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1. INTRODUCTION 

The collapse of inhomogeneously broadened spectral 
structures is fairly widespread. The first area of research 
where this phenomenon was observed was, apparently, NMR 
spectroscopy, where it became known as motional narrowing 
of spectral lines (caused by molecular motion; see, e.g., Ref. 
1). In the optical range collapse was discovered in the form 
of the Dicke decrease in the contribution of the Doppler ef- 
fect to the ~ inewidth~-~  and as the collapse of the rotational 
structure of the spectra of IR absorption and Raman scatter- 
ing of light in dense gases and in 1i~uids.4~ The radiophysics 
analog of the collapse phenomenon is the transition from the 
"instrumental" broadening of the oscillation spectrum to the 
"natural. " 

Phenomenologically, collapse can be explained by fre- 
quency modulation as a result of a rapid change in frequency 
or, in spectral terms, by intense exchange of polarizations 
between the spectral components of the inhomogeneously 
broadened structure. From this viewpoint the above ex- 
amples fall into a single pattern, the only difference being the 
exchange mechanism. Dicke narrowing and the collapse of 
the rotational structure are caused by exchange of polariza- - 
tions in collisions. A similar reason may be considered the 
collisions of atoms with the walls of a vessel much smaller 
than the The narrowing of NMR lines is re- 
lated to the translational motion of molecules, which ensures 
the averaging of inhomogeneities in the external molecular 
 interaction^.^.'^ Such averaging is the temporal equivalent of 
the spectral exchange pattern. 

There is also one more collapse mechanism that has 
never been discussed before, spectral polarization exchange 
stimulated by "noise" radiation with a broad spectrum (e.g., 
thermal radiation). The present paper analyzes the radiative 
collapse mechanism. 

Radiative relaxation includes three processes. First, the 
well-known spontaneous and stimulated transitions in atoms, 
processes introduced by N. Bohr and A. Einstein and accom- 
panied by photon emission and absorption. These processes 
shorten the coherence lifetime and, hence, broaden the spec- 
tral lines, but do not lead to a collapse of the ~ ines . '~ - '~  
Collapse is caused by the transfer of polarization (or coher- 
ence) and not of particles. Spontaneous transfer of magnetic 
coherence (the correlations between the magnetic sublevels 
of the states) has been known for more than 30 years,13-17 

while the existence of spontaneous transfer of optical coher- 
ence was predicted not so long ago by the present 

The spontaneous processes of coherence transfer 
lead to various interference phenomena, but they cannot be 
the reason for collapse either. The thing is that spontaneous 
transfer is of a "one-way" nature, since on the energy scale 
of stationary states it proceeds "downward" and no inverse 
spontaneous processes are possible. But collapse requires 
that there be mutual exchange of polarizations between the 
components of the structure, i.e., polarization transfer must 
occur "upward" and "downward." Only stimulated pro- 
cesses guarantee that there is mutual radiative exchange of 
polarizations. It is obvious that spontaneous polarization 
transfer, as any spontaneous process, must have a stimulated 
analog. Nevertheless, the existing theories of radiative relax- 
ation do not mention stimulated polarization transfer. 

Section 2 is devoted to a theory of radiative relaxation 
that incorporates both processes; spontaneous coherence 
transfer and stimulated coherence transfer. Section 3 exam- 
ines stimulated radiative collapse of the simplest doublet 
spectral structure. Section 4 analyzes the role of radiative 
relaxation in the structure of magnetooptical resonances. 

2. THE RADIATIVE RELAXATION MATRIX 

We write the quantum kinetic equation for the one- 
particle density matrix p in the 

where v is the velocity of the atom, V is the Hamiltonian of 
interaction with coherent fields, and S and R are the collision 
integral and the radiative relaxation matrix. This section is 
devoted to the matrix R.  Its calculation is done in the Ap- 
pendix, while here we give only the results of calculations. 

We start with the simplest diagram of four levels de- 
picted in Fig. 1. The labels m ,  m I ,  n ,  and n number the 
stationary states of an isolated atom. The transitions m l - m  
and n -n are assumed allowed in the dipole approximation, 
while the transitions m , -n and m-n can be either allowed 
or forbidden. The Bohr transition frequencies are marked off 
on the horizontal axis in the lower half of Fig. 1. The fol- 
lowing obvious relationships hold: 
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FIG. 1 .  A four-level system and the diagrams of spontaneous and stimulated 
polarization transfers. 

The "noise" radiation with a broad spectrum Ao is de- 
scribed by an average spectral bulk density U,. The spec- 
trum expands over a frequency range that encompasses the 
omlm ,wnln doublet (Fig. 1). 

The matrix R can be represented by two terms, 

which by analogy with the collision integral are called the 
outgoing (R(')) and incoming ( R ( ~ ) )  terms. In the model of 
nondegenerate states, the matrix elements R,, and RmInI ,  
which are present in Eq. (2.1) for pmn and pmlnl ,  can be 
written as follows: 

Here the Ti are the rates of spontaneous decay of the states 
j= m ,n,m ,n l. The radiative outgoing frequencies vj are 

where the Bij are the Einstein coefficients for the stimulated 
transition i-+ j. Thus, the radiative outgoing frequencies in 
R!;) are given by the arithmetic mean of the outgoing fre- 
quencies for the populations of levels i and j. 

The incoming terms R:; and R:,),,, describe the transfer - - 
of polarizations, or optical coherence, p,,,, and p,, from . . 
the m -n and m -n transitions to the m -n and m -n tran- 
sitions, respectively. The term A,,,,,,, corresponds to spon- . ' 
taneous polarization and is present only in 
RE;, since by convention the energies Eml  and En l  of the 

levels ml and n l  are higher than the energies Em and En 
(Fig. 1). The terms v,,,, and vml, ,,, specify the polar- 
ization transfer stimulated by the radiation, and this process 
is of a reciprocal nature (as absorption and stimulated emis- 
sion). 

Coherence transfer processes are shown schematically in 
Fig. 1. The vertical double-tipped arrows connecting the 
pairs of levels m ,n and m ,n symbolize polarization in- 
duced in the ml-nl and m-n transitions. The slanting 
single-tipped arrows connecting the vertical arrows symbol- 
ize coherence transfer processes: the wavy arrow (A) stands 
for the spontaneous process, and the straight arrows (v) for 
the stimulated processes. The transitions of particles usually 
depicted by arrows connecting the levels are not shown in 
Fig. 1. 

The incoming frequencies are given by the following 
formulas: 

i.e., the frequencies are proportional to the geometric mean 
of the first and second Einstein coefficients. The factor K is 
of order unity, but in the model of nondegenerate states it is 
somewhat arbitrary, since actually it depends on the degen- 
eracy of the states. 

The matrix elements RmImI,  R, I ,  etc., can be obtained 
from Eqs. (2.4)-(2.7) by obvious label substitutions. 

The above model of nondegenerate states is described by 
the simple kinetic scheme (2.4) and (2.5), which yields a 
graphic picture of the role of radiative relaxation. However, 
the results of calculations done in this model are only quali- 
tative. For quantitative analysis and, the more so, for the case 
where polarization effects and external fields are taken into 
account, we must allow for the degeneracy of real states. 

Let us examine states with total angular momenta J , ,  
j=m,n,ml ,nl.  In the JM-representation, the quantities pij 
and Rij and the frequencies are matrices with respect to mag- 
netic quantum numbers: 

In the Appendix we will see that Rmn and RmInl  in the 
JM-representation are given by the same formulas (2.4) and 
(2.5), but all the quantities in R,, and Rmlnl must be inter- 
preted as MM1-matrices. Explicit expressions for the outgo- 
ing and incoming frequencies will be given below. Here we 
write the relationships for the matrix elements R,, and 
RmIml responsible for the radiative relaxation of the mag- 
netic coherence of the p(jMjM1) type: 

247 JETP 83 (2). August 1996 S. G. Rautian 247 



Similar equations hold for R,, and RnIn1. Comparison of the 
formulas (2.4) and (2.5) with (2.9) and (2.10) suggests that 
the radiative transfers of optical and magnetic coherences 
follow similar laws. 

Equations (2.4), (2.5), (2.9), and (2.10) are valid if the 
change in the density matrix p in the course of the radiation 
correlation time r, = 1/A w is negligible. lo.' '*I6 Under certain 
conditions this imposes restrictions on the atomic character- 
istics, say, Aw%-I'j,lAl, etc. 

The outgoing terms in R are well-known1' and provide 
no new information. Our main goal is to study the incoming 
terms Rf;, R?,),~, R E ,  and ~ f , ) ~ ~ ,  which describe the ex- 

change of polarizations. Notwithstanding its total random- 
ness, an external perturbation is able to transfer both particles 
and coherence. The explanation lies in the fact that the same 
field oscillator mixes the atomic wave functions, both 
@ m ,  @m and @, so that the random phases of the field 
oscillators do not manifest themselves in R. What is impor- 
tant here is the difference A of the Bohr frequencies of the 
"atomic oscillators" that interact with the field oscillator. 
When [A1 is large, the incoming terms rapidly oscillate and 
prove to be unimportant. This fact, apparently, sewed as a 
psychological basis for ignoring the radiative transfer of op- 
tical coherence in previous research. Note that there are no 
oscillations in the RE) matrices when magnetic coherence is 
transferred in the absence of a static field. The ideas devel- 
oped here also refer to the spontaneous and stimulated parts 
of R ( ~ ) .  

If the atom is in an external static field (magnetic or 
electric), the wij depend on M and M' according to well- 
known laws?' and A is a matrix with respect to the magnetic 
quantum numbers. In particular, in the case of a magnetic 
field, for v ( m ~ n ~ ' l m ~ ~ ~ n ~ ~ ~ )  we have 

while for v ( m ~ m ~ ' l m ~ ~ ~ m ~ ~ ~ )  we have 

A=[gm1(M1-Mi)-gm(M-M1)l~H. (2.12) 

Here H and g j  are the strength of the magnetic field and the 
g factor of the state j. We see that a magnetic field, as 
expected, destroys magnetic coherence transfer. In relation to 
optical coherence transfer a magnetic field may play an op- 
posite role: the term proportional to H in Eq. (2.11) may 
balance the difference in the Bohr frequencies and decrease 
the oscillations in R$). A similar situation exists for a cas- 
cade of magnetic coherence in the presence of hyperfine 
level splitting.22 

Note the structural similarity of the collision integral S 
in the model of relaxation constants (collisions do not change 
the atomic velocity) and the matrix R. The outgoing term 
R(') consists of two terms: in one p is multiplied by v from 
the left, and in the other the multiplication is from the right. 
The diagonal (R!!) and R:)) and off-diagonal ( ~ { f  )) matrix 
elements contain the same matrices vi and vj . The incoming 
terms contain a "supermatrix" that acts on both variables of 
the density matrix. The collision integral has the same prop- 
erties. 

According to Eqs. (2.4), (2.5), (2.9), and (2.10), radiative 
relaxation is not accompanied by a change in atomic veloc- 
ity. If recoil is taken into account, the incoming term de- 
scribes velocity and radiative relaxation re- 
sembles collisional relaxation even more. 

The formal similarity between R and S deserves atten- 
tion also because of the seeming dissimilarity of the physical 
conditions of collisional and radiative perturbations of an 
atom. In deriving the kinetic equation with a collision inte- 
gral of the Boltzmann type it is assumed that a short collision 
time is followed by a fairly long period of free motion. In the 
case of radiative relaxation, however, the external radiation 
represents a random stationary process without prolonged 
pauses. Notwithstanding such dissimilarity in conditions, ra- 
diative and collisional relaxation are described by similar 
terms in the kinetic equation. 

As is the case with the collision integral, the radiative 
outgoing and incoming frequencies depend to a great extent 
on the symmetry of the perturbation. When the radiation is 
spherically symmetric, i.e., unpolarized and nondirectional, 
Eqs. (A21) and (A22) imply that 

The spontaneous incoming rate is given by the following 
expression: 

A(mMnMrlm1MlnlMi) 

Thus, in the isotropic case the outgoing frequencies are 
specified by the rates of stimulated transitions of particles, 
are diagonal in the magnetic quantum numbers, and are in- 
dependent of these numbers. On the other hand, there is 
similarity between the dependence of the spontaneous and 
stimulated incoming frequencies on the magnetic quantum 
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numbers. The products of vector addition coefficients reflect 
interference between the m,Ml+mM and n,M;-+nM1 
transitions. 

As is known,'6724 when the perturbation of an atom is 
isotropic, the convenient representation for the density ma- 
trix is the ~q-representation, which is specified by the fol- 
lowing relationships: 

The quantities p ( m n ~ q )  are called the polarization moments 
of the level (n = m) or polarization moments (n # m) of rank 
K. 

Since in the isotropic case the v(jMjM1) are diagonal 
in M and are independent of M, in the ~q-representation 
they are diagonal in ~ q ,  are independent of ~ q ,  and coincide 
with the values given by (2.13). The incoming frequencies 
are given by the following formulas: 

i.e., the result is diagonal in ~q and independent of q. For 
R:; and R:,),,~ the following is true: 

Equations (2.21) are known from magnetooptical resonance 
theoryI5-l7 and are written here to make the picture com- 
plete. The frequencies of direct and reverse transitions obey 
the following relationships: 

An analysis of the explicit expressions for 6 j  symbols 
shows that KIN monotonically decreases as K grows: 

Note that as K increases, K1, changes sign at J ,  = J m I .  The 
factor K, depends on four angular momenta, and its proper- 
ties as a function of K are complicated. For 

the factor K, monotonically decreases as K grows. But if we 
take 

then for fairly large values of J ,  and J ,  the dependence of 
K, on K may be nonmonotonic. 

The orthonormality of the 6 j  symbols2' implies that 

These inequalities lead to a relationship between the incom- 
ing frequencies: 

(2.29) 

Equations (2.25) and (2.29) are also valid for collision 
frequencies:*6 which emphasizes once again the similarity of 
the properties of the collision integral and the stimulated 
radiative relaxation matrix. 

Above we studied the case of isotropic radiation. If the 
perturbing radiation is anisotropic, the outgoing and incom- 
ing frequencies in the ~q-representation are not diagonal in 
~q (see Eqs. (A24)-(A27)). In other words, anisotropic ra- 
diative relaxation mixes the polarization moments of differ- 
ent orders. 

3. COLLAPSE OF A SPECTRAL DOUBLET 

In the absence of polarization transfer the spectrum of 
absorption (emission, scattering, gain) of the four-level sys- 
tem of Fig. 1 consists of four lines with central frequencies 
w i j  . When IAl is small, the lines are grouped into two dou- 
blets: om, , o m  , and onln , w m l m .  Let us examine the con- 

I 1  

tour of the om, , o m l n l  doublet in the case where the isotro- 
pic radiation is in resonance with the other doublet, 
omlm . o n l n l ,  and stimulates polarization transfer between the 
m -n and m -n transitions. 

In an approximation that is linear in the intensity of the 
monochromatic field and in which the levels m , , n ,, m, and 
n are isotropically populated, solving the absorption- 
spectrum problem requires knowing the off-diagonal ele- 
ments of the density matrix p ( i j ~ q )  for K =  1 (the dipole 
approximation). At this point it is advisable to introduce the 
following simplifying notation: 
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r m + r n vm+ vn quency of the field, and N  and N ,  are the differences of 
p,=p(mn l q ) ,  r= - v= - 

2 '  2  ' populations of the magnetic sublevels of the states m,n and 
m  ,n In the absence of isotropic radiation, F= 0  and the 

r m l  + r n l  vml + vnl system of equations (3.2) becomes decoupled: spontaneous 
p l q = p ( m l n ~ 1 9 ) ,  r ~ =  2 , v l =  2  polarization transfer (the term GI,) proceeds only in one 

(3.1) 
direction, downward. This case was studied by the present 

X = ~ ( m n l r n , n , , l ) ,  author in Refs. 19 and 20, where it was shown that transfer- 
ring polarization plq to the m-n transition generates an in- 

F=v(mnlmlnl , l )= v(mlnlImn,l) .  terference component in the spectral contour of the doublet. 
The system of equations for p, and plq can be obtained from But for F #  0 ,  polarization transfer occurs in both directions 
Eq. (2.1) in which the matrix elements of the interaction V and the contour changes considerably. 
are The solution of the system of equations (3.2), 

x (JmlMIJnl -MII1~)G~G- ,  
D = ( T +  v - i n ) ( r 1 +  v , - i ~ , ) -  q A + q ,  

where GG-=dmnZ9,J2fih, and GIu=dmlnlLT,J2fih, with 
(3.5) 

g,, the circular component of the field. Ignoring collisions makes it possible to calculate the work P done by the field 

(S= 0) and assuming that the atom is at rest, we arrive at the and the field-absOr~tion coefficient a(R):  
following system of equations for p, and p,, : 

( r+  ~ - i f l ) ~ , - ( A ?  q p l q = i G q N ,  P =  - 2 h w ~ e x  4 ~ ( G ~ P , + G ~ ~ P ~ , )  

- ~ p q + ( ~ I + v l - i R L ) p l q = i G l q N l ,  (3.2) c 

where R = w - o m , ,  R 1 = w - w m l n , = R - A ,  o is the fre- 
= 4fl)x Q ,lgql2, 

The general structure of Eq. (3.7) is traditional for the 
problem of doublet collapse due to polarization 

the first two terms on the right-hand side of 
Eq. (3.7) represent the contributions of the m-n and ml - 
n,  transitions, while the combination 6 emphasizes the 
interference nature of the third term; here we are dealing 
with intratomic interference because both a and a contain 
the characteristics of a single atom, while the properties of an 
atomic ensemble (the atomic densities N  and N 1 )  are addi- 
tive. Notwithstanding the traditional nature of the general 
expression (3.7), radiative polarization exchange has remark- 
able properties, which we discuss below. 

The spectral properties of a ( R )  are related, as usual, to 
the determinant D ,  which can be written as 

The "kinetic part" of the determinant D, 

is positive since the inequalities (2.28) yield 

We also note that FA is positive for all signs of F and A, 
since these two quantities contain the factor K, determining 
their signs. 

The absorption coefficient a ( R )  can be expanded in 
partial fractions, i.e., represented by a sum of two Lorentz- 
ians: 

The amplitudes C 1  and C 2  are given by the following for- 
mulas: 
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When the exchange rate is low, or 

the Lorentzians are centered at the frequencies SZ= 0 and 
R ,  = 0 [see Eq. (3.91 and have halfwidths r + v and 
TI  + vl. In the expressions for the amplitudes C1 and C2 we 
discard the term proportional to Fbut keep the combination 
AN,, which describes a spontaneous polarization 

A detailed analysis of u(SZ) will be carried out 
with the simplifying assumptions 

in which case the interference of the doublet components 
manifests itself most vividly. When the conditions specified 
in (3.15) are met, we have 

If we have F Z  0 but qA+ g< b2/4,  then d is imaginary, 
the Lorentzians in (3.12) are centered at different frequen- 
cies, and the distance between them is 

~ m (  y2- y,)=21m d= JA2-4qX+ q. 
As 14 grows, the components of the doublet shift toward one 
another, and if 

142  ( J i G 7 - A ) / 2 = u 0 ,  (3.17) 

the doublet collapses: both Lorentzians are at the central fre- 
quency SZ = A12 but have different halfwidths y, and y2 and 
amplitudes. The Lorentzian with the smaller halfwidth y, 
has a greater amplitude C1, while the Lorentzian with the 
larger halfwidth y2 has a smaller (in absolute value) negative 
amplitude C2. 

Figure 2 depicts Imy,,2 (an arc of a circle) and R ~ Y , , ~  (a 
hyperbola) as functions of 1.1. One can clearly see how fast 
the Lorentzians shift toward one another and how the differ- 
ence of their halfwidths ( I d >  vo) increases in a fairly nar- 
row interval near vo. 

A remarkable case here is the limit 

where the difference in the Lorentzians is at its maximum: 

FIG. 2. Halfwidths and shifts of the Lorentzians as functions of the incom- 
ing frequency I 4. 

Here the contour a(SZ) contains a sharp and strong compo- 
nent (y ,  ,C1) and a broad and weak negative component 
(~21C2). 

The expression (3.19) for y, contains terms of different 
types. The difference v- 14 of the outgoing and incoming 
frequencies is a typical feature of a well-developed 
collapse:5v6 the contribution of the stimulated transitions 
m ~ m  and n w n ,  to the halfwidth y l  is balanced, either 
partially or completely, by polarization exchange. The com- 
ponent A2/814 of the halfwidth y, can be called the residual 
halfwidth. It is similar to the diffusion halfwidth k 2 ~ ,  where 
k is the wave vector, and D is the diffusion coefficient, in the 
problem of Dicke narrowing of a Doppler c ~ n t o u r . ~ - ~  
Clearly, the term A2/814 is important only in the limit 
v -1 .14~ .  

The component T- I4/2+A?2/814 of the halfwidth y, 
is related primarily to spontaneous processes. In contrast to 
collisional collapse, where the spontaneous halfwidth re- 
mains constant, in radiative collapse the contribution of 
spontaneous processes changes. Instead of the natural half- 
width r = ( r ,  + r,)/2, the halfwidth y, contains the differ- 
ence T- 1412, which is interpreted as the spontaneous ana- 
log of the difference v- ( 4. The term 2 /81  4 in y, should 
be interpreted as the analog of the diffusion halfwidth. This 
term is significant when the spontaneous outgoing process is 
nearly perfectly balanced by the spontaneous incoming pro- 
cess ( r  - I 4 1 2 4 r ) .  

In the theory of spectral line broadening the contribution 
of the spontaneous decay of states is always assumed to be a 
universal quantity, i.e., a quantity that any additional pertur- 
bation of the radiating atom is unable to change. The radia- 
tive collapse mechanism proves to be a fundamental excep- 
tion in the general physical sense. Indeed, the universality of 
the spontaneous part of the linewidth is related to the irre- 
versible nature of the relaxation of the dipole moment caused 
by spontaneous decay and to the fact that the later is statis- 
tically independent from other reasons for relaxation. In the 
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four-level diagram of Fig. 1 the spontaneous decay of the 
polarization pml, ,  on the m -n transition is not irreversible 
since the reverse stimulated transition p,,+ p, conserves 
coherence on the m -n transition. Hence, within the system 
of two transitions, m l -n and m-n, coherence decays only 
because the balance is partial (14 <A,] , )  and spontaneous 
decay occurs through "third" levels that differ from those in 
Fig. 1. The quantity T -  1412 gives the rate of decay due to 
residual effects. 

The inequality lq%-lA is almost equivalent to the con- 
ditions v%-T and v l % T l  under which saturation on the 
m -m and n -n sets in. We can therefore assume that irre- 
spective of the excitation mechanism the populations are al- 
ways approximately equal, p,= pml and p,= pn12, with the 
result that N = N I  . 

When a two-level nondegenerate system interacts with a 
monochromatic field, the saturation factor contains the com- 
bination T,-A,,+ T n  (see, e.g., Refs. 5 and 6) .  The emerg- 
ing difference r , -A , ,  is similar, in both form and physical 
meaning, to the difference T - 1412 in our problem. 

In Refs. 19 and 20 it was found that for certain pararn- 
eter ratios a spontaneous polarization cascade can lead to 
gain without population inversion. Let us examine the re- 
spective effect on this process of stimulated radiative relax- 
ation at the center of the line and in the wings. If IQl is much 
larger than A and the relaxation constants, we have 

The first three terms on the right-hand side of this equation 
are related to spontaneous processes, and the remaining 
terms are related to stimulated processes. According to Refs. 
19 and 20, the inequality 

can be met, with the result that at v =  v l =  F=O we have 
a(Q)<O.  In determining the sign of the sum of the last four 
terms on the right-hand side of Eq. (3.21) it is advisable to 
use (3.21), in view of which 

a N v + a l N l v l -  & q N + N 1 ) > ~ a v + a l v l  

The quantity in square brackets is positive. The remaining 
term may be either positive or negative, but for high satura- 
tions the difference N - N I  is inversely proportional to l l v  
and l l v , ,  so that this term must be of the order of the spon- 
taneous term. 

Now let A = 0 ,  F< 0 ,  and Z < O .  For the center of the 
line we have 

If v%T, v l S T l ,  and Iq%IA, we can say the same things 
about the expression in braces in (3.23) as we did about the 
right-hand side of (3.22). Thus, stimulated radiative relax- 
ation does not exclude the possibility of gain (or negative 
absorption) without population inversion. 

4. EFFECT OF STIMULATED RADIATIVE RELAXATION ON 
MAGNETOOPTICAL RESONANCE 

Let us examine magnetooptical resonances on the m-n 
transition and take into account radiative relaxation, which 
mixes the levels m and n.  We are dealing, therefore, with 
two excited levels that are split by a magnetic field H and 
interact with broad-band radiation quasi-resonant to the m- 
n transition. The radiation is assumed isotropic, so that Eqs. 
(2.13)-(2.22) are applicable. The problem consists primarily 
in calculating the polarization moments p ( j j ~ q )  of the lev- 
els that determine magnetooptical resonances in absorption, 
refraction, spontaneous emission, e t ~ . ' ~ " ~  

To simplify matters we introduce the following notation: 

The system of kinetic equations for p,,, and p,,, has the 
following form: 

(rrn+vrn-iQmq)~rnK~- v,~nKq=QrnK~ 9 

(4.2) 
- (A ,+  vK)pmK,+(rn+ vn-iQnq)pnKq= en, , .  

The stimulated outgoing frequencies v ,  and v ,  are given by 
Eq. (2.13), and the spontaneous and stimulated incoming fre- 
quencies ( A ,  and v,) are given by Eqs. (2.20)-(2.23) to 
within level notation, with 

The products Qjq  in Eqs. (4.2) describe magnetic splitting: 

where g j  is the g factor of the levels j=m,n .  The right-hand 
sides of system (4.2), Q,,, and Q,,, , are the level pump 
rates, with the pump radiation generally being anisotropic. 
The solutions of the system of equations (4.2) have the stan- 
dard form 

The second part of the problem consists in calculating 
the experimentally measurable quantities via pi,, . Here we 
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are interested in the absorption coefficient a (o ,H)  of the 
monochromatic field (with frequency w and wave vector k) 
that is in resonance with the m-n transition: 

where the angle brackets stand for averaging over the veloci- 
ties v, and i ( ~ q )  is the normalized field polarization tensor. 
In (4.8) we did not allow for Zeeman line splitting, which is 
by assumption negligible in comparison to the Doppler 
width. 

The fact that the dependence of pjKq and a(w,H) on the 
magnetic field H is of a resonant nature is due to the form of 
the determinants DKq. In the absence of stimulated relax- 
ation (vj= uK=O), the magnetooptical resonances are de- 
scribed by the following Lorentzians: 

The width of each contour depends on the property of only 
one level, ( r j ,gj) .  In this respect the interference term 
caused by spontaneous magnetic coherence transfer [A, in 
(4.6)] is not an exception. The properties of magnetic reso- 
nances are ~el l-s tudied. '~~'~ Even if for some reason stimu- 
lated magnetic coherence exchange can be ignored 
(v,=O), the overall structure of the magnetic resonances is 
retained: they are described by the Lorentzian contours 

which are similar to (4.9) but have different widths. Thanks 
to the reciprocity of the exchange, stimulated magnetic co- 
herence transfer leads to a characteristic collapse of the con- 
tours (4.10). 

All the magnetic resonances are centered at a zero mag- 
netic field (nj=O) and differ only in width. It is therefore 
natural to introduce an average g factor and renormalize the 
relaxation frequencies: 

The determinants DK9 are expressed in terms of the param- 
eters (4.1 1) in the following manner: 

The absorption coefficient a(w,H) can be represented by the 
following sum of Lorentzians: 

According to the properties of 6 j symbols, the order K of the 
polarization moments in Eqs. (4.8) and (4.9) assumes the 
values K =  0,1,2, while q varies in the interval lql S K .  The 
terms with q = 0 are independent of H. Hence the resonant 
dependence on H is contained in six pairs of terms: K =  1 
a n d q = t l  or K=2 andq=+1,+2.  

According to the system of equations (4.2). stimulated 
radiative transfer of magnetic coherence mixes only two con- 
tours. The reason for this, obviously, is the fact that the ra- 
diation is isotropic. When relaxation is anisotropic, polariza- 
tion moments with different values of K mix and a greater 
number of contours may collapse. 

The amplitudes ClK9 and C2Kq depend on a large num- 
ber of various parameters, which makes it natural to analyze 
them for specific cases. Here we are interested only in the 
resonance halfwidths rl, and r2,. 

Clearly, both TI, and r2, as functions of the outgoing 
frequency F represent two branches of the hyperbola (Fig. 3) 

where the parameters 7, a,, and bK do not depend on F and 
are given by the following formulas: 

The asymptotes of the hyperbola (4.14) are the straight lines 
(the dotted lines in Fig. 3) 

which intersect the vertical axis at Tf Ib,l. The hyperbolas 
intersect the vertical axis at F+ (3. Depending on the sign of 
b2- Y ,  the hyperbola lies either in the region between the 
asymptotic lines ( b 2 > y )  or outside that region ( b 2 < y ;  

(4.1 1) 
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FIG. 3. Halfwidths T,, and r2, of the Lo~ntzian components of the mag- 
netooptical resonance as functions of the frequency F. 

here we are dealing only with the quadrant where rK>O and 
F>O in Fig. 3). In turn the definitions (4.15) imply that 
b2> y'2 or b2< y'l depending on whether 

Both cases may occur. Interestingly, the conditions (4.17) 
and (4.18) do not contain the factor K I N ,  i.e., they are valid 
for all values of K: the hyperbolas for K =  1 and ~ = 2  are 
distinct but have the same asymptotic lines. 

Let us examine the simple case where g,=g, and 
v, = v,= F. The hyperbola (4.14) assumes the form 

In conditions of a well-developed collapse we have 

where I vKI s /A , I ,  1 rm - rnl. Well-developed collapse is 
characterized by a partial balance between the spontaneous 
and stimulated components of the halfwidth rlK and by a 
considerable increase in r2 , .  The condition v, = v, means 
that J,=J,.  If we use the explicit expression for a 6 j  
symbol?' we find that 

Thus, radiative transfer of magnetic coherence always bal- 
ances departure, but the extent of such balancing decreases 
as K grows and increases with J ,  . Note also the extensive 
analogy between the collapse of magnetooptical resonances 
and that of a spectral doublet (Sec. 3). 

Callas and ~ h a i k a ~ ~  described experiments that demon- 
strate the effect of radiation emitted by a plasma on magne- 
tooptical resonances (see also Refs. 15 and 17). Their inter- 
pretation of the results was based on the idea that the 
radiation changes the rates of excitation of the polarization 
moments [QjK, in the notation adopted in (4.2)]. Such an 
effect must certainly exist. It is possible, however, that to a 
certain extent changes in the relaxation matrix also contrib- 
ute. 

5. DISCUSSION 

The main achievement of the general theory developed 
in Sec. 2 is the prediction of radiation transfer of optical and 
magnetic coherence. The applied method of derivation coin- 
cides at crucial points with the methods used earlier. Hence 
the achievements of the theory are not related to the method 
but rather to the statement of the problem, i.e., by drawing on 
the analogy between stimulated and spontaneous transfer 
processes, on the one hand, and on the analogy between the 
transfer of magnetic and optical coherence, on the 

Explaining optical coherence transfer means introducing 
a complicated diagram of the levels participating in the ra- 
diative process, a diagram consisting of at least four levels 
(Fig. 1). Of course, transfer between stationary states involv- 
ing any characteristics of the system leads to a broadening of 
the set of "essential" states. However, in relation to optical 
coherence such "broadening" seemed to be unnecessary. In 
other words, analysis points to certain limitations in the ap- 
plicability of the canonical two-level system even in the 
resonance approximation. Up till now the limited nature of 
the two-level system was related only to the resonance ap- 
proximation. 

When the pump radiation is isotropic, the radiative re- 
laxation matrix in the ~q-representation is diagonal in ~ q ,  in 
accordance with general ideas.16724 The outgoing frequencies 
are proportional to the second Einstein coefficients, while the 
incoming frequencies for polarization are the geometric 
mean of two Einstein coefficients for transitions from the 
combining levels. In accordance with the above-mentioned 
analogy, the rates of spontaneous and stimulated polarization 
transfers follow similar patterns in their dependence on the 
moments of the states and the rank K. When the pump radia- 
tion is anisotropic, stimulated radiative relaxation "mixes" 
polarization moments of different orders. 

The existence of direct and reverse polarization transfers 
and the absence of a phase shift (the incoming frequencies 
are real-valued) cause tight spectral structures to collapse. In 
the above example of a doublet, collapse imposes certain 
restrictions on the relationship between the doublet splitting 
and the outgoing and incoming frequencies, and the restric- 
tions are typical of other collapse mechanisms as well. A 
remarkable feature of radiative collapse is that in the limit of 
a well-developed collapse the width of the narrow compo- 
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nent of the line may prove to be smaller than the spontaneous 
width of the initial doublet components. 

There is another difference between radiative collapse 
and collisional collapse worth noting. It is an established fact 
that in gas-kinetic conditions collisions mix a group of states 
whose energies differ little (fine splitting of atomic levels, 
and rotational splitting of molecular levels). On the other 
hand, radiation may initiate transitions between states lo- 
cated in an arbitrary manner on the energy scale. Hence ra- 
diative coherence exchange may lead to a collapse of a struc- 
ture in which the collisional mechanism is ineffective. If we 
ignore the problem of how the radiative and collisional trans- 
fer mechanisms are related and remain on purely phenom- 
enological grounds, collisions can be taken into account by 
introducing certain terms in the expressions for the outgoing 
and incoming frequencies. Collisions may enhance the col- 
lapse process, but they may also hinder it. 

Similar to the case of the collapse of spectral structures, 
stimulated radiative relaxation leads to the collapse of mag- 
netooptical resonances by mixing the polarization moments 
of the levels. In this case, too, in conditions of a well- 
developed collapse the widths of magnetooptical resonances 
may probe to be smaller than the natural spontaneous values. 

In Secs. 3 and 4 we discussed the manifestation of ra- 
diative relaxation in the coefficient of absorption (gain) of a 
weak monochromatic field. Similar effects appear in the 
spectra of emission, refraction, and scattering. The Doppler 
effect plays an important role here, as shown by the example 
of a spontaneous polarization cascade.20 

Polarization induced between two levels can be consid- 
ered the simplest type of coherence. This naturally leads to 
the problem of spontaneous and stimulated transfers of one 
state of an arbitrary type into another. Undoubtedly such a 
"generalized" transfer is possible in principle, but its effec- 
tiveness depends on the specific conditions and is determined 
by transfer coefficients similar to the Einstein coefficients 
and the conditions of resonance of the interfering coherent 
states of the quantum system. 

In conclusion we note that the effects of stimulated ra- 
diative transfer of optical coherence manifest themselves in 
conditions where the rates of stimulated transitions are com- 
parable to those of spontaneous transitions or are higher. 
This occurs at radiation brightness temperatures of order 
hw. The real values of intensities are therefore different in 
the ultraviolet, visual, and infrared ranges of the spectrum. 

I would like to express my gratitude to L. V. Il'ichev, 
Yu. I. Nabemkhin, E. V. Podivilov, V. A. Sorokin, M. P. 
Chalka, and A. M. Shalagin for the stimulating discussions 
and interesting ideas. This research was supported by the 
Optics and Laser Physics Program and by a grant from the 
International Science Foundation and the Russian Govern- 
ment. 

APPENDIX 

Let us introduce the matrix a = a a +  consisting of the 
column a of probability amplitudes of the stationary states of 
an isolated atom and the Hermitian conjugate row a'. The 
density matrix p can be obtained from a by averaging over 
the random parameters: 

The system of equations for finding the off-diagonal ele- 
ments aij of the four-level system of Fig. 1 has the form 

Here w,  is the frequency of the Ath mode of the "noise" 
radiation, and the quantities G ;  and aij are matrices with 
respect to the magnetic quantum numbers of states i and j .  In 
the dipole approximation, 

X ( J ~ M J ~ - M ' [  1 a ) ~ " ,  (A4) 

where E" is the circular component of the field in the Xth 
mode. 

Further calculations are done according to the following 
scheme. First the formal solutions of Eqs. (A2) for umln and 
amnl are constructed, say 

Then these expressions for amln and amnl are plugged into 
the equations for arnlnl and urn, and form two sets of four 
similar terms there. Here is one of these terms: 

* ei'kl[:e-rmln(r-t')GAl e - i ' k I ~ ' ~ r n n ( ~ f ) ~ t f .  -2 GmmI 
A X 1  r n l m  

(A61 

Bearing in mind the averaging procedure (Al) and the fact 
that the phases E X ,  are random, we should leave only the 
terms with X = X I  in the double sum over X and A' .  Summa- 
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tion over A is replaced by integration with respect to wk , 
which results in the appearance of 2 r 4 t  - t I ) .  As a result 
the term (A6) becomes 

where pi is the spectral density of the number of modes. In 
the averaging procedure we adopt the "decoupling" hypoth- 
esis: 

As a result of the above calculations we get 

where we have introduced the following notation: 

Here the symbol @ stands for a direct product. The term 
Amn,mInl  in (A10) represents spontaneous processes and is 
not present in our derivation scheme; it has been introduced 
here on the basis of the results of Refs. 18-20. Similar ex- 
pressions can be obtained for the matrices R m I n I ,  R m m ,  and 

Rmlml: 

The matrices Rnn and R n l n l  can be obtained from Rmm and 
R m I m 1  by replacing the label m with n and the label m, with 

"1. 

Above we assumed that there is only one pair of levels, 
ml and n from which transitions to the levels m and n 
occur. If there are other such pairs of levels, each contributes 
to R .  For instance, for Rmn this is reduced to summing over 
m and n in Eqs. (A10)-(A12). Similarly, several pairs of 

levels similar to m and n can contribute to R m I n l ,  v m l ,  and 
v n l ,  a fact that can be taken into account by summing over 
m and n in Eqs. (A14) and (A19). 

Let us write the expressions for the outgoing and incom- 
ing frequencies in the JM-representation: 

X(- 1)'-"(lal l - a l ~ q ) I ( ~ q ) ,  

where I ( K ~ )  is the polarization tensor of the noise radiation: 

The other outgoing and incoming frequencies can be ob- 
tained from (A21) and (A22) by label substitutions. In the 
~q-representation for Rmn we have 

where the outgoing and incoming frequencies are given by 
the following relationships: 
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The other elements of the matrix R in the 
~q -representation can be derived from Eqs. (A24)-(A27) 
by appropriate label substitutions. 
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