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The problem of the development of a dissipative structure of spherical nuclei of a stable phase in 
a supersaturated solid solution is considered. On the initial stage, when all the nuclei have 
close dimensions, the obtained analytical solution indicates that the structure period monotonically 
decreases with time as llt, then as 114. The numerical calculation indicates that later a 
fraction of nuclei are dissolved, and a structure of growing spherical nuclei with a period tending 
to a constant emerges. O 1996 American Institute of Physics. [S 1063-7761 (96)02807-71 

1. INTRODUCTION 

The emergence of a dissipative structure during a phase 
transition in a solid was first reported by ~vans , '  who de- 
tected a superlattice of vacancy pores generated in molybde- 
num by 2-MeV nitrogen ions at a high temperature. The 
superlattice period was several hundred angstroms. Similar 
phenomena are observed in chemical reactions in s o ~ i d s . ~ - ~  
All these processes include growth of clusters (nuclei of a 
new phase, vacancy pores, etc.) due to absorption or evapo- 
ration of atoms or point defects on their surfaces. The con- 
centration of the supersaturated solution of atoms around 
each nucleus is not uniform (a "diffusion cloud" is formed). 
The overlap of diffusion clouds around different nuclei leads 
to the long-range diffusion interaction between 
Screening takes place in the ensemble of nuclei interacting 
through diffu~ion.~ In our previous publications879 we sug- 
gested that this dissipative interaction may be responsible for 
the emergence of the pore superlattice and determine its final 
configuration. 

The aim of this work was to go beyond the qualitative 
description of the process5-9 and develop a kinetic theory of 
the emergence and development of a structure in a supersatu- 
rated solid solution. We have considered as a specific ex- 
ample a system initially containing nuclei of a stable phase 
inside a sphere with a radius L. Section 2 reconsiders the 
equation system9 describing the kinetics of a pattern of nu- 
clei. In Sec. 3 we investigate using analytical techniques a 
linearized equation system applicable to a dissipative struc- 
ture on the initial stage, when dimensions of all nuclei are 
close to each other. We demonstrate that a structure with a 
gradually decreasing period is generated. In Sec. 4 the basic 
equation system is solved with due account of nonlinearity. 
The resulting quasi-stationary structure consists of spherical 
layers in which nuclei either evaporate and vanish or grow 
indefinitely. We have found that on the advanced stage the 
structure period is independent of time. 

where D is the diffusion coefficient of the dissolved material. 
We assume that the nuclei grow slowly, and the solvent dis- 
tribution in the space between clusters is quasi-steady: 

where r j  is the coordinate of the jth nucleus center and c ,  is 
the concentration far from the nuclei. Equations (2.1) and 
(2.2) yield an expression for the growth rate of the ith 
nucleus: 

The concentration near the nucleus surface is determined 
by the thermodynamic equilibrium conditions and is a func- 
tion of the surface curvature radius: 

where CT is the solvent concentration in equilibrium with a 
plane interface between the two phases, R T = 2 ~ o o l T  (a is 
the surface tension, oo is the volume per molecule of the 
stable phase, and T is the temperature). From Eq. (2.2) we 
derive 

where +i is the concentration "Coulomb field" at the point 
r i  generated by the system of growing nuclei with 
"charges" q : 

2. BASIC EQUATIONS Equations (2.4) and (2.6) are valid under the condition 
Following the generally accepted classic theory by Lif- a 4 R i 4 p i j .  

shitz and ~lezov," let us express the time derivative of the Let us consider a system of nuclei whose radius is a 
ith nucleus radius Ri in terms of diffusion of dissolved ma- continuous function of the coordinate r i .  In this case, the 
terial with a concentration c(r): discrete equations (2.3)-(2.6) can be replaced by differential 
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equations in which the nucleus dimension R, "charge" q ,  
and "field" 4 are continuous functions of the coordinate 
r: 

The step function O(R) is introduced to exclude those nuclei 
which have evaporated. In this equation system, we have 
introduced the dimensionless variables 

and the tilde sign is omitted. The parameter n, is the den- 
sity of nuclei. The factor 7 is 

If the system of nuclei is immersed in a supersaturated solu- 
tion (c,>c,), it is convenient to define R, as the critical 
nucleus dimension 

Then v =  1. If the nuclei are surrounded by saturated solu- 
tion (c,=cT), it is convenient to define R, as the average 
initial dimension of the nuclei and take 7=0 .  In what fol- 
lows, we take for definiteness 7;1= 1 (the nuclei are in a su- 
persaturated solution). 

The field 4( r )  describes the effect of the diffusion 
clouds of surrounding nuclei on the growth rate of a nucleus 
at the point r. The growing nuclei (q<O) reduce the solvent 
concentration and +(r) [Eq. (2.6)], therefore they reduce the 
growth rate at the point r by virtue of Eqs. (2.7) and (2.8). 
The effect of the evaporating nuclei has the opposite sign. 

In the next section we will demonstrate that the field q5 
leads to an instability in the uniform distribution of nuclei 
and to a development of a dissipative structure. 

3. EVOLUTION OF SPHERICALLY SYMMETRICAL SYSTEM 
OF NUCLEI IN LINEAR APPROXIMATION 

Let us consider the evolution of a system of nuclei 
whose dimensions at the initial moment are equal, R= 1, and 
whose density in a spherical region with a radius L 9  1 is 
constant. In such a system, all the parameters are functions 
only of the distance to the center of the sphere. Let us ex- 
press the field 4 as 

and instead of the three-dimensional Poisson equation (2.9) 
solve the one-dimensional equation 

with the boundary conditions 

The first condition is obvious, the second derives from the 
continuity of 4 and d4 ld r  on the boundary r =  L and the 
condition 

Let us investigate the initial stage of the evolution by 
linearizing Eqs. (2.7) and (2.8) with respect to small devia- 
tions of the parameters from the steady state described by the 
conditions go = 0, Ro = 1 , and 4o = 1 - v. Substituting into 
Eqs. (2.7)-(2.9) the expressions 

we obtain the sought linear equation system: 

This equation system can be simplified by taking the initial 
conditions 

Let us assume for definiteness that a> 1. In this case all 
the processes occur near the system boundary (x+L), and 
instead of Eq. (3.6) we can take the equation system with 
constant coefficients: 

These equations indicate that the initial uniform distribu- 
tion of nuclei is unstable. After substituting the wave func- 
tion exp@t+ikx) into Eq. (3.8), we easily obtain 

If the field x in Eq. (3.8) is omitted, we obtain instead of 
Eq. (3.9) the growth increment independent of the wave vec- 
tor (p = 1). In this case, perturbations of all wavelengths 
grow at equal rates, and no periodic structure can emerge. If 
the field x is included, the long-wave perturbations (kc: 1) 
grow slower than short-wave ones (k> 1 ) . Hence the result- 
ing structure should have a period A approximately equal to 
unity, or in dimensional units [see Eq. (2.10)] 

This result was reported in Refs. 8 and 9. 
Let us consider the effect of nonspherical perturbations. 

Let us expand the initial perturbation in terms of spherical 
harmonics: 
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Then the equation system (2.7)-(2.9) splits into the sub- 
systems 

Let the amplitudes &(r,O), as well as the conditions in Eq. 
(3.7), be nonzero only near the system boundary r = L. Then 
the "centrifugal energy" in the last equation of the system 
(3.12) can be replaced with the constant 1(1+ 1)/L2. Then 
instead of Eq. (3.9) we obtain the following equation for the 
growth increment plm of the lm harmonic: 

This means that the harmonics with small angular momenta 
(I+,!,) grow at the same rate as the spherically symmetrical 
perturbation. Hence the ratio of the amplitudes of the spheri- 
cal and nonspherical perturbations remains constant on the 
linear stage of the evolution. On the nonlinear stage the har- 
monics are not separated, and a layered structure with spheri- 
cal interfaces between them is produced. Thus, the non- 
spherical perturbations do not have a great impact on the 
system evolution. 

~ s u a l l ~ ' ~  the spectrum of the instability exponent has a 
maximum at some ko, and the period of the dissipative struc- 
ture is determined by the position of this maximum 
( A  - Ilko) irrespective of the initial perturbation. In our case, 
all the waves with ka 1 grow at the same rate, hence the 
shape of the resulting dissipative structure is largely con- 
trolled by both boundary and initial conditions. The effect of 
the initial condition (3.7) can be illustrated by a particular 
solution of Eq. (3.8): 

But this solution does not satisfy the boundary condition in 
Eq. (3.3): 

Below we will see that the "mirror reflection" from the 
boundary x=O leads to a layered structure. But let us first 
discuss the application domain of the linearized equation 
system (3.8). 

According to Eq. (3.14), the perturbations are small at 
t+ t , , where 

If the initial perturbation amplitude IC[ is sufficiently small, 
the time t ,  is sufficiently long that a complex dissipative 
structure can develope in the linear stage of the evolution. 

Let us use the Laplace transform to study this structure: 

Equation (3.8) takes the form 

P ~ ( P , X ) -  ~ o ( x ) =  - ~ ( P , X ) = ~ ( P J )  +x(P,x), (3.18) 

where /3 is defined as 

Equation (3.19) is solved with the boundary conditions 

The particular solution of Eq. (3.19) is the Laplace transform 
of the functions defined by Eq. (3.14): 

~ N ( P )  ' P ~ ~ N ( P ) .  (3.22) 

In order to satisfy the boundary conditions (3.21), we 
must add to the functions in Eq. (3.22) the homogeneous 
solution 

The evolution of the nucleus structure is described by the 
inverse Laplace transform 

At small times, O <  t+ 1, and large coordinates, x% I ,  
the region of large increments ( p  1% 1 makes the largest con- 
tribution. In this region 

and the function in Eq. (3.23) is expressed as 

where Jo is the Bessel function. 
We can see than even after a short time a periodic struc- 

ture with a period 
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2 

1 
FIG. 1 .  Evolution of a spherically symmetrical system 
of nuclei. The system parameters are L=20 ,  
C= -0.001. At the moment r=24, three layers free 
from nuclei are seen. 

0 

x- l l t ,  (3.29) 

and an amplitude exponentially decreasing with the distance 
from the boundary is generated. 

After a longer time, 1 e t e t , ,  the structure of the 
nucleus system is determined by the asymptotics of the func- 
tions in Eq. (3.26). Let us shift, as is usually done, the inte- 
gration path to the left in order to bypass the pole at pa and 
the cut along the segment ( 0 , l ) .  The comparison between 
Eqs. (3.23)-(3.25) and Eq. (3.22) demonstrates that the con- 
tribution to the full solutions 

described by Eq. (3.7), the linearized equation system (3.8) 
cannot be applied, and the nonlinear equation system (2.7)- 
(2.9) must be analyzed using numerical techniques. 

4. COMPUTER SIMULATION OF THE SYSTEM EVOLUTION 

In order to find a numerical solution of the equation 
system (2.3)-(2.6), let us transform it to the integro- 
differential form. In dimensionless variables, Eq. (2.10) takes 
the form 

--. -. 

due to the pole at pa is zero since j?(pa)= a. Around the 
segment (0,1),  where p = u + i v ,  O < u < l ,  and 1 ~ 1 ~ 1 ,  we q i  
have 

q + ~ , J w ~ C  - = I - R .  
j # i  ' i j  

B= &IVI - i sign(u)l 
Let us replace the sum in Eq. (4.2) with an integral and 

(3 .31)  transform it using the spherical symmetry. Then we obtain 
the nonuniform Fredholm equation of second kind for the 

and the integral in Eq. (3.26) is reduced to the integral over flux q: 
the segment of the unit length: 

r L 
q r  j 0  q ( r f ) % ( r r , t ) d r 1 =  1 R r t )  (4.3) 

(3.32) 
- - 

with the kernel X ( r , r l ) :  
At t>> 1, most of this integral is the contribution due to the 
integration over the region near the upper limit. By taking r 1  r + r l - l r - r l /  

% ( r , r l , t ) = R ( r , t )  - 
r 2 

8 [ R ( r 1 ) ] .  (4.4) 
u = 1 - z2 ,  O < z 4  1 ,  we obtain, for example, 

where lc= 3 ( 2 t ~ ~ ) " ~ / 4 .  One can see that after a longer time 
the structure scale changes with time as 

and the perturbation front ( p = f )  propagates from the 
boundary to the center at a constant speed ( x  t ) .  At times 
beyond the limit defined by Eq. (3.16) or from the start of the 
process if the initial condition is more complex than that 

At the initial moment of time t = O ,  the nucleus radius 
Ro was defined as a function of the distance to the sphere 
center r ,  i.e., Ro(r ) .  Then Eq. (4.3) was solved and the flux 
q ( r )  was determined. The technique for solving the Fred- 
holm equation is described in Ref. 11. The function R ( r , t )  
on the next time layer was derived from the flux using Eq. 
(4.1). The step function is introduced to take into account the 
fact that some nuclei evaporate on the nonlinear stage of the 
evolution. 

Figure 1 shows the function R ( r , t )  calculated at 
~ = 2 0 ,  C =  - lop4, and a= 10. You can see that by the time 
t = 2 4  three shells with growing nuclei separated by gaps 
where the nuclei have evaporated have developed. The for- 
mation of the fourth shell has started. Note that after evapo- 
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FIG. 2. Characteristic dimensions of the structure vs reciprocal time at 
different initial conditions. The dashed lines correspond to C =  -0.1, the 
solid lines to C =  - 0.0001; L= 35. 

ration of nuclei in the gaps, the positions of the growing 
shells are steady. The numerical solution yields the structure 
period defined by Eq. (3.10): A=6(41rn,,,R,)-"~. 

The structure evolution as a function of the initial con- 
ditions (3.7) was studied by tracing the positions of zeros of 
the function q(r,t). Figure 2 shows the positions of the first 
two zeros of this function versus reciprocal time at the initial 
perturbation amplitude C = - 0.1 (dashed lines) and 
C =  -0.0001 (solid lines). The parameter L in this calcula- 
tion was 35. One can see that on the initial stage, when the 
linear approximation (3.6) applies, the structure period 
changes proportionally to llt, according to Eq. (3.29), the 
positions of zeros being independent of the initial perturba- 
tion amplitude, as follows from Eq. (3.26). The calculations 
deviate from this curve in the nonlinear region, in this case, 
when the first gap free from nuclei is formed. 

Figure 3 shows the evolution of the structure at L=35 
and C =  -0.0001. Given the small amplitude of the initial 
perturbation, the positions of four zeros of the function 
q(r,t)  can be traced. The curves are rectilinear throughout 
the studied time interval. The slope of the nth line is propor- 
tional to the square of the nth root of the zero-order Bessel 
function, as follows from Eq. (3.29). 

To sum up, we have proposed a theory describing the 
formation of a modulated structure from nuclei of a new 
phase. The stratification of the growing system of new phase 
nuclei is caused by diffusion among nuclei on the stage of 
their evaporation and growth. As a result of the overlap of 

FIG. 3. Characteristic dimensions of the structure vs reciprocal time at a 
small initial perturbation. The system parameters are L = 35, C =  - 0.0001. 
The graph indicates that at a small perturbation the relation x Ilt is valid. 

diffusion clouds, the growing (supercritical) nuclei accelerate 
the evaporation of subcritical nuclei at a distance of the order 
of the screening radius A. The resulting wave of the growth 
and evaporation rates leads to the formation of a layered 
structure in the distribution of nuclei. 
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