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1. INTRODUCTION 

This paper discusses the production of massive vector 
bosons by ultrarelativistic fermions undergoing multipe elas- 
tic scattering in matter. 

It becomes necessary to study such questions when vari- 
ous processes are studied that occur in scattering media at 
high energies and that proceed via intermediate vector 
bosons. In particular, this relates to processes that take place 
during the collision of ultrarelativistic heavy ions. The 
source of information on the dense nuclear matter that ap- 
pears in this case is the photons and dileptonic pairs that are 
formed via intermediate vector bosons during particle scat- 
tering in a quark-gluon and in a hadronic gas.5 
The investigation of vector-boson formation in matter plays 
an important role when the strange degrees of freedom of a 
nuclear medium are The annihilation of K' me- 
sons during the collision of ultrarelativistic heavy ions is a 
process that proceeds via intermediate vector bosons. The 
study of the production of massive vector bosons is of gen- 
eral physical interest in connection with analyzing the pro- 
cesses whereby massive and massless vector fields are pro- 
duced in matter. 

This paper discusses the production of massive vector 
bosons by ultrarelativistic fermions experiencing multiple 
elastic collisions in a dense scattering medium. The cross 
section of the production process of such particles is found. 
The measured production cross section essentially depends 
not only on the characteristics of the scattering medium but 
also on the energy and mass of the generated boson. The 
production of "massive photons"9 in matter is studied in 
detail. 

2. FORMULATION OF THE PROBLEM: TRANSITION 
CURRENT 

Let us consider an ultrarelativistic (ESP)  particle with 
spin s = 112, which enters a semi-infinite (Z 3 0 )  amorphous 
scattering medium at time t=  0. Let the energy, momentum, 
and mass of the particle at time t = 0 equal e , po= poez, and 
p, respectively (e, is the unit vector in the z direction, and 
h = c =  1). 

The cross section for the creation of a vector boson in 
matter is determined by 

where JP is the transition current. 
In the most general form, the transition current JP can be 

represented as 

The following notation has been introduced into Eqs. (1) 
and (2): E, k, and m are the energy, momentum, and mass of 
the created boson; ep is its polarization vector; Ti(r , t )  is the 
fermion wave function; p p  and kp are the Cmomenta of the 
fermion and boson, respectively; yo, yp, and 9 are the 
Dirac mat rice^;^ ~ ~ ~ = ( 1 / 2 ) ( ~ ~ ~ ~ -  yVyp); d o k  is the solid 
angle in the direction of vector k; and a is the interaction 
constant. The functions F1, F2, F3,  F4, F5, and F6 are the 
fermion form factors. The variables of integration r and t are 
the time needed to create a boson and the instant at which it 
is emitted, and T is the total time the fermion moves in the 
scattering medium. We should point out that the wave func- 
tions of the initial state, q i ( r , t ) ,  and the final state, 
Ilrdr,t), of the fermion also depend on the position of the 
scattering centers in the substance. 

Because of the 4-transverseness of the boson 
(e ) ;kp=~) ,  the contribution of the last two terms (F5kB and 
F6kpf') of Eq. (2) to the cross section du(E,m) equals 
zero. Note that, to find the boson-production cross section, 
the matrix elements of the transition current 
u+(p2) y O ~ p ~ ( p , )  must be computed between the fermion 
states given by the bispinors u(p ,) and u(p2). Then, taking 
into account everything mentioned above relative to the 
terms F5kp and F6kpf' and using the Dirac equation, we 
can represent the transition current as 

where f l  =F, -2pF3,  f2=F2-2pF4,  and pf and pf are 
the four-momenta of a fermion in the states between which 
the transition current is computed. 
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3. PRODUCTION CROSS SECTION OF VECTOR BOSONS 

To compute the observable boson-production cross sec- 
tion dI;, we must average Eq. (1) over all possible positions 
of the scattering centers of the medi~m. '~- '~  To do this, we 
expand the functions in Eq. (1) in a complete set of plane 
waves? Then, neglecting mixing of the spin variables of the 
fermion as a consequence of the scattering of the latter in a 
material (which is valid for ultrarelativistic particles12), we 
cany out the summation and averaging over the correspond- 
ing spin states of the fermion and boson. As a result, we get 
from Eq. (1) 

where l ~ ( ~ , p ' ) 1 ~  is the square of the absolute value of the 
matrix element (averaged and summed over the spin states of 
the particles) of the boson-production operator ~ Z J P  by 
fermion current J ~ .  The function Fk(p,pl,t ,r)  is the Migdal 
distribution function for an ultrarelativistic fermion in a scat- 
tering medium.12 The square of the absolute value of the 
matrix element I M(p,pl) l2 and the function Fk(p,pf ,t, T) 
are given in explicit form in Appendix A [see Eqs. (A3) and 
(~411. 

Integrating in Eq. (4) over p, p' , and d o k  and using Eqs. 
(A3) and (A4), we get the production cross section of a mas- 
sive vector boson in a scattering medium: 

where a = E -  k+p2k/2po(po- k), b=[qkpol(Po- k)]'". 
The coefficients A, B, and C in Eq. (5) depend on the 

form factor Fi, as well as on the energy and mass of the 
fermion and the boson and have the following form 

The parameter q in Eqs. (5) and (6) is the mean square 
of the angle of multiple scattering of a particle per unit 
path.12 Equations (5) and (6) solve the problem of finding the 
cross section for creation of a vector boson by an ultrarela- 
tivistic fermion undergoing multiple elastic scattering in a 
substance by determining the desired value of dS(E,m)ldk 
in terms of the parameters that characterize the scattering 
medium (4, T), the original fermion (po, p ) ,  and the created 
boson (E, m). 

Next let us investigate the resulting production cross sec- 
tion dZldk in various regions of variation of the parameters 
of the problem. In the case of extremely small boson mo- 
menta, k4min{m;m2q-I}, m4po ,  letting k tend to zero in 
Eqs. (5) and (6), we get 
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It follows from Eq. (7) that, in the region of very small 
momenta of the emitted boson, the process of producing the 
latter is strongly suppressed, while the production cross sec- 
tion tends to zero according to the law d2Idk a k. 

However, if the relationship between the parameters of 
the problem is such that kern, m 4 p o ,  but kS-m21q, the 
production cross section is given by 

Thus, in the region of small k 9 m ,  as the boson momentum 
increases, the dependence of dXldk on k becomes more 
gradual, changing over from d8Idk cc k to d81dk a &. 

Let us examine the production cross section dXldk in 
the region of intermediate values of the boson momentum, 
when m 9  k 9 p o .  In this case, it is expedient to consider two 
cases: 

small E: 

and large E: 

(E is the energy of the created boson). 
If the energy of the created boson is such that 

the characteristic values of s in the integrals in Eq. (5) are 
large. Then, for such values of E and m 4 k 4 p o ,  we get from 
Eqs. (5) and (6) 

For m 9 k 9 p o  and ~ S - q [ ( r n l ~ ) ~ + ( p l ~ ~ ) ~ ] - ~ ,  how- 
ever, expanding the integrands in Eq. (5) for s 9  l ,  we find 

An analysis of Eqs. (9) and (10) shows that, when ul- 
trarelativistic (ES-m) bosons are emitted, the form of the 
production cross section is mainly determined by the value 
of the mean square of the angle of the multiple fermion scat- 
tering in matter. In this case, as the boson energy increases, 
the value of dZ(E,m)ldk begins to depend substantially on 
the ratio of the Lorentz factors of the boson and the fermion 
[see ~ q .  (911. 

In the region of extremely large boson momenta 
k--po- p ,  the production cross section is determined by the 
more general Eqs. (5) and (6). 

Next let us consider the case of boson production when 
there is a single collision of a fermion with a scattering cen- 
ter. This situation corresponds to the limiting transition 
q + 0 ,  q T= ( Oo) in Eqs. (5) and (6), where ( Oo) # 0 is the 
mean square of the single-scattering angle. In this case, for 
subsequent calculation of the boson-production cross section, 
it is necessary to take into account the effects that appear 
when a fermion passes through the boundary of the scatter- 
ing medium.13 To do this, the integration over the variable 
t in Eq. (4) should be extended to the region - T=S t S O .  

However, the structure of the terms that appear in this case is 
such that, for q+O and qT=(Oo), they cancel out, and the 
contribution to the boson-production cross section from the 
motion of the particle corresponding to integration over t 
from t = - T to t = 0 turns out to be identically equal to zero. 
Therefore, in the case of a single collision of a fermion with 
a scattering center, setting q+O and qT= ( Oo) in Eqs. (5) 
and (6),  we get 

for the boson-production cross section, where A, B, and C 
are determined by Eqs. (6). 

By comparing the resulting Eq. ( 1  1 )  with Eqs. (7) and 
( lo ) ,  we observe that they differ by the factor qT=N(Oo), 
where N is the number of scattering centers in the medium. 
Thus, for very small (k9min{m;m2q-i}, m 4 p o )  and ex- 
tremely large ( k  % m a ~ { ~ [ ( m l k ) ~  + (p/po)2]-2;m)) boson mo- 
menta, the production cross section is determined by single 
collisions of a fermion with the scattering centers of the sub- 
stance. This circumstance is associated with the fact that, for 
such k values, the boson coherence length14 lcoh is deter- 
mined by 

2 - 1  lcoh-A,= llm for k4midrn;m q }, m 9 p o ,  

1,- l ~ k ( ( m l k ) ~ +  for k % m a ~ { q [ ( m l k ) ~  

as well as by the fact that, at distances of the order of lCoh, 
the mean square of the angle of multiple fermion scattering 
in the medium qlCoh is small by comparison with ( 4 ~ ) ~ .  

218 JETP 83 (2), August 1996 A. V. Koshelkin 218 



4. SCATTERING OF "MASSIVE PHOTONS 

Let us consider the production of massive vector bosons 
by an electromagnetic fennion current (the massive photons 
of Ref. 9) in a scattering medium. An analysis of this prob- 
lem plays a paramount role in the study of the production 
processes of dileptonic pairs and photons during the collision 
of ultrarelativistic heavy ions, where the processes proceed 
via intermediate vector bosons produced as a consequence of 
the electromagnetic interaction of quarks in nuclear 
matter.'-4 In this case, the boson mass (m - 0.1 - 1 GeV) and 
the density of the substance (n - 0 3, where 0 - 0.1 - 1 GeV 
is the temperature of the scattering medium) are such that the 
parameter f l lb  [see Eq. (5)] can be either small n l b 9  1 
(multiple scattering of fermions in the medium is substantial) 
or large, Olb+ 1 (the effect of multiple scattering on boson 
production is negligible). 

Moreover, the study of the production of massive vector 
bosons as a consequence of the electromagnetic interaction 
of fermions in a scattering medium is of independent interest 
for the analysis of the effect of the mass (and, consequently, 
the third polarization) of the boson in the process of produc- 
ing vector particles in matter. 

Setting F 1 = l ,  F2=F3=F4=F5=F6=0  in Eqs. (6), 
we get 

for the coefficients A,  B, and C that appear in Eq. (5) for the 
boson-production cross section. 

In the case of extremely small momenta 
k9min{m;m2q-');m9po, we find from Eqs. ( 9 ,  (12), and 
(7) that 

It follows from the last expression that, for k-10, the 
boson-production cross section dZldk decreases in propor- 
tion to k: 

whereas, when actual photons are produced,'0-12 it increases 
with decreasing photon momentum as k+O: 

In this case, the ratio of the production cross sections of 
massive and actual photons has the following order of mag- 
ni tude: 

Thus, in the region of momenta k close to zero, for arbitrarily 
small but finite boson masses, we have 

with dZhldk being an increasing function of k, while 
dZphtldk is a decreasing function of k. 

In the case of sufficiently large boson momenta 
( k s m ) ,  we get from Eqs. (5) and (12) 

Xexp ( -- ?) s i r - -  ? l]] . 

The resulting Eq. (14) for the boson-production cross 
section substantially differs from the formulas found earlier4 
for dZ(E,m)ldk, in which the first term in braces in Eq. (14) 
is absent altogether. This is because, in Ref. 5, the boson- 
production cross section was computed with the same accu- 
racy as in Refs. 11 and 12, taking into account only the 
variations of the dispersion law of the created particles. 
However, this is not quite correct, since the presence of mass 
not only changes the dispersion law but also causes the ap- 
pearance of an additional third polarization in the generated 
bosons. The existence of the latter evidently implies the pres- 
ence of additional possibilities when bosons are produced, 
and, as a consequence, causes an additional term (by com- 
parison with the case of photon production'0-'2) to appear in 
the formula for the particle-production cross section. 

For boson momenta such that k%m, 
k% q[(ml k12 + ( p ~ p ~ ) ~ ]  -', by expanding the preexponen- 
tial factors in the expressions under the integrals in Eq. (14) 
in small s 9  1, we get 

It follows from Eq. (15) that, for large enough boson 
masses m+k(plpo), the production cross section (as in the 
case of small momenta) is an increasing function of k. 

On the other hand, as m+O, Eqs. (5) and (6) transform 
into the corresponding expressions for the photon-production 
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T- - -. -- 
lo4 lo4 lo-> lo-' lo-' loo 1 lo lo3 

k. MeV 

FIG. 1. Production cross section of massive bosons vs momentum in the 
case p,= 3.0X lo4 MeV, p=3.0X 1d MeV, q=3.0X lo4 sec-', and 
a= lo-'. 

cross section"v12 (which is associated with gradient invari- 
ance of the interaction of a fermion and a boson, when the 
latter is electromagnetic). However, the photon-production 
cross section (m = 0) is a strictly decreasing function of the 
momentum of the particle, while the boson-production cross 
section for large m increases with k. This means that the 
character of the momentum dependence of the production 
cross section of bosons substantially depends on the boson 
mass. Namely, as the boson mass increases, the dependence 
of dZ(E,m)ldk on k changes from decreasing to increasing, 
so that the cross section dZ(E ,m)ldk as a function of boson 
momentum should have an extremum for some intermediate 
m. Figure 1 shows the dependence of dZ(E,m)ldk on k for 
various values of the boson mass. 

5. CONCLUSION 

This paper has developed a theory for the production of 
massive vector bosons by ultrarelativistic fermions undergo- 
ing multiple elastic scattering in matter. The production cross 
section of such particles has been found. The resulting cross 
section substantially depends on not only the characteristics 
of the scattering medium but also on the parameters that 
characterize the initial and the created particles. It has been 
shown that the boson-production process is strongly inhib- 
ited in the region of small boson momenta 
k4min{m;m2q-1), m4po,  while the production cross section 
tends to zero as k-+O according to the law dZ(E,m)ldk 
mk. 

The production of massive photons by ultrarelativistic 
fermions in a scattering medium has been studied in detail. 
In the case of extremely small k9min{m;m2q-1), m4po ,  the 
resulting production cross section is a linearly increasing 
function of the boson momentum k, whereas 
dS(E,m) h,ldk decreases with increasing k according to a 
k- 112 law $0-12 . However, in the region of large k, the depen- 
dence of the production cross section on the boson momen- 
tum is determined by the relationship between all the param- 
eters of the problem (the energies and masses of the fermion 

and the boson and the mean square of the angle of multiple 
scattering per unit path), so that dZ(E,m)ldk can be either a 
decreasing or an increasing function of k or have an extre- 
mum (see Fig. 1). 

The author is grateful to D. N. Voskresenskil for discus- 
sion of the results. 

APPENDIX A 

The square of the absolute value of the matrix element is 
determined by 

IM(P,P')I~=~([~(P~)J~~(PI)I 

where u(pi) are the Dirac bispinors? pBv is the polarization 
density matrix of a massive boson? and the angle brackets 
denote averaging over all the spin states of the particles. The 
vectors pl,  p2, p3, and p4 are associated with vectors p, 
p' , and k by the relationships 

To compute lM(p,p')I2, it is necessary to transform 
from the Dirac bispinors u(pi) to ordinary two-component 
spinors. After this, neglecting mixing of the spin states of the 
fermions as a consequence of collisions in the medium 
(which is valid for ultrarelativistic particles'2), we average 
l ~ ( p , p ' ) 1 ~  over all the spin states of the particles. As a 
result, we get an expression for I M(p,pl) l 2  that is a combi- 
nation of the scalar products of the vectors pl ,  p2, p3, p4, and 
k of Eq. (A2): 

Let us consider the situation in which elastic scattering 
of the fermions takes place in the medium. Since elastic scat- 
tering of ultrarelativistic particles mainly occurs at small 
angles, it is convenient below to introduce angular vectors 
77,5, 0: 

Expanding the scalar products of vectors pl, p2, p3, p4, 
and k and all the coefficients in Eq. (A3) for ( ~ ( p , p ' ) l ~  in 
powers of I 771,151, I el, and ( P ~ P O ) ~  1, we get 

IM(P,P ')~~=A+B[(V- q2+(5 -  a 2 I + c ( ~ -  8)-(5- 

+DL(?/- 8)2-(5- q21, ( A 9  

where A, B, and C are defined by Eqs. (6). The coefficient 
D is not represented explicitly, since the contribution of the 
last term in Eq. (A5) in the boson production cross section 
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equals zero. 
Integrating Eq. (A5) with a distribution function 

Fk(p.pl,t ,r) ,  of the form'2 

exp( - g l q t )  a 
X 

r q t  r q  sinh ( a  r )  

we get the boson-production cross section determined by 
Eqs. (5) and (6). 
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