and p: namely, for each orbital of the Sturm 
extension they coincide with the corresponding parameters 
of the real-state orbital with the largest principal quantum 
number n and the same angular symmetry. In this paper, we 
present calculations using the following bases: {2;3), 
(2; 3,S4), {2;3,4,S5), and (2; 3,4,5,S6). The latter three 
bases contain the Sturm orbitals 41j, 51j, or 61j with 
1 = 0,1,2, i.e, each set of orbitals is only supplemented with 
one Sturm orbital of the same symmetry and generating 36 
additional virtual states of a Ne-like ion. For simplicity 
f-orbitals are not included in the scheme because their con- 
tribution to the calculated parameters is negligible. 

In each case, the functions of explicitly included states 
constitute a reduced spectral representation of the Green's 
function G(rl ,r2). The residual part drops proportionally to 
exp[-rd-] as r t m  ( r = r l  ,r2 and E is the eigenen- 
ergy of the last explicitly included real state). All the orbitals 
of the Sturm extension have the same asymptotic form. As 
was noted above, this is essential for the convergence of the 
technique. In specific calculations, we retained only one 
function of the Sturm extension in each basis. This is justi- 
fied because, in addition to the asymptotic form, the residual 
part of the complete Green's function has the same number 
of nodes on both the r l  and r2 axes as the first function of 
the Sturm extension. The number of explicitly included func- 
tions of real states is determined, as usual, by studying the 
convergence of the calculated parameters using numerical 
techniques. 

5. ENERGY APPROACH WITHIN THE QED THEORY TO 
CALCULATIONS OF RATES OF RADIATIVE TRANSITIONS 
BETWEEN EXCITED STATES OF A NE-LIKE ION 

Radiative transition rates are contained in imaginary 
components of the secular matrix. They are determined by 

the delay factor of the interaction among the electrons. The 
relativistic radiative decay of the one- and two-quasi-particle 
states was previously studied by one of the present 
authors.2930 ~ a t e r ' ~  this technique was applied to calcula- 
tions of dipole, quadruple, and octupole radiative transitions 
to ground states of Ne-like ions. As in the previous 
publication,18 here we quote the contribution of the four- 
vertex iklm Feynrnan diagram corresponding to the rate of 
radiative transition between excited states of a Ne-like ion: 

The indices i and I correspond to higher (JI) states, and k 
and m to lower (JF) states. In the case when the electron is 
an active particle (the vacancy in this case is a "spectator"), 

If the active particle is a vacancy, then 

X ( -  l ) ( i i e + j r e ) ~ A ( i ~ m ~ ; ~ ~  k ~ ) ,  (5) 

where jie and jiu is the one-particle total momentum of the 
electron and vacancy, respectively, Ji is the total momentum 
of the ith state of two-quasi-particle system, and A is the 
transition multiplicity. The expression for the integral 
QA(l 2;4 3) is given in Refs. 18 and 19. Equations (3)-(5) 
were used in our previous publication'4 and in calculating 
the data for Table 4 of this paper (see below). The transition 
rate is expressed in Coulomb time units. The Coulomb time 
units are converted to seconds using the formula 
t,= 0.827- 1 0 ' ~ ~ t ~ , ,  , where Z is the nucleus charge. 

The imaginary part of the radial integral QA( . . . ) de- 
pends on the calibration of the photon propagator D in the 
matrix element of interelectron interaction. The family of 
propagators 

was studied numerically in Ref. 33 [the notations in Eq. (6) 
are the same as in Ref. 311. DT describes the interelectron 
interaction via transverse photon exchange, DL describes the 
interaction via the exchange of longitudinal photons. At 
C = 0 and C = 1 the propagator D is appropriate to the Lor- 
entz and Landau gauge, respectively. In the nonrelativistic 
limit different calibrations lead to different forms of the 
radiative-transition operator, namely, in the forms of length, 
velocity, and acceleration. The final calculations should be 
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TABLE I. Calculated positions of 2131 levels with J = O , l  of Ne-like argon with respect to the ground state ls22s22p6 in units of 100  cm- I .  The calculations 
in four bases are compared to data from Refs. 37 and 35 obtained by fitting calculations to measured energy levels. The states are numbered corresponding 
to their positions. 

Calculations of this work in four bases 
Thmr~ Fitting 

Number State J  { 2 ; 3 }  {2;3,S4} {2;3,4,S5} {2;3,4,5,S6) Ref. 18 Ref. 37 

gauge invariant, but in lower orders of perturbation theory, 
there is, of course, a component of imaginary energy which 
is not guage invariant. The study described in Ref. 33 was 
dedicated to constructing a bare potential generating a one- 
electron basis to minimize the gauge noninvariant compo- 
nent in the lowest, second order of perturbation theory 
(fourth order of the QED perturbation theory). The rates of 
strong (dipole) transitions for the gauges mentioned above 
differ by less than 0.16%. The representation constructed in 
Ref. 33 has been used in the present work. 

6. DISCUSSION 

Table I lists energies of excited 2131 states of a Ne-like 
argon ion. For brevity only the states with J =  0, l  are given 
(some of these states are interesting from the standpoint of 
applications). Table I demonstrates good convergence of the 
numerical results as the basis of the one-quasi-particle orbit- 
als is enhanced. We have also calculated energies using the 
{2;3,4,S5,6) basis, which includes the {2;3,4)  basis of real 
states. Each function of this basis is supplemented with two 
Sturm orbitals of the same symmetry with n= 5,6. The cal- 
culations using this basis are practically identical to those 
with the {2;3,4,5,S6) basis. Note that the inclusion of f 
orbitals leads to small shifts of the states 2131, i.e., these 
shifts are smaller than the difference between calculations 
using the two longest bases, {2;3 ,4 ,S5)  and {2;3,4,5,S6).  
This leads us to a conclusion that all singly excited states 
21nl are fairly adequately accounted for in the calculation 
using the latter "best" basis. At least, the superposition of 

these states is not the main source of uncertainties in the 
calculation. The energy of the 2131 level calculated using the 
{2;3 ,4)  basis usually ranges between the calculations using 
the { 2 ; 3 )  and {2 ;3 ,S4 )  bases (closer to the former figure). 
This indicates that the level energy calculated using a mixed 
basis of real states and additional Sturrn orbitals converges 
faster than in the case of a discrete basis of only real states. 

Note that the energy gap between the fifteenth level 
2 p  3p[J  = 01 and lower levels of this configuration is anoma- 
lously large. This can be accounted for in terms of large 
correlation effects in this state. Other manifestations of this 
effect will be discussed below. 

It is noteworthy that the feature distinguishing this cal- 
culation from the previous ones16-18.34 is the absence of any 
variational procedure. The variational procedure was used 
previously '6-'8.34 to determine the screening parameter of the 
electron-vacancy interaction, which was introduced to the 
bare potential in order to improve the efficiency of inclusion 
of higher-order perturbation corrections. The approach em- 
ployed in this work is more consistent. On an average, the 
"variational" calculation of Ref. 16 is more accurate than 
the best version of this work, namely the calculation in the 
{2;3,4,5,S6} basis, except the two usually noted anomalies: 
level 15 of the state 2 p 3 p [ J = 0 ]  and level 27 of the state 
2p3d[J  = 1 1. It is well known that these levels cause addi- 
tional difficulties in all theoretical approaches. In the ap- 
proximation used in this work, the calculation error of these 
two levels is significantly smaller, whereas these levels are 
quite important for applications. We also assume that the 
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TABLE 11. Calculated positions of the 2141 levels with J=0,1 of Ne-like argon with respect to the ground state ls22s22p6 in units of 100 cm-l. The 
calculations in three bases are compared to data from Ref. 37 obtained by fitting calculations to experimental data. The states are numbered according to their 
positions. 

Calculations of this work in three bases 
Fitting 

Number State J {2;3,4) {2;3,4,S5) {2;3,4,5,S6) Ref. 37 

wave functions derived by the present method are more ac- 
curate for calculations of other parameters since the energies 
have been calculated without using any fitting parameters 
and variational procedures. The uncertainty in the level en- 
ergies is mainly due to the approximation used to account for 
the corrections due to the polarization interaction between 
quasiparticles-an electron and a vacancy. A detailed de- 
scription of how the polarization interaction operator is con- 
structed and its calculation were given in Ref. 16. 

One may come to similar qualitative conclusions consid- 
ering the group of 2141 levels with J=0,1 listed in Table 11. 
The states 2p41 are strongly mixed with 2s31 states, thus 
both groups of these states should be calculated together and 
the same theoretical accuracy in both groups should be pro- 
vided. 

Table I11 lists the rates of most strong (resonant) radia- 
tive transitions to the ground state. The calculations have 
been performed using three bases. One can see fast conver- 
gence of the energies of these transition with respect to the 

basis dimension; the convergence of other transition prob- 
abilities is also fairly fast. Besides, the results are compared 
to our previous  calculation^,'^ which were performed using a 
variational parameter. The last column of this table is given 
to compare our results to calculations of Ref. 35, which used 
the traditional approach to the calculation of transition rates, 
i.e., squared "exact" matrix elements of the nomelativistic 
transition operators in the intermediate scheme were multi- 
plied by "exact" transition energies E: The electronic basis 
in Ref. 35 included all Slater orbitals (including the 
5 f-orbital), each orbital being optimized separately, i.e., the 
energy matrix was fitted to an experimentally measured 
spectrum. Thereafter oscillator strengths were calculated. 

The convergence of our technique applied to the rates of 
transitions with A n  = 0 is illustrated by Table 4 taking as an 
example the four transitions that attract considerable atten- 
tion of researchers of lasing effects in plasma with Ne-like 
ions. As was mentioned above, there is a considerable 
discrepancy between the various approaches to these transi- 

TABLE 111. Rates of spontaneous 1-0 resonant radiative transitions to the ground state measured in SKI. Numbering corresponds to that of Tables I and 11. 

Calculations of this work 
in different bases 

meory w r y  
Number {2;3,4) {2;3,4,s5} {2;3,4,5,S6) Ref. 14 Ref. 35 
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TABLE IV. Rates of  four radiative transitions: 2p3p[J= 01 - 2p3s[J = 1 1  in units of  s- ' .  Numbering corresponds to that of Table I. 
- - - - - -- -- -- - - - - - - -  -- 

Calculations of  this work in different bases 
Theory Theory Theory 

Transition ( 2 3 )  {2;3,S4} {2;3,4,S5) {2;3,4,5,S6} Ref. 14 Ref. 38 Ref. 35 

tions because the correlation effects on level 15 
(23123p3,2[J=0]) are anomalously strong and this state is 
strongly admixed to that of level 12 (2p 1123p 112[J= 01). The 
fundamental difference between the consistent QED ap- 
proach and the widely used traditional procedure based on 
the multiconfigurational method was discussed in detail in 
Ref. 14, where we demonstrated how the violation of QED 
principles in traditional schemes leads to enormous errors in 
calculations of radiative and collisional transition rates. 

The main result of this work is the fast convergence of 
the calculations with respect to the dimension of the basis 
composed of real states and additional Sturm orbitals. It is 
also important that, although our previous calculation using 
the {2;3) basisI4 and variational parameter yielded more ac- 
curate values of energies, the accuracy of transition rates 
obtained by that method is not equally good. 

Sampson et ~ 1 . ~ ~  analyzed six versions of the multicon- 
figurational approach taking as an example the resonant 2-3 
transitions in Ne-like ions. The comparison demonstrated 
that the calculated oscillator strengths of some transitions 
differ by a factor of three to four, although the approxima- 
tions used in these six versions were quite similar. This large 
disagreement among the calculations was ascribed to the dif- 
ference in how the correlation effects were included in the 
different versions of the multiconfigurational techniques. We 
noted in Ref. 14 that there are other factors leading to dis- 
agreement among transition rates calculated in different ap- 
proximations. They include, for example, the relativistic 
"contraction" of orbitals. The result may also be affected by 
the form of the transition operator, by whether it is relativis- 
tic or nonrelativistic, whether its polarization component has 
been taken into account, etc. Possible uncertainties due to the 
gauge of the photon propagator were also analyzed in Ref. 
33. In this connection, the issue of testing the calculations 
experimentally is quite urgent. 

7. CONCLUSIONS 

We have analyzed the possibilities of contemporary 
techniques in calculating fundamental spectroscopic con- 
stants which determine emission spectra of ions in plasma. 
Our numerical results clearly indicate the importance of the 
convergence of calculations with respect to the number of 
orbitals included in the basis, as well as the reproducibility of 
the calculations performed in different approximations. This 
statement is more important when theoretical transition rates 
are employed to predict gains on lasing lines in plasma 
(Table IV). The reported study allows one to select an ad- 
equate basis for calculating populations of levels of a Ne-like 

ion. By comparing our calculations of radiative transition 
rates to the respective data by Hibbert et aL3', we have dis- 
covered the cause of disagreement among these constants 
calculated using different approaches.14 Our analysis indi- 
cates that we can, in principle, mimic various multiconfigu- 
rational calculations using the same theoretical scheme. The 
inevitable question is which data are more reliable. The tra- 
ditional technique yielded fairly accurate results in some 
cases. A situation may occur, however, when the oversimpli- 
fications and inconsistency of traditional techniques lead to 
enormous errors in decay rates of atomic states. Therefore 
the topical problem is testing calculations of fundamental 
constants. For example, spectra of Ne-like ions measured at 
the EBIT (electron-beam ion trap) facility at an electron den- 
sity of 10 '~-10 '~ cm-3 can be used in testing calculations of 
radiative transition rates in this ion. At all electron densities 
the collisional mixing of states can be ignored, and the ki- 
netics is largely controlled by collisional excitations from the 
ground state. The efficiency of electron-ion collisions from 
the ground state to an excited state are approximately equal 
for strong transitions in all approximations.18 Unlike other 
plasma sources, the energy and density of electrons in the 
EBIT facility are well !mown. Kinetic equations should take 
into account all important elementary processes in a system 
with an infinite number of levels.13 Thus, given spectral mea- 
surements of transitions with An = 0 and an approximately 
adequate kinetic model, one can test calculations of radiative 
transition rates in Ne-like ions. No less important informa- 
tion for testing the theory can be derived from spectra of 
resonant 2-3 transitions and their satellites. 

Similar analysis is necessary in studies of collisional 
widths of levels. These parameters are of primary importance 
in calculations of laser gain. Preliminary estimatesI4 indicate 
that data by different authors on ratios of collisional widths 
of levels in Ne-like ions contradict one another. 
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