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We study collisions of two degenerate quark Fermi liquids and show that such processes initiate 
the formation of instabilities manifesting themselves in the propagation of growing 
oscillations related to the modes that exist in a Fermi liquid at rest. We believe that quark jets 
can be expected to appear in the direction of propagation of such oscillations. The 
instabilities we consider are similar to the beam instability in ordinary electron plasma. O 1996 
American Institute of Physics. [S 1063-776 1 (96)00308-31 

1. INTRODUCTION 

The quark structure of hadrons and, therefore, of nuclei 
suggests that the collision of two fast heavy nuclei, i.e., two 
quark systems, may initiate the formation of a new state of 
matter, a quark-gluon plasma.' Each of the two colliding 
quark systems can be considered a generalized Fermi liquid 
whose particles have a color degree of freedom in addition to 
the spin degree of freedom. In this approach the interaction 
between the particles of the quark liquid caused by gluon 
exchange is described by generalized Landau amplitudes, as 
is done in Landau's classical theory of a Fermi liquid. Thus, 
in studying the formation of a quark-gluon plasma resulting 
from the collision of two nuclei we arrive at a simpler prob- 
lem of the interaction of two droplets of a colored Fermi 
liquid in relative motion.') 

In the present paper we solve the problem in the nonrel- 
ativistic setting without taking the boundaries of the droplets 
into account, i.e., we consider the collision of two un- 
bounded colored Fermi liquids. The main conclusion we 
draw is that the interaction of the two Fermi liquids initiates 
the formation of a number of instabilities. These instabilities 
show up within certain ranges of angles with respect to the 
direction of the relative velocity as growing oscillations re- 
lated to waves that can exist in a quark-gluon plasma at rest. 
Among these waves are the modified Landau zero-point 
sound, modified spin waves, waves related to the excitation 
of the color degrees of freedom, and more complicated 
waves that result from a combination of these simple waves. 
The instabilities are similar to the familiar instability in an 
ordinary electron plasma when beams of charged particles 
are sent through the plasma.3s4 

We believe that one should expect quark jets in the di- 
rections along which the growing oscillations propagate. 

In the simplest case where the Landau amplitudes are 

liquid is described by a one-particle distribution function 
fi(x,p,t), where i denotes the spin, color, and species of the 
quark, x is the quark coordinate, and p is the quark momen- 
tum. 

Just as in a macroscopic theory the system Hamiltonian 
determines the dynamics of the particles, in the Landau 
theory of a Fermi liquid the energy density functional 80 
determined by a one-particle distribution function plays a 
similar role. With this functional we can introduce the en- 
ergy of quasiparticles, 

where d r = d p 1 ( 2 d ) ~ ,  which in turn determines the colli- 
sionless ( o r 9  1, where o is the frequency, and r is the 
relaxation time) kinetic equations for the distribution func- 
tion f i(x,p,t): 

Linearizing these equations near the equilibrium state 
foi(p), which is determined by the requirement that the en- 
tropy 

be at its maximum for fixed integrals of motion, and going 
over to the Fourier transforms of the deviations g i=  fi-- foi 

of the distribution functions from their equilibrium values, 
l.e., 

constant quantities not depending on momentum and the in- 
teraction between the plasmas is weak, the instabilities ap- we arrive at a linearized kinetic equation for gl,(o,k,p): 

pear in the range of angles 6, for which cos ~o>s/vo, where 
a, is the angle between the wave vector and the velocity (o-k?)g(o,k,p) 
vector vo of the moving droplet, and s is the speed of the 
corresponding zero-point sound (ordinary, spin, or color). 

Fij(p,pl)gi(o,k,p') =0, 
2. THE BASIC EQUATIONS 

To extend Landau's theory of a Fermi liquid5 to the case where the Landau amplitudes Fij(p,pl) are determined by 
of a colored Fermi liquid, we assume that the state of the the following formula: 
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Here Fik and F;lkt are the Landau amplitudes inside the first 
~ C ; ( P ) =  Z d ~ ' F i j ( ~ . ~ ~ ) a f j ( ~ ' ) ,  and second liquids, respectively, 

I 

These formulas belong to the case where only one Fenni 
liquid is considered. With two interacting Fermi liquids, 
which is what we are interested in, two distribution functions 
must be introduced, f i  and fit  (the quantum numbers j' refer 
to the second Fermi liquid). In order not to violate the Pauli 
principle we assume that the Fermi-liquid droplets consist of 
quarks of different species. But if the droplets consist of 
identical quarks, the system of two droplets must be de- 
scribed by a single distribution function. The latter case is 
discussed in Sec. 4. 

The energy density functional depends on f i  and f j l ,  i.e., 
g= &9(fi, fjl). Then the quasiparticle energies are 

The kinetics of the two Fermi liquids is described by the 
following system of equations: 

We denote the equilibrium distribution functions for the 
Fermi liquids at rest by fio(p) and fit0(p) and assume that 
prior to a collision the Fermi-liquid droplets were in an equi- 
librium state. Then in the situation when one Fermi liquid is 
at rest and the other is moving with a velocity vo, the equi- 
librium distribution functions are fio(p) and 
fi~o(p-mitvo), where mi is the mass of a particle of the 
jth species. 

Thus, the linearized kinetic equations for the colliding 
liquids assume the form 

and 

determines the Landau amplitude of the interaction between 
the liquids. (At Giit=O there is no interaction between the 
liquids.) 

The system of equations (1) and (2) makes it possible to 
determine the laws of dispersions of the coupled vibrations 
in the system of interacting Fermi liquids. 

3. SOLVING THE KINETIC EQUATIONS 

To find the solutions of the kinetic equations (1) and (2) 
we use the Landau model, according to which the interaction 
amplitudes F ik ,  Fitk,, and Giil are independent of the mo- 
menta p and p'. This assumption is equivalent to the require- 
ment that the interaction energy depend on the distribution 
function fi(p) only through the number densities pi of the 
droplet particles: 

where si(p) = p2/2m, and 

The Landau amplitudes for this case are 

Let us assume that the equilibrium distribution functions 
are "unsmeared" Fermi steps, so that 

Then assuming that 

& ( ~ ) = q i ( ~ ) a ( ~ i ( p ) - ~ i ) J ; ; ,  

~i~(p)=qi~(p-milvo)~(sil(P-milvo)-pil)~, 
Filk*(p,p1)~k~(w,k,p') 

where vi = $dr6(si(p) - pi) ,  with pi the chemical potential 
of the particles of the ith species, and substituting p+mvo 

+ C Gi~i(p,p1)gi(w,k,p') (2) for p in Eq. (2) we get 
i 
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By introducing the notation 

xi' = I d r  qi l (~)a(e i~(P)-p i l ) ,  

and 

we transform the integral equations (3) and (4) into the fol- 
lowing system of algebraic equations: 

where K.j= 6 F i j  and Kk= 6 G i k  are the dimension- 
less interaction amplitudes. 

The consistency condition for this system of equations 
leads to the dispersion equation. 

If we assume that the interaction between the quarks is 
invariant under spin and color transformations (the SU(2) 
and SU(3) groups), then the structure of the Landau ampli- 
tude for a quark liquid is 

.9-..=Fj0)+ ' I  11 uuF{+ hahfl:j+ u u h a h a F i j ,  

where e j ,  Fij, 9 ; j ,  and 9;; are the generalized Landau 
amplitudes, u stands for the Pauli matrices, and ha stands 
for the Gell-Mann matrices. Then Eqs. (7) and (8) contain 
one of the dimensionless amplitudes 6, F i j ,  F ; j ,  or 
Fi; depending on whether zero-point vibrations of the liq- 
uid density, spin density, color density, or spin-color density 
are considered. 

To simplify these equations we assume that one droplet 
consists of particles of one species and the other of particles 
of another species. Then the system of equations (7) and (8) 
becomes a system of the following two equations: 

where Fl and .!K2 are the Landau amplitudes for the first and 
second droplets, and F is the Landau amplitude describing 
the interaction of the droplets. The dispersion equation is 

Its solution is most easily found when F is small compared 
to Fl and ST2. Then in the zeroth approximation the 
dispersion equation assumes the form ( 1 - A F , )  
X ( 1 - BY2) = 0 .  Let as assume that Fl > 0. Then, accord- 
ing to Ref. 5, zero-point sound can propagate in the droplet 
at rest: 

where the dimensionless speed of sound 

is determined from the equation 

with v> 1. Now let us allow for the interaction between the 
liquids and set o = kv 1;1+ S in Eq. (12). This leads to the 
following expression for S: 

Generally S is a complex-valued quantity. Its imaginary part 
determines the damping (or growth) rate of the oscillations 

Clearly [see Elq. (31, 

According to Eq. (6), 

where 

with v F  and v; the Fermi velocities in the first (at rest) and 
second (incident) droplets. 

Damping corresponds to the condition Im S < O ,  or 
s > v o  cos a0. Growth corresponds to Im S>O, or 
s < v o  cos Go, where 4to is the angle between k and vo. The 
interval O<y < 1 corresponds to growth. 

The maximum value of the oscillation growth rate oc- 
curs for angles 6 0  at which the function Im BII 1 -BF2I2 
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reaches its maximum. Since this is a positive function that g2?i2 
vanishes at y = 0 and y = 1, the conditions for its maximum uo- 
is I P - P ' I ~ '  

d I m B  where p- p' is the momentum transfer, and g is a constant 
defined below. Assuming I p- p' 1 -pF , we can estimate the 
dimensionless Landau amplitude 9 at 

According to (6), the last equation can be written as 

where aS=g2/hc is the strong interaction constant, h, is the 

+- =0, O<y<l. (13) de Broglie wavelength of the quark, and a is the average 
4 

112y21 
separation of quarks in a quark droplet (a,-0.1 and 

This equation yields y as a function of F2. vF- 0.1~).  Using this estimate of the Landau amplitude and 

L~~ us first assume that y2 is small. F~~ y 2 < 0  (natural assuming that qualitatively the formula for the growth rate is 

zero-point sound vibrations do not propagate in the second to the case where are quantities of 

droplet), the solution of Eq. (13) is the same order, we arrive at the following estimate for the 
growth rate: 

"0 
y=-lv+-;.cos a0=1+.s2. 

"F 
(14) Im S -- 1. 

.SkuF 
But for F 2 > 0  (natural zero-point sound vibrations propa- 
gate in the second droplet), the solution of Eq. (13) becomes But if the amplitudes are small, 

"0 
y=-lv+-;-cos a 0 = l - 2  exp Im S 

"F 
-- 
.SkuF 

We see that the maximum growth rate is realized in the 
direction (in relation to the velocity of the incident Fermi Up to this point we have examined the case of small 

liquid) defined by the following condition: Landau amplitudes F. But what happens when F is large? 
Equation (11) shows that in this case the wave frequencies 
are large, too. Hence, expanding the functions A(v) and 

F2<0* B( v) in power series in l / v = k ~ ~ / o ,  we can write the dis- 
persion equation as 

"0 
(16) 377y=+F, y=-sv+-;cos 6 0 .  " F (19) 

In the region where F2 is large, Eq. (13) for finding the 
directions in which the growth rate is largest assumes the The solutions of this equation have the form 
form " 0 

I c o s a o r ~  s J-, 4 l q s i .  

(20) 

+,rr2y2(1 - y 2 ) = ~ ,  (I7) We see that instability develops in directions specified by the 
with y = - [v+ (U~/U;)COS a0, and O< y < 1. Since we have condition 
f(O)>O and f(1)<0, Eq. (17) always has a solution 
y =yo in the interval O<y < 1 (yo is a numerical constant). 
Thus, 

uo We conclude this section by studying the behavior in 
yo= - [v+ -;. cos 60, 

u F momentum space of the nonequilibrium distribution func- 
tions of two colliding quark droplets of different species. 

which implies that This clarifies the conditions for correlations to emerge be- 

"; tween the direction of propagation of the outgoing quarks 
cos 1Y~=-(l77+y~). (18) and the direction of the relative velocity vo of droplet mo- 

"0 tion. ' 

Estimating the growth rate requires estimating the Lan- Equations (1) and (2) suggest that for constant Landau 
dau amplitudes. To this end we assume that the Fourier amplitudes F,, F 2 ,  and 9 the deviations g,(o,k,p) and 
transform of the quark-quark interaction potential has the &(w,k,p) of the distribution functions from their equilib- 
form rium values are determined by the following equations: 
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which imply that the nonequilibrium distribution functions 
f(1,2)=fo(l,z)+g(l,2) can have a maxinlum if 

which can be written as 

where 6 is the angle between k  and v .  
The first condition cannot be satisfied because we have 

7 > 1, which corresponds to the propagation of zero-point 
sound vibrations in the droplet that is at rest. The condition 
in (23) cannot be met if 5 p - 1  holds, because in this case 
there can be no correlation between the direction of the quark 
momentum and that of vo, and the expected distribution of 
the outgoing quarks should be isotropic. 

Features of the distribution function of the moving drop- 
let in momentum space may emerge when 5 6 1 .  For 57 -1, 
the quark momentum p  is directed practically along the wave 
vector k  (here we have 641 and v F / v k <  I) .  In this case the 
direction of the quark momentum p  in relation to the beam 
velocity vo is determined by the angle 60 .  Therefore, along 
the direction specified by condition (16), where the growth 
rates of zero-point sound waves are at their maximum, we 
should expect quark jets to emerge as a result of heavy-ion 
collisions. 

For 57s  1, in spite the presence of such structure, we 
should expect a uniform distribution of the outgoing quarks, 
since the angles 6 and 6 0  are of the same order. 

4. THE DISPERSION EQUATION IN THE CASE OF IDENTICAL 
DROPLETS 

Up till now we have assumed that the droplets consist of 
quarks of different species. But, as noted earlier, if the drop- 
lets consist of particles of one species, we must use a single 
distribution function f (x ,p)  and one kinetic equation instead 
of two. Let us denote the equilibrium distribution function of 
the two droplets by fo (p) .  Then the Fourier transform 
g,,,(p) of the deviation of the distribution function f (x ,p)  
from the equilibrium value, g= f -  fo,  obeys the linearized 
kinetic equation 

When the Landau amplitude is constant, this equation yields 
a dispersion equation for determining the oscillations spec- 
trum of a quark liquid: 

Now let us discuss the problem of determining the equi- 
librium distribution function of two identical quark droplets. 
We assume that this function has the fonn 

where f l ) ( p )  is the distribution function of the quarks in the 
first droplet, and A 2 ) ( p )  is the distribution function of the 
quarks in the second (moving) droplet, with p + p 2 =  1 and 
OSpi<  1 ( i =  1,2). These conditions ensure 0 s  fo(p)< 1 
(the Pauli principle) if the functions f l )  and ff) lie between 
zero and unity. Here the particle number density 

can be written as n = n l p  + n2p2, where n and n2 are de- 
termined by the chemical potentials of the drops, ,uI and 
,u2, from the conditions 

Plugging (26) into the expression (25) for A ( o , k ) ,  we - 
obtain 

where the quantities A ( o , k )  and B ( w , k )  are given by for- 
mulas similar to (5) and (6): 

v o - k v  ' 

Thus, according to (24) and (27), the dispersion equation 
for the case of two colliding droplets consisting of quarks of 
one species assumes the form 

This equation can be analyzed for p 2 4 p l .  Then, taking Eq. 
(28) in covert order, 

we can find the spectrum of zero-point sound waves 
W =  kvF?], where the dimensionless speed of sound 7 can be 
determined from the equation 

Assuming that w = k v F 7 +  8 and performing the necessary 
calculations similar to those done in connection with Eq. 
(1 l), we find that 
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The condition Im 6>0, or s< v o  cos a,, corresponds to 
growth. 

In conclusion, we note that the present method of study- 
ing instabilities that develop in the collision of two degener- 
ate liquids can be applied not only to a quark-gluon plasma 
but also to other degenerate Fermi systems. 
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