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1. INTRODUCTION 

Ionization processes in laser fields have been actively 
studied in recent years by theoreticians and experiment- 
e r~ . ' - ' ~  While a correct theoretical description for the case of 
a weak laser field can be constructed by choosing an appro- 
priate variant of perturbation theory, in the case of an (ul- 
tra)strong field any perturbation theory yields at best a quali- 
tative description. For this reason, attempts have been made 
to derive a theory of atomic ionization for narrow ranges of 
parameters by drawing on quasiclassical and semiclassical 
ideas or by reducing theoretical analysis to numerical 
 experiment^.'-'^ Up till now, however, no consistent theory 
for describing the ionization of atoms in an ultrastrong laser 
field has been suggested. This paper is an attempt to build 
such a theory by exploiting the methods of Refs. 16 and 17. 

Let us formulate the terminology. Problems of the type 
considered here, such as photoionization of an atom (includ- 
ing multiphoton ionization), photodetachment of an electron 
from a negatively charged ion, decay of a molecule initiated 
by a laser field, and photoionization in the presence of exter- 
nal static fields, contain parameters that determine the dy- 
namics of the process: the effective Rabi parameter R of the 
external field (expressed in frequency units), the ionization 
potential M (or its analog), the frequency o of the external 
field. With proper choice of units all these parameters have 
the same dimensions. An external field is said to be strong if 
R and M are of the same order and ultrastrong if R S M, o. It 
is this situation that is discussed in the present paper. Of 
course, the restrictions imposed on R can be more stringent 
or less stringent, depending on the actual problem. (Obvi- 
ously, in the problem of electron photodetachment the value 
of M is much lower than in the problem of ionization of an 
atom.) 

The analytical approach to this problem that we develop 
differs considerably from the known approaches and makes 
possible a consistent study of the problem under extremely 
broad assumptions about the atom and the external field. We 
begin with the "quantum-optics" representation (or the 
"bare" states representation), in which the solution of the 
Schriidinger equation is sought. Thus, we examine the prob- 
lem in consistent quantum mechanical terms. In this repre- 
sentation the Schrodinger equation is written in the form of 
an (infinite) linear system of differential equations. This sys- 
tem can be reduced to two integro-differential equations, 

which naturally incorporate a large parameter (proportional 
to the amplitude of the external field). By employing asymp- 
totic methods we construct the asymptotic solution of an 
initial-value problem corresponding to the multiphoton ion- 
ization of the atom in an ultrastrong laser field. Similar ap- 
proaches were used in Refs. 16 and 17 to study the dynamics 
of simple level-band and level-continuum models. Here, 
however, the problem is more complicated, and it actually 
breaks down into two parts. First, we must develop a general 
scheme for the asymptotics of the problem, at least in simple 
situations. Second, we must apply the scheme to real atoms. 
Here we derive only the leading term of the asymptotic ex- 
pansion of the solution of the problem, i.e., find the solution 
to within "small" corrections. Nevertheless, the results con- 
cerning the dynamics of the simpler models discussed in 
Refs. 16 and 17 (such models allow calculating the first 
"small" corrections explicitly) make it possible to estimate 
the role of the next terms in the asymptotic expansion quali- 
tatively. Then we discuss the ranges of applicability of our 
approaches to real atoms. As a whole, these results provide a 
new explanation of the known effect of atom stabilization in 
an ultrastrong field: the reduction in the atom ionization rate 
as the amplitude of the external field grows (a detailed dis- 
cussion of this effect can be found in Ref. 18). More pre- 
cisely, we relate this effect to spectral singularities in the 
submatrix of the atom's dipole moment operator. 

2. DESCRIPTION OF THE BASIC FORMALISM 

Let 10) be the initially populated level (it is assumed that 
only one such level can exist), and let ( E )  be the other en- 
ergy levels of the atom (both discrete states and states in the 
continuous spectrum). We seek the atom's wave function 
q ( t )  in the form of a linear combination (the quantum- 
optics representation): 

Here and in what follows the integral with respect to E (we 
drop the limits) also incorporates (when necessary) a sum 
over discrete states. By a shift in the energy scale we can put 
the energy of the zeroth level equal to zero, so that E is the 
energy of the state I E ) .  

Suppose that the atom in placed in an ultrastrong laser 
field with an amplitude A ( t )  = pq ( r ) .  Here 
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with the optical frequencies o2 and ol being of the same 
order, and p and q(t) chosen so that lq(t)l= 1. To be more 
definite we assume, for instance, that q(t) = cos of. Next, we 
choose the time scale so that o= 1,  where generally w= $ 
(01+02) .  In terms of the amplitudes a( t)  and b(E,t) the 
Schriidinger equation has the form 

Here g(E) and P(E,EI) are the respective matrix elements 
of the atom's dipole moment operator. Equations (2) and (3) 
constitute an infinite system of ordinary linear differential 
equations: the parameter E assumes an infinite set of values. 
For brevity, on the right-hand side of Eq. (2) we have 
dropped the term proportional to a(t),  since this term can be 
taken into account trivially in our approach. 

The parameter p in the above equations has yet to be 
specified: we can, for instance, multiply p and divide g(E) 
by an arbitrary factor. We fix p in the following manner. Let 
us assume that 

We call the corresponding value of the parameter p the ef- 
fective Rabi parameter of our problem, and to obtain the 
dimensional value of R it must be multiplied by o. 

We seek a solution of Eqs. (2) and (3) that satisfies the 
initial conditions 

The information about the potential of the atom in our 
model is contained in the spectrum of the atom and the func- 
tions g(E) and P(E,El). Suppose that these functions sat- 
isfy the following conditions: 

We assume p B  1 and call such a laser field ultrastrong. We 
also assume that the functions g(E) and P(E,EI) are of 
order unity. This means that the moments of these functions 
that are not infinite and the parameter 0 and v are O(1). 
Mathematically this means that the initial parameters w (the 
frequency of the external radiation) and M (the ionization 
potential of the atoms) are quantities of the same order. From 
our assumption about the behavior of the functions g(E) and 
P(E,El) it follows that the "essential" part (from the stand- 
point of interaction with a level) lies near Ao,  where A is a 

quantity of order unity. This is an important condition, since 
it determines the relationship between the Rabi parameter 
and the structure of the atom and makes it possible to speak 
of an "effective width of the atomic spectrum." In practical 
terms, this quantity coincides in order of magnitude with the 
ionization potential M. 

As noted earlier, first we must develop a procedure for 
constructing the asymptotic solution of our problem for a 
model situation, i.e., we assume that 

These conditions imply that the integral operator P with the 
kernel P(E,EI)  is a Hilbert-Schmidt operatorI9 and has 
only a discrete spectrum. We call this operator the submatrix 
of the atom's dipole moment operator. The unrealistic as- 
sumption (6b) will enable us to avoid complications associ- 
ated with the structure of the spectrum of operator P. Then 
we will discuss in detail the structure of the spectrum of P 
for real atoms and the problem of extending the results to 
this case. Note that P is not of the atom dipole moment 
operator, although it is closely related to that operator. Sec- 
tion 6 is devoted to its description. 

Let us introduce a function E(E,x,t) in the following 
way. Assuming the initial condition (5) holds, we put 

Then, plugging (7) into (3), we obtain an equation for 
E(E,x,t): 

Using (8), we can reduce Eq. (2) to the following integro- 
differential equation: 

We have therefore reduced the problem of multiphoton 
ionization of an atom in an ultrastrong laser field to the prob- 
lem of finding the solution of the initial-value problem (lo), 
(4), (8), and (9). These equations contain a large parameter 
p, which suggests using an asymptotic procedure to find the 
solution. The main idea of our further reasoning, which is a 
modification of the approaches developed in Refs. 16 and 17, 
consists in the following. We perform an asymptotic expan- 
sion of the kernel of the integral operator on the right-hand 
side of Eq. (10) using the procedure of integrating by parts. 
To determine the leading term in the asymptotic expansion 
of the solution of our initial-value problem it is sufficient to 
construct the two leading terms in an approximation of the 
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integral operator on the right-hand side of Eq. (10). These 
approximations (which are integral operators) have a simple 
structure, which makes it possible to find the asymptotic be- 
havior of the solution of our initial-value problem. 

Note that the external laser field in our model can be 
modulated in an arbitrary manner. It may also contain sev- 
eral modulated harmonics with frequencies of the same or- 
der. Thus, we examine multiphoton processes outside the 
scope of the rotating wave approximation. 

In the next section we describe the procedure of per- 
forming the asymptotic expansion of the integral operator in 
the right-hand side of Eq. (10) and write a "truncated" equa- 
tion containing the two leading terms of this expansion. In 
Sec. 4 we construct the solution of the truncated equation. In 
Sec. 5 we show that stabilization of the atom in the model 
(6b) can be related to the spectral behavior of the operator 
P (eigenvalues). Section 6 is devoted to studying the opera- 
tor P for real atoms. There we find the spectrum of P and 
discuss its features. In the Conclusion we discuss the results. 
Note that if in our model the parameter p is small, we can 
use the regular perturbation theory approach of Ref. 20 to 
derive an asymptotic expansion of the solution up to any 
order in p. 

3. DERIVATION OF THE TRUNCATED EQUATION 

Following the terminology of Refs. 16 and 17, we say 
that a function is fast (slow) if differentiation raises (leaves 
unchanged) its asymptotic order. 

The procedure for constructing an asymptotic expansion 
of an integral of the product of a fast function and a slow 
function is well-known.'' One needs only to integrate by 
parts, shifting differentiation from the fast function to the 
slow. Properly modified, these ideas were used in Refs. 16 
and 17 to describe the dynamics of level-band and level- 
continuum systems in strong laser fields. However, the right- 
hand side of Eq. (10) contains the product of two fast func- 
tions in the integrand, a(x) and @(x,t); the fact that these 
functions are fast follows from Eqs. (10) and (8). Thus, as a 
result of integrating by parts and shifting the derivative from 
a(x) to @(x,t) we obtain terms of equal asymptotic order. 
Integrating by parts an infinite number of times leads to an 
infinite series of terms of the same asymptotic order. The 
main idea of our approach consists in the following. If we 
collect terms of the leading asymptotic order, we arrive at an 
integro-differential equation with an extremely simple struc- 
ture. Collecting terms of the next asymptotic order, which 
appear as a result of an infinite iteration of the integration- 
by-part procedure, we get a correction for the right-hand 
side, which is another integral operator with a kernel that can 
be calculated explicitly. These ideas make it possible to de- 
termine the leading terms in the asymptotic expansion of the 
solution of the initial-value problem. 

Here is an analogy with the ordinary WKB-expansion of 
the solution of an ordinary differential equation with a large 
parameter. The asymptotic behavior of the solution has the 
following structure 
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Our goal is to find the analogs of p l ( t )  and p2(t),  which 
together determine what we call the leading term in the as- 
ymptotic expansion of the solution, a solution to within a 
small correction term. 

In integrating by parts we will need to calculate quanti- 
ties of the form dk@(x,t)ldxk, k=O, 1, 2 ,... . Let us write 
Eqs. (8) and (9) in a more convenient form. Clearly, these 
equations are equivalent to the following equation: 

When combined with Eq. (1 l), this equation makes it pos- 
sible to effectively calculate the derivatives of @ (x, t). 

To illustrate the new procedure, we perform a double 
integration of Eq. (10) by parts. For brevity we introduce a 
new operator D as follows: 

If we now introduce a new variable, 

then 

Here we assume that 

From Eq. (13) it follows that 

Thus, according to (17), Eq. (10) can be written as 

Integrating by parts, we obtain 

Here we employed the fact that, as Eq. (16) implies, 
[D-'aI(0) = 0. Combining (1 1) and (12) we find 

@(t , t )=Gl= g 2 ( ~ ) d ~ .  I (19) 

Calculating ~3E(E,x,t)ldx by Eq. (12), we get 
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where 

4](E,x,r)= iEg(E)exp[- iE(r-x)], 

Using Eqs. (20) and (1 l), we can now calculate the integrand 
on the right-hand side of Eq. (18). Then, integrating the term 
containing P (E ,x ,  t) by parts in the resulting integral, we 
arrive at 

lot d%(x,t) 
+ [ ~ - ~ a l ( x )  dx d x ]  , 

We continue this procedure bearing in mind the following: 
(a) integration of a fast function lowers its asymptotic 

order; and 
(b) if a(x) is a fast function and q(x) and @(x) are slow 

functions, then 

As a result, collecting the two leading terms of the asymp- 
totic expansion of the integral operator on the right-hand side 
of Eq. (lo), we arrive at the following truncated equation: 

where 

Note that the above two terms are indeed two successive 
terms in the asymptotic expansion of the integral operator on 
the right-hand side of Eq. (10). The reason for this is that the 
second term, in comparison to the first, contains one more 
integration with respect to x ,  which lowers the asymptotic 
order. To solve the initial-value problem (lo), (4) it is suffi- 
cient to construct a solution of the truncated equation (21) 
that satisfies the condition (4). 

4. SOLVING THE TRUNCATED EQUATION 

We start with Eq. (21) in the leading term of the asymp- 
totic expansion, i.e., the equation 

Let us construct a solution of this equation that satisfies the 
condition a (0) = 1 . If according to (1 4) we shift to the vari- 
able p and integrate this equation once with allowance for 
the initial value, we arrive at a Volterra integral equation of 
the second kind, which has the form 

with D-I defined in (16). Here we will not write the kernel 
of the integral part of this equation explicitly. Instead we use 
the Laplace transformation and find i ( r ) ,  the Laplace trans- 
form of the function a (p)  (see Ref. 19): 

m 

Let us write this function in a more explicit form. Suppose 
that A, and pn(E) are the eigenvalues and normalized eigen- 
functions of the operator P ,  

[in view of Eq. (6b), P has a purely discrete spectrum]. The 
function P(E,E,) is symmetric, so that A,=Re A, ,  and the 
eigenfunctions form a orthonormal basis in the respective 
function space. We expand the function g(E) in these base 
functions: 

Then 
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Thus 

As a result we anive at the following expression: 

Let us now discuss the position of the singularities of the 
function ci(r). They coincide with the solutions of the equa- 
tion 

The operator P is (we have chosen this property 
exclusively to simplify matters), and all its eigenvalues are 
positive and converge to zero. We assume that they are in 
descending order. When r  varies from An+ to A,,  the sum 
on the right-hand side of the above equation decreases from 

2 
+m to -w, and this variation is monotonic since the gn are 
positive. Thus, each interval ( A n + ,  ,An) contains a single 
pole of the function ci(r) .  The function 2 ( r )  has two more 
poles: the rightmost pole is on the real axis to the right of all 
the eigenvalues A,,  and the leftmost pole is in the negative 
real axis. By ln we denote the successive poles of ci(r) in 
decreasing order of their value, and by K ,  the corresponding 
residues of ci(r) .  Inverting the Laplace transformation ac- 
cording to Ref. 19, we find 

Here the sum is over all the poles of ci(r) .  Returning to the 
original variables, we get 

This relationship describes the solution of Eq. (23) satisfying 
the condition a (0) = 1 . 

We seek the solution of Eq. (21) in the form 

Here the initial condition (4) is satisfied automatically. We 
introduce an equation for the function m n ( s )  by plugging 
(26) into Eq. (21). Now we can consider each exponential in 
(26) separately and assume that the functions m n ( s )  are 
slow: integration with respect to s lowers the asymptotic 
order of the fast term. We have 

Here Z ( p -  h )  is the kernel of the integral operator on the 
right-hand side of Eq. (23), and M ( x , t )  is the kernel of an- 
other integral operator, the second term on the right-hand 
side of Eq. (21). The following properties of Z ,  the operator 
with the kernel Z ( p  - h ) ,  are important: 

Integration by parts in the first integral on the right-hand side 
of Eq. (27) yields 

Plugging this expression into (27) and allowing for the fact 
that Rn(x )  is a fast function and m n ( t )  and q ( t )  are slow 
functions, we arrive at an equation for mn(x) :  

It is sufficient to calculate the integral on the right-hand side 
of Eq. (28) to the leading order of the asymptotic expansion, 
i.e., by dropping the term mn(x)  in the expression for 
Rn(x)  and ignoring the dependence on the slow variables in 
the integral operator M ( x , t ) .  Bearing all this in mind, we get 

The function V ( s )  is specified in the following manner. For 
s  with a large positive real part we define this function via a 
series: 

and for the other values of s  we use the result of analytic 
continuation of this function. Here Sk= O( 1 ), according to 
our initial assumptions about the functions g ( E )  and 
P ( E , E l ) .  From their definition it directly follows that the 
Sk are positive. The quantities 1 / 2 V ( l n )  are analogs of the 
high-frequency Stark shift. Their explicit expression in terms 
of the eigenvalues and eigenfunctions of the operator P  can 
easily be derived, and all their values can be shown to be 
finite. We, however, will avoid the tedious details. 

These results make it possible to write the final asymp- 
totic expression for the solution of Eq. (21) satisfying the 
initial condition (4): 
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This relationship describes the solution of the initial-value 
problem to within corrections in terms of the functions 
g ( E )  and P ( E , E l ) ,  i.e., in terms of the atomic potential. 

Let us briefly discuss the other terms in the asymptotic 
expansion of the solution of the initial-value problem. In 
order to construct these terms we must derive a truncated 
equation that is more refined than Eq. (21). If we continue to 
integrate the initial equation by parts, we finally get moments 
of the functions g ( E )  and P ( E , E I )  of orders higher than 
Sk, for instance, J E ~ ~ ~ ( E ) ~ E .  As the assumptions (6a) im- 
ply, such moments are infinite; in other words, a singularity 
appears, which we tentatively call a weak singularity of 
integro-differential equations with a large parameter. Within 
our model the problem of properly accounting for the corre- 
sponding terms appears to be extremely complicated. How- 
ever, in Ref. 16 the present author used a simpler model 
(one-photon decay of a level into the continuum without 
continuum-continuum transitions) and discussed this weak 
singularity. It was found that the presence of such a singu- 
larity leads to exponential decay of the average level popu- 
lation, the rate of this decay being of order p-2a .  Qualitative 
ideas suggest that within the scope of the rather general 
model under discussion here the results should be similar. 

Another feature of our problem that emerges in the next 
term of the asymptotic expansion has to do with the presence 
in our integro-differential equations of turning points, the 
zeros of the function q ( t ) .  (We assume that the function has 
only simple zeros.) A detailed study of this singularity re- 
quires further refinement of the truncated equation. However, 
it is possible to qualitatively estimate the contribution of the 
singularity on the basis of the results of Ref. 17, where the 
singularity was studied for the simplest situation, i.e., for a 
level-band system in a quasiresonant highly modulated field. 
There it was also found that the presence of such a singular- 
ity leads (in the general case) to an exponential decay of the 
average level population at a rate p- ' .  Qualitative reasoning 
suggests that with our model this phenomenon leads to simi- 
lar results. 

5. STABILIZATION OF AN ATOM IN AN ULTRASTRONG 
FIELD 

The result obtained in the present work and in Refs. 16 
and 17 suggest the following pattern of ionization of an atom 
in a ultrastrong field. The process consists of two parts, so to 
speak. First, the ultrastrong field initiates the formation of an 
electron wave packet described by Eq. (29). Because of the 
zeros in the function q ( t )  the wave packet is distorted and 
decays at a rate of order p-'. (For the simplest situation this 
distortion is described in Ref. 17.) We call this phenomenon 
"oscillations in the finite part of the spectrum." It is accom- 
panied by the transfer of excitations to a distant region of the 
spectrum (for the simplest case this situation is described in 
Ref. 16). This transfer of excitations leads to a decay in the 
population of the initially populated level at a rate of order 
O ( , J - ~ ~ ) .  

Let us show that our results provide a new explanation, 
differing from the one given in Ref. 18, for stabilization of 
an atom in an ultrastrong field and of the relation of this 
effect to the presence of singularities in the spectrum of the 

operator P .  Employing the solution (29), we calculate the 
population n ( t )  of the initially populated level of the atom. 
We get 

Since we have p 9  1,  when calculating the average of n ( t )  
over one period (which in our case is equal to unity), the 
second sum yields an asymptotically small contribution: the 
rapidly oscillating terms in the expression in braces "kill" 
the slowly varying terms. What is important here is that the 
l,, assume a discrete set of values. (If the function a ( ? )  were 
represented in the form of an integral with respect to the 
variable 5, the level population would stabilize at a value 
asymptotically close to zero.) We get 

Hence the average population of the initially populated level 
is time-independent in the leading term of the asymptotic 
expansion. To allow for decay of the average population of 
the level in the next order of the asymptotic expansion we 
must allow for transfer of excitations to a distant region of 
the spectrum. The results of Ref. 16 imply that the rate of 
excitation transfer to a distant region of the spectrum also 
decreases as p  increases. The physical reason for this is quite 
clear. Indeed, the Rabi parameter determines the range of 
states most effectively interacting with the initially populated 
level. As p  grows, these states move into the high-energy 
region and (in accordance with the asymptotic behavior of 
the matrix elements of the atom's dipole moment, the func- 
tions g ( E )  and P ( E , E I ) )  the interaction of the level and 
these states weakens. Together these two phenomena lead to 
stabilization of the atom. But why does an atom in an ultra- 
strong field becomes stabilized? The answer from the view- 
point of our approach is as follows. First, because the opera- 
tor P has a discrete spectrum (or, in general, spectral singu- 
larities), which constitutes a universal fact, as we will see 
shortly. Second, because an increase in the Rabi parameter 
leads to a slowing down in the transfer of excitations from 
the level to a distant region of the continuum. 

6. THE REAL ATOM 

Actually, the solution (25) or the more general solution 
(29) can be considered a representation of the solution of the 
initial-value problem in the form of an integral over the spec- 
trum of operator P. If conditions (6b) are met, the spectrum 
is discrete and the integrals are reduced to sums over contri- 
butions of eigenvalues. But what is the spectrum of P  for 
real atoms and can our results be applied to this case? The 
discussion of these topics given below is basically of a heu- 
ristic nature. 

If the spectrum of P  contains a continuous part, the so- 
lution (29) acquires an integral for this part of the spectrum. 
The asymptotic behavior of integrals of rapidly oscillating 
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functions implies2' that the contribution of the integral over 
the continuous part of the spectrum to the average population 
n ( t )  in this case is asymptotically small. For real atoms the 
kernel P(E,EI) has a strong singularity of the form 
S1(E - E l )  and the spectrum of P contains a continuous 
part. In addition, P may have spectral singularities (or even 
eigenvalues). We will now describe such features. The atom 
is assumed one-dimensional. 

We go back to the definition of the operator P. Here it is 
convenient to operate in the spatial representation. Let 
@o=lO) be the normalized wave function of the initially 
populated level. Let S be the projection operator on the one- 
dimensional space associated with this function. Then, ac- 
cording to our definitions, 

where x is the operator of multiplication by the variable x, 
and 1 is the identity operator. We wish to find the wave 
functions of the continuous spectrum of P. Such functions 
must satisfy the following equations: 

I *(a.x)*g(x)dx=O. 

Equation (32) immediately yields 

where - <p< m. Plugging this into (33) yields 

Clearly, the wave functions (34) satisfy the condition 

A special case emerges when 

In this case Eq. (32) becomes invalid. We call the solutions 
of Eq. (36) the spectral singularities of the operator P. 

Equation (36) is a transcendental equation and has roots 
(or apparently has roots) for almost all physically real atoms 
and all initial levels. Suppose, for instance, that the wave 
function $o(x) is symmetric with respect to the point x=O. 
Then Eq. (36) has the root p = O .  Thus, at certain points of 
the continuous spectrum the operator P may have spectral 
singularities. More than that, if we assume that the function 
+o(x) is symmetric and has a root at x=O, the function 
~ o ( ~ ) ~ - '  is a true eigenfunction of P with a zero eigen- 
value. As shown above in the example of a model atom, the 
presence of discrete eigenvalues of P leads to stabilization of 
the atom in a ultrastrong laser field. Note that for a one- 
dimensional symmetric atom with a realistic potential (which 
has a standard singularity at zero) the fact that $o(0)=O is 
always true. 

Of course, consistent generalization of the asymptotic 
technique developed on the basis of a model atom to the case 

of a real atom requires additional analytical research, includ- 
ing the derivation of formulas of the Parseval type for the set 
of functions (32) and (35). Here, apparently, it is natural to 
start immediately from relationships of the type (29). A 
study of the problems emerging in this connection lies out- 
side the scope of the present work. 

7. CONCLUSION 

We have attempted to give a consistent description of 
the dynamics of an atom in an ultrastrong laser field on the 
basis of asymptotic methods. The atom was examined in the 
quantum-optics representation. This allowed reducing the 
initial-value problem to a linear integro-differential equation, 
with the reduced amplitude of the external field acting as a 
large parameter. Thus, this apparatus (the asymptotic analy- 
sis of solutions of integro-differential equations with a large 
parameter) is extremely convenient for studying the dynam- 
ics of atomic systems in an ultrastrong laser field. Similar 
approaches can be developed for the case of a strong field, 
where the common approach to excluding the optical fre- 
quency is to use the resonance approximation. Note in this 
connection the similarity between the statements of the prob- 
lem and the results in Refs. 3 and 16. 

Here are the main results of the present work. For a 
model atom we derived the analytical solution of the prob- 
lem of multiphoton ionization of an atom in an ultrastrong 
laser field. We found that atom stabilization is related to the 
existence of spectral singularities in the submatrix of the di- 
pole moment operator of the atom (for the model atom sta- 
bilization is related to the discrete spectrum of the submatrix 
of the atom's dipole moment operator). Under physically 
natural assumptions about real atoms this submatrix always 
has spectral singularities in the continuous spectrum. Occa- 
sionally these singularities can even be eigenvalues. 

One more fact is worth mentioning. We assumed that the 
frequency o of the external field and the ionization potential 
M are quantities of the same order. This assumption, how- 
ever, is unnecessary in our approach. For instance, we can 
assume that o9 M, introduce a time scale via M, and repeat 
our calculations, only to find that the results are the same. A 
remark is in order here, however. Our results describe the 
asymptotic behavior of the solution over times of order 
p-2"max(~,w)-'; here it is assumed that reduction of p to 
dimensionless form is done via max(M,o). Hence for low 
o our relationships cannot be used to describe the behavior 
of the solution on times of order o-'. 

I would like to express my gratitude to V. S. Buldyrev 
and S. Yu. Slavyanov for their support and to the reviewer 
for valuable comments. 

'L. V. Keldysh, Zh. ~ k s ~ .  Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 
1307 (1965)l. 
'H. R. Reiss, Phys. Rev. A 22, 1786 (1980). 
3 ~ .  Gavrila and J. 2. Kaminskil. Phys. Rev. Lett. 52, 613 (1984). 
4 ~ .  V. Fedorov and A. E. Kazakov, Prog. Quantum Electron. 13, No. 1 
(1989). 
'M. Point and M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990). 
6 ~ .  L. Knight, M. A. Londer, and B. J. Dalton, Phys. Rep. 190, No. 1 

(1990). 
7 ~ .  A. Golovinskii and I. Yu. Kiyan, Usp. Fiz. Nauk 160, No. 6.97 (1990) 
[Sov. Phys. Usp. 33, 453 (I%)]. 

228 JETP 83 (2), August 1996 A. Ya. Kazakov 228 



'M. V. Fedomv, 7'heot-y of Intense Laser Light with Free Electrons, Har- 
wood Academic, New York (1991). 

9 ~ .  C. Kulander, K. J. Schafer, and J. L. Krause, Phys. Rev. Lett. 66,2601 
(1991). 

'ON. B. Delone and V. P. Kralnov, Usp. Fu. Nauk 161, No. 12,141 (1991) 
[Sov. Phys. Usp. 34, 1047 (1991)l. 

"J. H. Eberly, J. Javanainen, and K. Rzazewski, Phys. Rep. 204, No. 5,331 
(1991). 

1 2 ~ .  Raczinski and J. Zarennba, Phys. Rep. 235, No. 1 (1993). 
"K. Burnett, V. C. Reed, and P. L. Knight, J. Phys. B 26, 561 (1993). 
I'M. V. Fedorov, J. Phys. B 27,4145 (1994). 
I5E4. A. Volkova, A. M. Popov, and 0. V. Smimova, Zh. Eksp. Teor. Fiz. 

106, 1360 (1994) [JETP 79,736 (1994)l. 

229 JETP 83 (2), August 1996 

1 6 ~ .  Ya. Kazakov, Zh. Eksp. Teor. Fiz. lW, 1047 (1995) [JETF' 80, 586 
(1 995)l. 

"A. Ya. Kazakov, Zap. Nauch. Sem., St. Petersburg Branch of the V. A. 
Steklov Institute of Mathematics of the Russian Academy of Sciences 230 
(1995) [in Russian]. 

"N. B. Delone and V. P. Kralnov, Usp. Fiz. Nauk 165, 1295 (1995). 
"P. P. Zabreiko, A. I. Koshelev, and M. A. Krasnosel'skil Integral Equa- 

tions, Noordhoff, Leyden (1975). 
2 0 ~ .  H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York 

(1981). 
2'M. V. Fedoryuk, Asymptotic Expressions, Integrals and Series, Nauka, 

Moscow (1987) [in Russian]. 

Translated by Eugene Yankovsky 

A. Ya. Kazakov 229 


