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A correction to the hydrogen energy levels that is first-order in mlM and fourth-order in Z a  
(pure nuclear recoil) is calculated. It consists of two contributions, one building up on the atomic 
scale and the other at distances of the order of the Compton electron wavelength. The long- 
distance contribution is found by two different perturbation methods. The source of the 
perturbation in both is the slow motion of the nucleus. In one the electron is assumed a 
relativistic particle from the start. In the other the relativistic effects are also considered 
perturbatively. The short-distance contribution is found in the Feynman and Coulomb gauges. 
Recent results for P levels are confirmed, in contrast to those for S levels. Numerically, the 
shift is found to amount to 2.77 kHz for the ground state and 0.51 kHz for the 2 s  state. O I996 
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1. INTRODUCTION 

Reducing the uncertainty in the theoretical prediction of 
the energy difference of the 2 s  and 2 P  states of the hydro- 
gen atom to about 1 kHz would make it possible, after 
achieving the same precision in experiments, to determine 
the proton's charge radius with a one-percent accuracy. Re- 
cently completed calculations of the correction of relative- 
order ( a ~ , r r ) ~ ( ~ a ) ~  (see Ref. 1 and the references cited 
therein) suggest that among potential sources of this theoreti- 
cal uncertainty may be the correction of relative order 
( ~ a ) ~ r n / M ,  which emerges as a result of allowing for 
nuclear recoil and the relativistic effects in electron motion 
simultaneously. In the present paper this correction is calcu- 
lated for an arbitrary energy level of the hydrogen atom. 

Earlier the correction of the order discussed here was 
calculated for P states in Ref. 2. Since in states with nonzero 
angular momentum the correction builds up on the atomic 
scale, to calculate this correction one can use the standard 
quantum mechanical perturbation theory for effective opera- 
tors describing relativistic effects. Proof of the validity of 
this approach (for states with nonzero angular momentum in 
the order in a under discussing) lies in the convergence at 
small distances of all matrix elements of the effective opera- 
tors arising in the perturbation theory. 

At the same time, an attempt to employ the nonrelativ- 
istic approach in calculating the correction to S states, whose 
wave functions do not vanish at small distances, leads to 
divergent matrix elements. Indeed, among the effective op- 
erators there are those that depend on r as r - 3  or even as 
r - 4  (see Ref. 2). With regard to the latter, for S states an 
r P 4  operator is equivalent (to within a nonsingular operator) 
to the sum of operators with an r - 3  radial dependence and a 
6 ( r ) l r  radial dependence. In Ref. 3 the logarithmically di- 
vergent contributions to the shift of S levels were shown to 
cancel out. This means that the correction for states with a 
zero angular momentum naturally splits into two contribu- 
tions, one at long distances and one at short, each building up 
on its own scale. While in calculating the long-distance con- 
tribution we can still use the nonrelativistic approach, for the 

short-distance contribution (distances of order of the electron 
Compton wavelength) we must use relativistic techniques. 

A closed expression for the first nuclear-recoil correction 
(linear with respect to the mass ratio) to the energy of a 
relativistic electron moving in a Coulomb field is given in 
Sec. 2. It is used in Sec. 3 to evaluate the long-distance 
contribution. Here again the relativistic approach proves to 
be more efficient. Section 4 is devoted to finding the short- 
distance contribution in the Feynman gauge. The results are 
verified in Sec. 5. Here the long-distance contribution is re- 
calculated using the nonrelativistic approach, and the short- 
distance contribution is found again in the Coulomb gauge. 
Finally, in Sec. 6 we discuss the numerical values of the 
energy shifts and compare the results of the present work 
with those obtained in Refs. 2 and 4. 

Throughout the paper we employ the relativistic system 
of units: h = c =  1. Since we are not considering radiative 
corrections, Z can also be set equal to unity. 

2. THE METHODS OF CALCULATION 

As one of the methods for finding the long-distance con- 
tribution we use the nonrelativistic approach, which begins 
with the Schrijdinger equation in a Coulomb field. In other 
words, in this approach both particles are assumed nonrela- 
tivistic. To allow for relativistic effects we expand the scat- 
tering amplitude for free relativistic particles in a power se- 
ries in the initial and final velocities. In this way we set up an 
operator expansion for the effective interaction potential. 
The difference of the effective potential and the Coulomb 
potential is then used as a perturbing operator in the ordinary 
quantum mechanical perturbative approach, which is ex- 
tremely effective in determining the contribution of atomic 
distances. Earlier it was used in calculating the logarithmic 
(in a )  corrections in the two-body problem? the order 
m a 6  corrections to the positronium P levels? and the order 
m2cu2/M corrections to the hydrogen P  level^.^ Unfortu- 
nately, the nonrelativistic approach becomes ineffective 
when calculating the short-distance contribution. 
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In the alternative approach a relativistic light particle (an 
electron) moves in the field generated by a slow heavy par- 
ticle (the nucleus). In the leading approximation the heavy 
particle is at rest and serves as the source of the Coulomb 
field. The wave function of the system reduces to the wave 
function of the light particle satisfying the Dirac equation. 
To first order in the reciprocal mass of the heavy particle the 
perturbation operator coincides with the particle's nonrela- 
tivistic Hamiltonian: 

Here P and R are, respectively, the momentum and position 
operators of the nucleus. 

Unfortunately, one cannot directly average the perturba- 
tion operator (1) over the unperturbed wave function, since 
the operator depends on the dynamical variables of the 
nucleus while the unperturbed wave function depends on the 
electron position coordinates or momentum. To overcome 
this difficulty we can use the fact that obsewables in QED 
are gauge in~ariant .~ Being expressed in terms of the elec- 
tron's variables, the average of (1) must remain gauge invari- 
ant. With this requirement, the new form of the average is 
practically obvious: 

Here p is the electron momentum operator, and the integral 
operator D describes the exchange of a transverse photon.') 
The kernel of D has the form 

In Eq. (2), G is the Green's function of the Dirac equation in 
a Coulomb field, and E is the energy of the electron state 
over which the averaging is done. To verify the validity of 
(2), we note that its part that is quadratic in D emerges as a 
result of trivial averaging of the  term of operator (1) over 
the electromagnetic field fluctuations. All the other terms en- 
sure that (2) is invariant under a gauge transformation: 

q+exp[i4(r)I#, D-+D+i[p,41. (3) 

Clearly, the same result can be obtained from Eq. (1 1) of 
Ref. 7 after using the Dirac equation. 

The first attempt in deriving an expression for the energy 
correction that is caused by recoil and is exact in the Cou- 
lomb field was made by ~ r a u n . ~  Complete expressions for 
the various contributions in the Coulomb gauge were first 
obtained in the quasipotential approach in Ref. 9. It can be 
proved that the sum of these expressions is (2). 

3. THE LARGE-DISTANCE CONTRIBUTION 

In this section we study the energy contribution that 
builds up on the atomic scale. To verify the results we use 
both approaches described above. Here we describe in detail 
the calculations in the relativistic approach. The procedure 
for comparing the results with those of the more cumber- 
some nonrelativistic approach is discussed in Sec. 5. 

3.1. The Coulomb contribution 

The Coulomb part of the contribution, 

naturally splits into two terms:8 

Here A + and A - are the projection operators onto the sets of 
positive- and negative-frequency solutions of the Dirac equa- 
tion in the Coulomb field. Using this fact we can represent 
the expectation value of the operator p 2 / 2 ~  in the following 
form:' 

As for the second term in Eq. ( 9 ,  responsible for virtual 
transitions into negative-frequency states, on the atomic 
scale it contributes practically nothing to the order of interest 
to us, as can easily be verified. Indeed, simply counting the 
powers of CY on the right-hand side of the obvious inequality 

where C is the Coulomb potential, we find that at large dis- 
tances the product of commutators already contains the sixth 
power of CY. Hence all the other cofactors on the right-hand 
side can be replaced by their nonrelativistic limits. Since the 
nonrelativistic region contains no negative-frequency states, 
the large-distance contribution to the second term vanishes in 
the order considered here. 

3.2. The magnetic contribution 

After integrating with respect to frequency, the expres- 
sion for the single transverse, or magnetic, contribution, 

assumes the form 

where X + stands for the sum over the discrete spectrum and 
the integral over the positive-frequency part, and Z-  stands 
for the integral over the negative-frequency part. 

If the transverse-photon momentum is in the atomic 
range, k- ma ,  we can expand the first term on the right-hand 
side of Eq. (9) in a power series in (E - E,)lk. In the zeroth 
approximation (the instantaneous exchange approximation) 
we have 
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Adding the first term to (6)  yields the simple result9 

where the standard notation of the Dirac-Coulomb problem 
are used, 

with n ,  the radial quantum number, and K = - 1 - ul. Note 
that ( 1 1 )  coincides with its nonrelativistic limit only for 
states with n,=O. 

Since we are interested only in corrections of even order 
in a, we immediately proceed with the second term in the 
expansion, which describes the retardation effect: 

Here H= cup+ pm + C is the Dirac Hamiltonian in a Cou- 
lomb field. Replacing the corresponding operator by its ker- 
nel, we obtain 

In the leading nontrivial approximation, the matrix elements 
of the Dirac matrices a over positive-frequency states can be 
replaced by the appropriate Pauli currents: 

Here k' = q- k ,  q= p' - p, and p and p' are the arguments 
of the wave function and its conjugate counterpart, respec- 
tively. After going over to the spatial representation, we ob- 
tain 

Actually, the integral with respect to k in (13) contains an 
infrared divergence. It is dropped from (14) because photons 
of low virtuality (with k - m a 2 )  are responsible for radiative 
corrections in the odd orders in a .  To verify this fact, we 
regularize the divergence by introducing a photon mass h ,  
with m a 2 e  h e m a .  Then the term omitted in (14), propor- 
tional to l / h ,  is canceled out by the corresponding term in 
the difference of (9)  and an expression obtained from (9 )  by 
substituting dm for k.  On the other hand, this difference 
determines the low-frequency contribution to the order 
m a S /  M correction. 

Finally, the virtual transitions into negative-frequency 
states caused by emission of a single magnetic quantum are 
described by the last terms in (9)  and (10).  The expansion of 
the last term in (9)  at large distances starts with the seventh 
power of a. This can easily be verified by using an inequal- 
ity similar to (7). As for the negative-frequency contribution 
to ( l o ) ,  in the first nontrivial approximation it is reduced to 

which after going over to the spatial representation yields 

In S states this average is logarithmically divergent at small 
distances (linear divergences cancel out). The ultraviolet di- 
vergence in the large-distance contribution to the correction 
to the S levels will be discussed after we find the total large- 
distance contribution. Indeed, in view of the gauge invari- 
ance of individual terms [e.g., (16)] ,  the divergences con- 
tained in these terms have no physical meaning when 
considered individually. 

3.3. The seagull contrlbutlon 

As in Sec. 3.2, taking the integral with respect to w in 
the expression for the double-transverse, or seagull, contri- 
bution 

yields 

a2 4mffk'  Im)(ml[l  + ( E m - E ) I ( k l  + k ) ]  

AE"=~M(TT ( E m - E + k l ) ( E m - E + k )  

where the dots stand for the contribution of negative- 
frequency states, which differs from that of the positive- 
frequency states in the overall sign and the signs of k and 
k t .  It can easily be verified that the terms linear in k/2m in 
the expansion of the negative-frequency part cancel out. But 
these are precisely the terms that lead on the atomic scale to 
the contribution of the sought order. We are, therefore, 
forced to examine the expression explicitly written in (18). 
In the leading nonrelativistic approximation 

we again replace the matrix elements of cu over positive- 
frequency states by the Pauli currents, 
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and go to the spatial representation. The result is 

3.4. The total iargedistance contribution 

Summing (14), (16), and (21), we get 

Expanding (11) in a power series in a2 and calculating the 
average in (22), we obtain the large-distance contribution for 
states with nonzero I: 

For I= 1 this is reduced to the result obtained in Ref. 2. As 
mentioned in the Introduction, the effective operators that 
emerge in the order under consideration are not sufficiently 
singular to balance the vanishing of the wave function for 
states with nonzero angular momenta as r+O. For this rea- 
son, the expression (23) constitutes the total correction of the 
order under consideration to levels with 1>0. 

In S states the first term vanishes due to the action of the 
operator I. Note that direct generalization of the result for 
states with nonzero angular momentum to S states leads to 
an erroneous final contribution: the vanishing of the angular 
matrix element is balanced by a linear divergence in the ra- 
dial matrix element. 

As for the second term, which formally contains a linear 
divergence, it is a remnant of the small-distance contribution 
to the previous order correction (fifth in a ) .  To verify this, 
we again regularize the divergence at small distances by sub- 
tracting the potential for the exchange of a transverse photon 
of mass A%-ma from the instant transverse exchange poten- 
tial in (15): 

By going to the spatial representation, instead of a singular 
operator we get its regularized version, 

whose expectation value yields the energy correction of or- 
der mha51M.  This correction is canceled out by the linear- 
in-A term in the expansion of the small-distance contribution 
to the order m 2 a 5 / ~  correction, calculated with the massive 
propagator of the transverse photon (now we must use the 
fact that A is small compared to the electron mass). Along 
with the correction to the order m2a51M contribution, which 
is linear in Alm one could expect a correction linear in 
a= m a l m .  It is obvious, however, that at large distances the 
expansion parameter is actually ( p l m ) 2 - a 2 ,  so that the op- 
erator under discussion contributes nothing to the order of 
interest to us. On the other hand, the correction to the local 

operator which is linear in a (mflr)) may occur as an ordi- 
nary radiative correction. In this case it acquires its value 
entirely at small distances. Section 5 is devoted to the calcu- 
lation of such corrections. 

Thus, in S states the large-distance contribution is ex- 
hausted by the order m2a61M term from the expansion of 
(1 1): 

Only in the ground state does this contribution vanish. 

4. THE SMALL-DISTANCE CONTRiBUTiON 

As mentioned in the Introduction, in S states in addition 
to the large-distance contribution there can be a contribution 
originating at distances on the order of the electron Compton 
wavelength. Since the two contributions are well-separated 
in scale, each is gauge invariant. This makes it possible to 
use the most suitable gauge when calculating the small- 
distance contribution. The Feynman gauge has proved con- 
venient. The main formula (2) can either be written in this 
gauge by employing the Dirac equation or can be derived 
directly from Eq. (1 1) of Ref. 7: 

The momenta of both photons are assumed to be directed 
from the nucleus to the electron. The photon mass A is in- 
troduced to establish control over the infrared divergences, 
which emerge in perturbational calculations of the small- 
distance contribution as remnants of contributions of previ- 
ous orders in a or of the large-distance contribution of the 
order considered. 

Replacing the wave functions in the integrand by their 
values at zero and the Green's function by the term in its 
expansion (the term must be linear in the Coulomb poten- 
tial), we obtain 

(a- :)&) 
Here 311 $(0)12, the angle brackets stand for integration 
with respect to p and pf , q= p' - p, and we have introduced 
the notation 

Contrary to the case of large distances, in the relativistic 
region the opposite order of integration has proved more 
suitable: first with respect to p and p', and then with respect 
to w. As for the first integral, its calculation becomes trivial 
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after going over to the spatial representation. As a prepara- 
tory step, it is convenient to express all scalar products of 
momenta in terms of their squares. This leads to terms that 
do not contain Ct in their denominators and can be discarded 
since A is the only scale in such terms, while we are inter- 
ested in contributions that build up their values on momenta 
of order of the electron mass. After we go over to ordinary 
space, the two-loop integral with zero external momenta is 
transformed into a simple one-dimensional integral with re- 
spect to r. As a result of this integration we are left with an 
integral in the complex o plane, with the integration contour 
encompassing the cut connecting the points - 2m and -A. 
The final result is 

where E = A12m. 
But if we ignore the interaction in the Green's function 

entirely, we must use the Dirac equation to properly account 
for the behavior of the wave function at small distances: 

Using the same procedure, we take - rl2 as the Fourier 
transform of 4vlp4.  The linearly divergent constant dis- 
carded in the process is actually proportional to lla and 
therefore constitutes a part of the correction of the previous 
order. As a result we get 

The terms in (28) and (30) that depend on the photon mass 
arise from integration over the range of momenta p - A and 
frequencies o - A  (or a) and therefore do not belong to 
the small-distance contribution, which is determined by the 
range p-o-m and is independent of the infrared cutoff 
parameter: 

Note that the result contains no hidden large-distance contri- 
butions that could emerge as a result of dividing all common 
(nonzero) powers of the photon mass out of numerator and 
denominator: all terms proportional to positive powers of a 
were set equal to zero in the process of calculation. Clearly, 
the emergence of such contributions would be self- 
contradictory because the convergence of the integral at dis- 
tances of order 11A means that at p-A the total sum of 
powers of momenta in the denominator of the integrand is at 
least one unit greater than the total power of the numerator 
and measure of integration. In other words, all contributions 

of "large" distances (of order 1IA) have to contain a positive 
power of the photon mass in the denominator. 

5. VERIFYING THE RESULTS 

5.1. The large-distance contribution 

To verify the validity of the results for the different 
terms constituting the large-distance contribution, all were 
obtained within the framework of the nomelativistic ap- 
proach, which uses the Schrijdinger equation as the starting 
point. For states with nonzero angular momenta we adopted 
the following procedure. Since all the contributions exhibit 
the same analytical structure, 

where 

the constants a, b, c, and d for each contribution were first 
calculated in the nomelativistic setting from their asymptotic 
behavior as K - - s ~  or as the residues at the corresponding 
poles in the complex K plane, and then compared with the 
values obtained in the relativistic setting. In the process of 
comparison, the set of the "nomelativistic" terms was bro- 
ken down into groups according to the meaning of the re- 
spective "relativistic" contributions. For instance, the retar- 
dation part (14) of the magnetic contribution consists of three 
terms in the nomelativistic setting: AE;;, A E ~ L , ,  and 
AE$) (in the notation of Ref. 2). 

As noted earlier, S states should be treated separately to 
avoid fictitious contributions arising from the fact that van- 
ishing angular matrix element are balanced by linearly diver- 
gent radial matrix elements. It appears that all divergences at 
small distances cancel out: the final result is independent of 
the parameter introduced for regularization of the effective 
potentials whose singularity is too strong at zero. 

5.2. The small-distance contribution 

To compare the results of the present work with those of 
Ref. 4, the small-distance contributions was also calculated 
in the Coulomb gauge. The calculation method was similar 
to the one used in the case of the Feynman gauge. The re- 
sulting small-distance contributions are 
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Here by C, M, and S we denote the Coulomb, magnetic, and 
seagull contributions, respectively. It can easily be verified 
that the sum of these contributions coincides with (31). 

6. CONCLUSION 

The numerical values of the contributions to the energy 
are 2.77 kHz for the ground state and 0.51 kHz for the 2 s  
state. This is somewhat lower than the value given by a 
direct estimate (m2a6/M-10.2 kHz) but is still comparable 
to the accuracy of the measurements that are to be carried out 
soon. Interestingly, the corrections to the 2 s  and 2 P  levels 
(with allowance for the radiative correction of the same order 
to the 2P  level2) prove to be very close, so that the correc- 
tion of 0.04 kHz to their difference is negligible compared to 
experimental errors.1° 

Now let us see how the results of the present work com- 
pare to those obtained in other papers. Apparently, the results 
for levels with nonzero angular momenta are firmly 
estab~ished.~." The situation with S levels4'" merits further 
discussion, however. 

The results of the present work for S levels contradict 
those of the analytical calculation done by Pachucki and 
~ r o t c h . ~  But what are the reasons for this discrepancy? 
Clearly, all the small-distance contributions (33)-(37) are in 
exact agreement with the "high-energy" contributions of 
Ref. 4. The same can be said about large-distance contribu- 
tions (low- and intermediate-energy contributions in the ter- 
minology of Ref. 4) with one exception: the retardation con- 
tribution in single magnetic exchange. The - 2 factor in Eq. 
(68) of Ref. 4 corresponding to the intermediate-energy con- 
tribution in the sixth order in CY differs from our result of - 1 
(in the same units of m 2 a 6 / ~ ) ,  which appears as a result of 
trivial averaging in (1 4) over the ground state. Unfortunately, 
we were unable to reproduce the -2 factor starting with Eq. 
(67) of Ref. 4. Moreover, several arguments suggest that the 
result (68) of Ref. 4 for the retardation contribution appears 
dubious, to say the least. It is known, in particular, that the 
logarithmic divergence that appears in the order rn2a6/M 
arises due to the relativistic corrections to the instant trans- 
verse exchange. The corresponding result of the present 

work is contained in (16) and agrees fully with the results of 
Refs. 5 and 12. At the same time, allowing for retardation 
leads only to a finite contribution [in accordance with (14)l. 
Judging by the result of Ref. 4, the retardation effect is a 
source not only of a logarithmic divergence but also of a 
linear divergence at small distances, while the relativistic 
correction to instant magnetic exchange contributes nothing 
to the given order. 

As for the results of the numerical calculations of Ref. 
11, the calculation error for the contribution of single mag- 
netic exchange is greate8) than the discrepancy between the 
analytical results being discussed. 
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 or the sake of brevity we write the kernel of an operator instead of the 
operator proper. 
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