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The field structure of bush cavities and the conditions under which they exist are studied. The 
nature of bush resonances is determined. It is shown that their field has a complex 
structure. The interaction of the components of the resonance field of bushes is accompanied by 
the onset of the phenomenon of dynamic nondispersion (a soliton). The paper discusses 
questions of the stability of the states of the bush resonance field. An analysis is carried out of 
the connection of the dynamic nondispersion with the physical phenomena on which the 
formation of a Mandel'shtarn-Brillouin doublet is based. O I996 American Institute of Physics. 
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1. INTRODUCTION 

The phenomenon of bush resonance can be studied by 
introducing perturbations in the form of anharmonic terms 
into the Hamiltonian of Ref. 1. By definition, a bush (of 
modes) is a multifrequency resonance of a self-consistent 
(closed) collection of vibrational modes in a state associated 
with a force type of interaction or a parametric type of inter- 
action. Formations of similar bushes (Wien graphs, intertype 
oscillations) were detected much earlier than Ref. 1 in the 
process of studying the interaction of the oscillations 
(modes) in closed2$ and electromagnetic cavities. 
The chief feature of open systems is the presence of connec- 
tion channels with the surrounding space, which makes it 
necessary to study the spectrum of nonself-adjoint operators, 
which is equivalent to the spectrum of the existing spectral 
boundary-value problem.6 The study of such a spectrum led 
to the detection of so-called Morse critical points in it. As it 
turned out, they are singularities of the resonant field of open 
systems. The singularities are formed during the thickening 
(compression) of the spectrum of free oscillations. Such a 
compressed region of the spectrum is a self-consistent set of 
interacting free oscillations, equivalent to a bush of vibra- 
tional modes.' A singularity in the resonance field of the 
bush of an open system is a mapping (trace) of the surround- 
ing unbounded space into a set of interacting components of 
this field. 

In the proposed work, theory is employed to analyze 
experimental studies of the structure of free oscillations and 
bush resonances when they interact with an electron flux. 
The electron flux is an extremely essential detail; its presence 
significantly increases the resolving power of the measure- 
ments and makes it possible to study the fine structure of the 
resonant field under dynamic conditions. 

2. THE PHENOMENON OF ANOMALOUS DISPERSION AND 
THICKENING OF THE SPECTRUM OF FREE 
OSCILLATIONS IN PERIODIC CAVITIES 

a schematic drawing of one such structure-a diffraction 
grating that simultaneously fulfills the function of a periodic 
inclusion in an open cavity and a delay system. The disper- 
sion equation of a diffraction grating at a distance L from a 
plane has the form7 

where 1 is the period of the diffraction grating; s is the width 
of the diffraction grating; d is the width of a slit of the 
grating; h is the depth of the grating; tanh(yhWh)-+l for 
L%h; and Eq. (I), reduced to a form convenient for calcu- 
lation. is written as 

where c is the speed of light, vph is the phase velocity, A. is 
the wavelength, and A,=2s is the critical wavelength. 

The solution of Eq. (2) is the region of existence of 
waveguide waves (in this case, surface waves) of a diffrac- 
tion grating of the given geometry (in an experiment in the 
2-mm range, 1=0.25 mm, d=0.09 mm, h=0.4 mm, s = 7  
mm)-see Fig. 2. Here cp = 257 and cp = T are curves of equal 
phase angles of the surface waves A, on a period of the 
diffraction grating. 

Let us trace the sign change of the increment AX as the 
phase velocity increases monotonically, vph-+c. The wave- 
length of the retarded wave varies in accordance with the 
equation A, = Avphlc as vPh-+ C. Consequently, vph+ c is 
accompanied by an increase of A, and a corresponding 
variation of the phase increment on a period of the diffrac- 
tion grating. At point 0 ( c p =  w), it becomes critical: small 
variations 6 A w  result in a sign change of the increment 

Let us consider wave dispersion in the periodic stmc- +AX. The connections between the group velocity v, and 
tures that will be used in the experiment. Figure l(b) shows the phase velocity vph of the waves and the sign of the in- 
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FIG. 1. (a) Open cavity with a periodic inclusion in the form of a segment 
of open periodic waveguide. (b) Diffraction grating located under the plane. 

crement A h  for normal and anomalous dispersions on a dif- 
fraction grating can be written by means of the Rayleigh 
formula as 

Thus, critical phase states exist on a diffraction grating, 
in which small frequency variations change the field struc- 
ture (the types of waves). This case shows up in Fig. 2 as a 
transition from the normal to the anomalous type of disper- 
sion close to the transmission boundary (in an experiment for 
a 2-mm range of waves, AF= 1.6 mm). 

Consequently, perturbations caused by A,-+ A. lead to 
"reflection" of the waves, which manifests itself as a change 
in the type of dispersion. Moreover, this reflection occurs not 
from the boundary itself but from a band whose center is the 
boundary (Agr= 1.6 mm). A similar phenomenon was ob- 
served at the boundaries of the absorption band of light by 
sodium vapor in the Kundt-Rozhdestvenskii experiments.' 
The bent spectral bands in these experiments describe curves 
similar to Wien and are caused by the phenomenon 
of anomalous dispersion. The perturbing band in the Kundt- 
Rozhdestvenskil experiments (the absorption band) is deter- 
mined by the excited sodium atoms, which change the state 
of the macroscopic system (the sodium vapor). As a result, 
the electromagnetic field can have critical phase states, by 
passing through which it can propagate in the macroscopic 
system in the form of waves with normal or anomalous dis- 
persion. In the case under consideration, the function of the 
macroscopic system is fulfilled by the diffraction grating, 
while the change of the states is implemented in the process 
vph-'C. 

The phenomenon of anomalous dispersion is not re- 
stricted to the cases shown above. Similar processes are 

FIG. 2. Dispersion characteristic of waveguide types of waves of a diffrac- 
tion grating. 

implemented when free oscillations interact in electromag- 
netic cavities. For an open cavity, the spectrum of free oscil- 
lations is equivalent to the set of eigenvalues of the charac- 
teristic 

F(~)=det{I-A(K)}, (4) 

where K is a dimensionless frequency, I is the unit operator, 
and A (K) is the operator function of the spectral boundary- 
value problem. 

In contrast with closed cavities, the eigenfunctions K in 
open electromagnetic cavities are complex-valued. In this 
way, i.e., by using nonself-adjoint operators, we take into 
account the effect of the surrounding space on the spectrum 
of free oscillations of the cavity. An investigation of the 
eigenvalue spectrum of the characteristic determinant leads 
to the concept of the so-called Morse critical in the 
neighborhood of which the free oscillations of cavities inter- 
act. Determination of the Morse critical points reduces to a 
search for the resolvent R(K) ={I - A(K)}-' of the operator. 
For K-+O, the norm llA(~)ll< 1,  and the point spectrum of 
the operator is restricted to some neighborhood with its cen- 
ter at zero (a Morse critical point). In this case, there exists 
an empty neighborhood of a Morse critical point (a forbidden 
band), where there are no free oscillations of the cavity. Con- 
sequently, in this neighborhood, the oscillations either damp 
out or are "pushed out" by an interaction (a collision); this 
is characteristic of free linear oscillations, which by defini- 
tion have a finite undamped supply of energy (a stationary 
state). It is essential that the operator-function method of 
Ref. 6 makes it possible to study the spectral characteristics 
of open systems while taking into account nonspectral pa- 
rameters. In this case, the dispersion equation has the form 
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FIG. 3. Dispersion curves of types of waves of an open periodic waveguide 
structure (the result of a numerical experiment). The circles enclose the 
Wien graphs. 

where 6 is one of the nonspectral parameters of the problem. 
Figure 3 shows the results of a numerical experiment on 

the study of the interaction of the free oscillations in open 
periodic resonant structures (gratings)4 when 6 is a geometri- 
cal parameter of the diffraction grating (the dimensionless 
height). It can be seen that there are critical values of 6 for 
which the eigenfrequencies of the free oscillations (the dis- 
persion curves) are pushed apart, describing Wien graphs 
(surrounded by circles in the figure), with empty neighbor- 
hoods being formed with centers of symmetry at the Morse 
critical points. The spectral line bounded by the band is es- 
pecially noteworthy; here the discontinuity in the neighbor- 
hood of a Morse critical point is accompanied by bends in 
opposite directions, similar to what occurred in the Kundt- 
RozhdestvenskiT experiments. The difference is that here, in- 
stead of an absorption band, an empty site occurs. This is 
understandable, since, according to the condition of the prob- 
lem, free oscillations in space do not damp out. As a result of 
the "collision" (approach), they exchange momenta, and 
their frequencies "diverge" in opposite directions. In this 
case, as in Fig. 2, the "pushing apart" can be accompanied 
by the phenomenon of anomalous dispersion. 

A symmetric collision of two spheres accompanied by 
elastic impact can serve as a mechanical analog of the for- 
mation of a Morse critical point. The trajectories of the 
spheres in this case describe "Wien graphs," at the center of 
symmetry of which their imaginary zero-energy point is 
highlighted (the Morse critical point). If the oscillations 

damp out when the collision occurs, the empty neighborhood 
turns into an absorption band. 

Thus, a Morse critical point is a center of thickening of 
the spectrum of free oscillations. One can distinguish a bush 
of interacting oscillations or can excite such a bush in the 
neighborhood of a critical point, if the conditions for the 
existence of such a complex resonant field are fulfilled in a 
resonant system or in some medium.' The thickening of the 
oscillations is accompanied by interaction via induced cur- 
rents or captured electrons, as occurs in dielectric cavities? 

To obtain a compressed spectrum of the free oscillations, 
it is expedient to use ring cavities known from the solution of 
the Sturm-Liouville problem.10 In an ideal ring, one eigen- 
value (frequency) can correspond to an infinite set of field 
configurations (eigenfunctions). The finiteness of the energy 
makes it impossible to implement an observable field in this 
case. In actuality, a small number of resonant-field configu- 
rations exist simultaneously in rings. Therefore, to obtain a 
bush resonant field, one uses a system of rings with an over- 
lap region in which a compressed spectrum arises. 

Figure 1 shows a simple version of an open cavity in 
which it is possible to arrange two rings with an overlap 
region. It consists of a section of periodic waveguide and an 
open cavity. One of the rings is formed by waves that flow 
around a section of the periodic structure and come together 
in reactive zones of Z communication channels. The second 
ring is formed by waves that pass through the communica- 
tion channels and are brought together by the mirrors of the 
open cavity. The volume of the section is the region where 
the fields of the rings overlap. In the case of two field con- 
figurations (which corresponds to the given experiment), the 
resonant field of the ring is written as the superposition 

where t,bi and are the eigenfunctions (or types of waves) 
corresponding to one eigenvalue (frequency). For these func- 
tions, A w l  # Aw2 in general; they both are stable because the 
reactive zones Z introduce indeterminacy into the resonance 
distance and smear its value. As a result, a ring can be stably 
closed by different A, corresponding to the same frequency. 

Similar reasoning holds for the second ring: 

The set of cpl and cp2 in the overlap region is a bush of 
oscillations1 or an intertype o~cillation.~.~ In Fig. 3, the re- 
gions of existence of the bushes (Wien graphs) are sur- 
rounded by circles. When the open cavity is tuned (by vary- 
ing L), their eigenfrequencies approach or diverge from each 
other; i.e., the spectrum of the resonant field of the bush is 
compressed or dispersed. If the field configurations coincide 
in space and time (Awl=Aw2) ,  they become identical, and 
the field of the bush will be equivalent to the field of a single 
oscillation. The "collision" of the components of the reso- 
nance field of the bush reduces to their approach and mutual 
perturbation, the degree of which varies in the process of 
tuning. Under the conditions of the experiment, the perturba- 
tions are transmitted to the electron flux, which makes their 
interaction dynamics observable. 
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3. EXPERIMENT 

The experimental setup is shown in Fig. 4. The object of 
interest is the resonant system of the generator of the diffrac- 
tion radiation." It is an open cavity with a periodic inclusion 
in the form of a diffraction grating (see Fig. l(b), which here 
simultaneously fulfills the function of a slow-wave structure. 
As a result of scattering in the reactive zones Z and re- 
reflection from the spherical mirror, the surface waves of the 
diffraction grating form a ring. The path of such waves is 
shown by arrows in Fig. 4. The second ring is formed by the 
closure of the surface waves of the diffraction grating in the 
communication channels Z. The overlap region of the reso- 
nant fields of the rings here is the waveguide diffraction grat- 
ing, where they interact with each other and with the electron 
flux that excites them. As usual, the electron flux is focused 
by a longitudinal constant magnetic field. 

The systems under consideration, shown in Fig. 4 and 
Fig. l(a), are physically equivalent. In the process of tuning 
the open cavity of the diffraction radiation, the power W and 
the frequency are measured, which makes it possible to con- 

FIG. 4. Schematic drawing of an experimental apparatus (genera- 
tor) with measurement devices. 

tinuously monitor the existence of the annular oscillations 
and the variation in the structure of their fields. 

Figure 5 shows how the frequency f(L) and the power 
P(L) vary in the process of tuning the rings. The curves 
shown in Fig. 5(a) were recorded with the following values 
of the accelerating voltage U and current Il of the electron 
flux: U1=3434 V=const, I le=70 mA=const; the plots of 
f2(L) and P2(L) correspond to U2= U = const, but to an- 
other value of the current of the electron flux: 12e= 80 mA 
=const. It can be seen that the dispersion curves fl(L) and 
f2(L) are straight lines; as the current of the electron flux 
varies, they are simply displaced parallel to themselves. Such 
lines are characteristic of single oscillations. Consequently, 
we are observing the case in which the fields of the rings are 
identical. 

Figure 5(b) shows plots for another frequency range. For 
this case, U =  4330 V=const, Zl= 70 mA=const. Here al- 
ready, instead of a line showing identity of the fields (a 
single oscillation), band x appears, showing that the resonant 
field of the rings has a complex structure. In the interval 

f, GHz 

FIG. 5. Character of the variation of 
frequency f and power P in the pro- 
cess of tuning annular oscillations: 
(a) dispersion curves of a single os- 
cillation (case in which the resonant- 
field configurations of the bush are 
identical); (b) dispersion band ,y of 
the bush resonance; (c) dispersion 
band of the bush resonance for a 
resonance system (optical cavity) 
with an additional inclusion in the 
form of a wedge-shaped quartz plate. 

5.27 5.32 L. mm 5.0 5.1 L, mm 12.7 12.8 12.9 13.0 L, mm 
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Oo-O,, a field configuration is observed that determines the 
existence of an anomalous type of dispersion at the diffrac- 
tion grating. In regions c and d, the sign of the increment 
AX reverses, and the types of dispersion change. Here they 
can be expected to exist simultaneously. However, these re- 
gions contain little information on such a state; this is asso- 
ciated with the weakly expressed ring formed on the diffrac- 
tion grating. 

To eliminate indeterminacy, an additional ring was 
"connected" by introducing a quartz plate into the volume 
of the open cavity (Fig. 4). The quartz plate is made in the 
shape of a wedge, in order to prevent the generator from 
being excited in another regime. The plots for this case are 
shown in Fig. 5(c), where the range of existence of rings is 
reproduced three times: f ( L )  corresponds to U ,  = 3 103 V, 
f2 (L)  corresponds to U 2  = 3 106 V, and f 3 ( L )  corresponds to 
U 3  = 3 109 V. The current of the electron flux was identical in 
all three cases and equalled I 121= 13[= 70 mA=const. In 
this case, the measurement step was AL= 0.01 mm each, and 
the wavelength was about A =2.64 mm. It can be seen that 
the character of the f ( L )  and P ( L )  variation is stable on all 
three graphs. In the neighborhood of point e (and of points 
similar to it), there is a stable section of "length" 
AL = 0.02 mm where no dispersion properties of the periodic 
structure manifest themselves; i.e., vph= vgr. This relation 
can be proven based on the fact that the resonant field of the 
bush is a combination of two wave functions of type c p ,  and 
cp2. As already known, critical phase increments exist at the 
diffraction grating on the period in which small variations 
SAW cause the types of dispersion to change. In the process 
of tuning the resonance field of the bush, the doublet 
X W ,  = A,Y2 is continuously tuned and by necessity covers the 
critical region of the phase increments, where the opposite 
types of dispersion given by Eq. (3) are allowed to exist 
simultaneously. Equalizing the quantities of energy of the 
resonance field of the bush stored in these configurations 
causes, as seen from Eq. (3), the identity 

to be satisfied. 
Consequently, when the identity is satisfied, a dispersion 

doublet forms, and the corresponding phenomenon of dy- 
namic nondispersion vph=vgr (a soliton) occurs. It can be 
seen from the plots that this event causes a frequency shift 
A f ,  , i.e., a "pushing apart" of the free oscillations charac- 
teristic of Wien plots. In the experiment, half of these graphs 
are "delineated," and the other half are symmetric to the 
first half. The "coordinates" of the Morse critical point 
( 0 3 )  are highlighted at the center of symmetry of the colli- 
sion of the free oscillations. At its edges, the fo= const 
section undergoes a transition to the e2-d3 and 03-Oi 
branches, with opposite types of dispersion. Here the mutual 
perturbation of the rings is reduced. As a result, the disper- 
sion doublet breaks down, and the configuration of the reso- 
nance field cp  in which the larger quantity of energy is stored 
becomes observable. At point 8 ,  and the points analogous to 
it, no collisions occurred, the oscillations slipped through 

FIG. 6. Allowed absorption bands in the frequency interval Af,, ; (a) 
anomalous-dispersion case; (b) normal-dispersion case; (c) vector diagrams. 

each other without interaction, and the coordinates of the 
Morse critical point were not highlighted. It can thus be as- 
sumed that the Morse critical point belongs to the spectrum 
of damped oscillations (to the set of imaginary frequencies); 
it will then correspond to the coordinates ReK=O; Im 
K # 0. The state Im K = 0, Re K # 0 corresponds to a free 
undamped oscillation. 

It is noteworthy that the slope of the dispersion lines of 
the single oscillations (Fig. 5(a)) and of the existence bands 
x of the bush resonances (they are shaded in Figs. 5(b) and 
(c)) are similar. The bush of oscillations is tuned similarly to 
a single oscillation and is consequently an entire self- 
consistent set of interacting oscillations (modes). 

A. Vector representation of bushes and their spontaneous 
excitation 

It can be seen in the plots of Fig. 5(c) that branches with 
anomalous ( 02- 0 3 )  and normal ( d3 - 8;)  types of dispersion 
having a common frequency band A f ,  arise on f ( L )  . The 
tuning of certain contours ( Q  = Q 2 )  whose absorption bands 
completely fit into the band A f p  (Figs. 6(a) and (b)) is al- 
lowable on such branches. On 02-03,  the sign of the fre- 
quency increment A f ,  coincides with the sign of the incre- 
ment AL. In this case, we shall assume that the vector R (the 
frequency) rotates clockwise, and that the angular velocity 
vector o, points along the positive z axis (Fig. 6(c)). On 
03-O;, A f ,  and AL have opposite signs, and the angular 
velocity vector A f ,  accordingly points along the negative z 
axis. The section fo= const under such conditions can be 
represented as the region where the absorption bands of Fig. 
6(a) and (b) are in registration, which corresponds to oppo- 
site angular velocity vectors. These vectors, applied to one 
point, are the positive + f a  and negative - f ,  frequencies. 
Such coalescence of the field vectors in the process of colli- 
sion determines the stability of the frequency on the fo= 
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const interval. This state is equivalent to bringing two mid- 
antipodes into coincidence, causing the formation of oppo- 
site frequencies (negative and positive). Under the conditions 
of the experiment, the existence of frequencies of the antipo- 
des is determined by the components of the resonant field of 
the bush with A,, # Aw2. 

In the Kundt-Rozhdestvenskil experiments, it is allow- 
able to form two states in the macroscopic system (sodium 
vapor)-the antipodes. 

Under the conditions of this experiment, the configura- 
tions of the resonance field that interact with the electron flux 
and take energy from it are the generating elements of the 
bush. The bush can contain a single generating element. The 
resonance-field configurations generated by it are "idle," 
which does not in general prevent a parametric type of inter- 
action from occurring between them and the electron flux. 
Consequently, in the process of tuning, the generating ele- 
ment can spontaneously generate a bush. When there is a 
discontinuity in the connections (a force interaction1), the 
idle components break away from the generating element 
and damp out. In Fig. 5(c), spontaneous generation of a bush 
is observed on the section of the f (L) dispersion curve des- 
ignated by a 3; traces of the spontaneous generation of a 
bush can be seen on sections 1 and 2. In distinction from 
"stimulated" production of a bush, in the neighborhood of 
03, no symptoms of separate existence of opposite types of 
wave dispersions are observed outside the section f = const, 
since the bush in this case contains a single generating ele- 
ment with a field configuration that causes a normal type of 
dispersion, and the other (idle) configurations "disconnect" 
from the source and damp out when they leave the region of 
force interaction (f = const). 

B. Analysis of the stable and unstable states of the 
resonance field of a bush 

Let us consider the process of forming a dynamic non- 
dispersion from a somewhat different viewpoint, taking into 
account the interaction of the waves with the electron flux. In 
the state of generation, the electron flux is grouped and forms 
a certain charged periodic medium. Since U =  const and 
I ,=  const under the conditions of the experiment, the peri- 
ods of the electronic medium will also be constant, l,,= 
const. Such an electron flux, having been cut by modulation 
of the charge density, can be considered stationary with re- 
spect to the travelling phases of the waves caused by tuning 
of the rings by variation of L. As a result, the phases will run 
into the standing (relative to the observer) waves of the elec- 
tron flux. In conditions under which the dispersion doublet 
exists, the incoming phases of the waves are opposite (nega- 
tive and positive frequencies). Consequently, on the fo= 
const interval, two opposite longitudinal Doppler effects oc- 
cur simultaneously, and the resulting frequency shift will 
equal zero. In such a state, the Stokes and anti-Stokes com- 
ponents of the central frequency are suppressed symmetri- 
cally, which is equivalent to the phenomenon of 
Mandel'shtam-Brillouin compression of the doublet. If there 
are fluctuations of the quantities of energy stored in the 
resonance-field configurations that determine the dispersion 
doublet, the symmetry of the suppression of the Stokes and 

the anti-Stokes components breaks down, which causes the 
central frequency to precess. In such cases, random noise is 
observed on the envelopes of the generator signal. 

4. CONCLUSIONS 

The studies that have been carried out show that a self- 
consistent set of interacting oscillations (a bush of modes) in 
open systems is an entire structure that is tuned in a fre- 
quency range like a single oscillation. In the process of tun- 
ing, regions of compression of the spectral components of 
the resonance field of the bush occur, with the formation of 
singularities (the Morse critical points). Steady-state solu- 
tions of Maxwell's equationsk6 make it possible to study 
instantaneous (frozen) states of the resonant-field structure of 
a bush without dealing with the interaction dynamics in the 
neighborhood of the singularities. Such a property is pos- 
sessed by nonsteady-state nonlinear equations that are a hy- 
brid of a nonlinear wave equation and the Klein-Gordon 
equation.12*13 

In periodic waveguide cavities, the resonance phenom- 
enon can be regarded as a process in which a closed flux of 
electromagnetic waves travels around a periodic surface. 
Multiplicity of the configurations of the annular resonance 
field causes the phenomenon of anomalous dispersion and 
the dispersion doublet. Such a state of the resonant field is 
observed in the form of dynamic nondispersion (a soliton), 
when the waves do not notice the periodic surface around 
which they flow. 

The electromagnetic-wave flux in such a state has prop- 
erties in common with dissipation-free shock waves, which 
are well known in dispersive hydrodynamics. Actually, if 
one assumes the case in which a wave is pressed against the 
surface of a body, solitons that are formed at the wavefronts 
of dispersionless shock waves will flow around the body.14 
Soliton waves cause the resistance to the flow to be lost, and 
the flux will not notice the surface around which it flows. 
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