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The influence of the mean helicity on the turbulence spectra in a stratified incompressible fluid 
and a compressible nonentropic gas is considered. The helicity is taken into account by 
analyzing the transformation properties of a Hopf-like equation for a characteristic functional. It 
is shown that a self-similar region with cascade transfer of the helicity over the energy 
spectrum, i.e., a region of helical scaling that can be observed in natural and laboratory 
experiments, forms in the large-scale region. An E k-713 energy spectrum and an arbitrary two- 
point semi-invariant are obtained in the asymptotic limit. An analog of the Corrsin-Obukhov 
spectrum is obtained in the helical case. A quasisound energy spectrum is obtained in the 
compressible case for an arbitrary adiabatic exponent and transforms into an E k-3 
spectrum in the shock-wave limit. O 1996 American Institute of Physics. 
[S 1063-776 1(96)02707-21 

1. INTRODUCTION 

The concept of helical scaling, i.e., the possibility of the 
self-similar cascade transfer of a helicity flux over the spec- 
trum, was first introduced in Ref. 1. The following two basic 
scenarios were analyzed in that work from h e  standpoint of 
the dimensionality method: a) the simultaneous transfer of 
energy and helicity with constant fluxes over the spectra of 
both parameters; b) a constant helicity flux determining the 
energy distribution. The authors considered such a possibil- 
ity to be highly speculative and unlikely under real condi- 
tions. This was due to a lack of sources for generating helic- 
ity. 

However, several observations of an energy 
spectrum in the mesoscale region?-4 which can be unequivo- 
cally associated with a helicity flux, appeared 20 years later. 
Generally, an EakW5l3 spectrum is observed in the small- 
scale region. On the other hand, E X  k7I3 is often observed in 
the small-scale region in magnetohydrodynamic t~rbulence.~ 
It can be confidently stated that there is a broad class of 
effects that generate both helicity itself and large helicity 
fluctuations under terrestrial and astrophysical conditions. In 
particular, the simultaneous presence of such factors as den- 
sity and temperature gradients, large temperature fluctua- 
tions, shearing flows, and nonuniform rotation is sufficient. 
We note that helicity can also be generated at moderate lati- 
tudes. 

Investigations of large-scale helical structures in a non- 
conducting continuous medium have been actively pursued 
during the last 12 years. It was shown in Ref. 5 that the 
coherent generation of a mean velocity (V) (the averaging is 
generally performed over a chaotic ensemble) with 
(V) .(V x(V))  # O  is possible in a compressible medium 
with small-scale helical turbulence V' when 
(V1).(V x(V1)) # 0, i.e., the mean helicity of the small-scale 
velocity field is nonzero. It subsequently became understood 
that the generation of a mean field (V) is also possible in an 
incompressible medium, if additional conditions hold when 
the mean helicity of the field Vt is nonzero. The set of these 

additional conditions (convective or shearing flow and an 
appreciable number of impurities in the medium; see, for 
example, Ref. 6) restricts the applicability of this important 
model. On the other hand, the requirement of nonzero mean 
helicity for a small-scale field V' is typical of terrestrial con- 
ditions, since rotation and even weak temperature-density 
stratification is sufficient for satisfying it (see, for example, 
Ref. 6). However, for the reasons just stated, large-scale he- 
licity (i.e., a typhoon-like cyclone) develops in the tropics, 
regions of strongly inhomogeneous flows, and areas with a 
large number of impurities. Therefore, for example, while 
satisfactorily explaining such a phenomenon as a tropical 
cyclone?* the model of helical turbulence cannot lead to the 
generation of a large-scale vortex under average terrestrial 
conditions because of the quasi-inhomogeneity of the atmo- 
sphere, i.e., the fluctuations in (V) that appear decay with 
time. Does this mean that the role of the helicity is negligible 
in such systems? No, it does not. First, only the possibility of 
long-wavelength instability was considered for the genera- 
tion of the mean velocity (V), and nothing was said about 
the behavior of the higher moments in the large-scale region. 
Second, the properties of the turbulence itself should vary 
strongly in the presence of chaotic screw motions. 'The 
present paper is devoted to an examination of the latter ques- 
tion. 

The influence of helicity is obvious from a physical 
standpoint. It is sufficient to note that two helical vortices 
with strong axial motion in one direction have a tendency to 
merge because of the Bernoulli effect. In other words, helic- 
ity results in redistribution of the chaotic energy; a helicity 
flux that characterizes the variation of the mean helicity 
(Vt-(V xVt))  also appears. The importance of such an ex- 
amination of the role of helicity can be seen from the follow- 
ing remarks. We stress again that there is actually a mean 
nonzero helicity in any region of the geophysical environ- 
ment. This, in turn, means that the variations are geographi- 
cally universal. Furthermore, not only the movement of heat, 
but also the profile of its surface must be noted. For example, 
it is to be expected that helical properties will be manifested 
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more strongly over a hilly terrestrial surface than over flat 
relief. 

Above all, helicity has an effect on the spectral features 
of turbulence. However, the correlation characteristics are 
subject to strong variation. Not only the asymptotes in r 
space, but also the relations between their moments vary. 

As for the spectra, variations occur in incompressible, 
compressible, and stratified turbulent media, as we shall see 
below. For example, the tendency inherent in helical media, 
i.e., energy transfer to the long-wavelength region (due to the 
tendency of helical vortices to merge) is maintained in a 
compressible medium (with consideration of the discontinui- 
ties). Furthermore, helicity has a significant influence on the 
buoyancy range and the corresponding characteristic scales 
in a stratified medium. We now proceed to investigate the 
problem at hand. 

2. TURBULENT HELICAL SCALING IN A STRATIFIED 
MEDIUM 

Stratification has a significant influence on the dynamics 
of turbulence and leads to qualitative differences from a ho- 
mogeneous medium. In an unstratified medium the Kolmo- 
gorov energy spectrum ~ a k - ~ ' ~ ,  which is obtained theoreti- 
cally using the experimentally confirmed hypothesis of self- 
similarity and locality, has been verified over a broad range 
of wave numbers k. 

The determination of the transformation properties of the 
equation for a characteristic functional with respect to scal- 
ing transformations made it possible to establish a similarity 
theory in unstratified and stratified media, which makes it 
possible to find the exact form of turbulence spectra without 
invoking dimensionality arguments, either in the inertial 
range or in the buoyancy range?'' and furthermore with 
consideration of the existing anisotropy of the directions, 
which is usually very difficult to take into account when the 
dimensionality method is used. Below we analyze the influ- 
ence of helicity on the spectra in a temperature-stratified me- 
dium. 

In this context we recall several assumptions of the work 
in Refs. 9 and 10. We consider the equations of motion, 
continuity, and heat conduction with external random forces 
in the Boussinesq approximation: 

where the u i  are the components of the velocity field, p' and 
8 are the deviations of the pressure and the temperature from 
their equilibrium values, v is the kinematic viscosity, ,y is the 
thermal diffusivity, g p  is the buoyancy parameter, d T / d z  is 
the mean constant temperature gradient, and e is the unit 
vector in the vertical direction, i.e., e= (0,0,1). The turbulent 
kinetic energy and the temperature pulsations are maintained 

by the external forces fi(x, t) and q(x, t), which we assume 
to be Gaussian, uniform, and delta-correlated in time with 
zero mean values: 

The statistical properties of the velocity and temperature 
fields are described by the characteristic functional 

where yi(x) and z(x) are arbitrary smooth functions. The 
averaging is carried out over the probability distribution of 
the external forces. 

It follows from the continuity condition that 

where i+b is an arbitrary function whose gradient tends rapidly 
to zero at infinity. Differentiating (2.7) with respect to time 
and taking into account the equations of motion (2.1)-(2.3), 
we obtain 

Here Di and D o  are the variational differentiation operators 

and f is the source describing the influence of external forces 
on the fluid: 

We assume that the forces start to act at time t=O, and 
that at t =  0 the fluid is assumed to be at rest: 

Equation (2.9) with the initial condition (2.1 1) is 
Cauchy's problem for the characteristic functional in a tem- 
perature stratified medium. 

Equation (2.9) for Gaussian forces that are delta- 
correlated in time can be closed. The source j can then be 
expressed in terms of @: 
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After averaging the energy balance equation of the fluid and 
the square of the temperature inhomogeneity, we obtain 

External random pumping of the helicity leads to an addi- 
tional equilibrium condition 

where 

The left-hand sides of Eqs. (2.13)-(2.15) can be expressed in 
terms of the corresponding correlators of the external forces 
according to the Furutsu-Novikov equation," yielding 

where E= ~ ( ( d u ~ l d x ~ ) ~ )  is the mean energy dissipation rate, 
C(0) = (f-(V x f)) specifies the helicity pumping on the 
source scale, f= v((dui ldxj)(dwi /axj)) is the mean helic- 
ity dissipation rate, N =  X((deldxj)2) is the dissipation rate 
of the temperature inhomogeneities, and gP(eu,) is the 
mean work of the buoyancy force in the turbulent displace- 
ments of elements of the fluid. 

We note one important consequence. We turn our atten- 
tion to the equilibrium condition for the helicity flow. It is 
clear that in the stratified fluid the buoyancy force can serve 
as a source of helicity. Attention was focused on this circum- 
stance already in Refs. 12-14 (in the nonturbulent case). An 
additional source is not needed to generate helicity; intensity 
temperature fluctuations suffice. This occurs, in particular, in 
regions of intense vapor condensation and wherever the tur- 
bulent region has initial angular momentum, which always 
appears under the action of shearing flows and the Coriolis 
force. 

Equation (2.9) with the source (2.12) and the initial con- 
dition (2.11) are invariant under the following group of 
transformations: 

where L is the external turbulence scale, LT is the tempera- 
ture scale, and a, y, and 6 are arbitrary parameters 
(0 < a< a ,  y, S< a ) .  The transformation (2.19) performs the 
transition to new measurement scales of the physical quanti- 
ties. The uniqueness of the solution of the Cauchy problem 
for Eq. (2.9) leads to the similarity theorem 

Unlike the similarity hypothesis, Eq. (2.20) is exact. 
We restrict ourselves below to consideration of 

stationary turbulence spectra for the scales 1- '9 k* L - I ,  

where L is the external turbulence scale, and 1 is a certain 
internal scale that specifies the upper boundary of the 
dissipation range. It can be shown that 1 
= max{2 /4 (~  -114,X3/4(~ - li4). 

Investigations of helical turbulence have shown that 
there is a boundary scale 

that separates the inertial range into two regions. The K.ol- 
mogorov spectrum ~ a k - ~ ' ~  is observed on scales k > l i l ,  
and an ~ a k - ~ / ~  spectrum is observed on scales k<lh l  
(Refs. 2-4). This scale is of the order of 7 km for mesoscale 
atmospheric turbulence in pretyphoon ~ituations.~ 

Let us consider the special case of a vanishing tempera- 
ture gradient in the medium, i.e., dTlaz = 0. We consider the 
kinetic energy spectrum 

where dS(k) is an area element of the surface of sphere 
(k(= k. Going over in (2.22) to the functional that depends 
on the primed variables and setting a= k, we obtain 

It follows from the arbitrariness of y and S that dEldy==O 
and dEldS=O. From the condition dEldS=O we obtain the 
equation 

where 
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TABLE I. 
- 

Helical scaling Kolmogorov scaling 

whose solution is 

From the condition dE/dy= we obtain the equation 

The solution of this and the analogous equations provides 
spectra of the energy and the square of the temperature fluc- 
tuations, as well as a mixed spectrum of the temperature and 
the vertical component of the velocity. We present the results 
in Table I. The third column contains the classical (nonheli- 
cal) values of the spectra.'' In the case of helical turbulence, 
we have the characteristic scale 

--5 3 L,=V N (gp)6=fh( fh /~B0)4 ,  which is an analog ofthe 
Bolgiano-Obukhov scale, whose classical value is 
LBO = 214(gp) - 3 1 2 ~ ~ 3 1 4  . Here and in the following we ne- 

glect the influence of viscosity on the spectra, since we are 
considering turbulent motion on the scales k< 1; ' 4 1- ' . The 
E d k )  a k-4/3 spectrum is the analog of the Corrsin- 
Obukhov spectrum in the helical range. The exponent - 513 
is replaced by - 4/3. This "anomalous" exponent should be 
a clear indicator of a helicity cascade. 

No assumptions regarding the nature of the transfer of 
energy over the spectrum were used to obtain the spectrum. 
In the absence of a gravitational force that causes stratifica- 
tion, the spectra from Table I should be converted into the 
usual expressions for locally isotropic turbulence. When 
gp--tO, the scale L,-+O, i.e., 

An E k-713 spectrum is obtained under the additional hy- 
pothesis that the asymptotic expansion (2.24) in klh* 1 ex- 
ists. When k lhS  1, but k l 4  1, the assumption that 
* - - ~ ( k l ~ ) ~ "  transforms (2.24) into E(k)= c ~ i ~ k - ~ ' ~ .  

Using a similar procedure, we can easily obtain the ex- 
pression for a two-point semi-invariant of arbitrary rank, 

which has the following form in the helical subrange: 

where O i l ,  , . . ,in(r/r) is the angular part of the spectral ten- 
sor. In particular, an exact relation has been obtainedI5 for 
the isotropic part of the third-rank semi-invariant, as in the 
inertial range, so that the antisymmetric part of the correla- 
tion tensor has the form 

When k 4 ~ ; ;  the energy in this range is utilized to 
oppose the buoyant forces, and the spectrum is determined 
mainly by g p ,  N, and dfidz. The temperature gradient de- 
termines one more characteristic scale 

which characterizes the minimum size of the inhomogene- 
ities in which the influence of the characteristics of the av- 
eraged temperature field becomes significant. Under real 
conditions LBO is always smaller than L:', , and in the range 
of scales L B k- ' B LBO we observed the Bolgiano- 
Obukhov spectrum1' with the density 

It would also be interesting to investigate behavior in the 
absence of temperature fluctuations. This corresponds, in 
particular, to dry cyclones. In the buoyancy range 
(k-'sL,) it is already necessary to take into account the 
anisotropy of the problem, which expands the group of scal- 
ing transformations. The anisotropy also makes the station- 
ary state corresponding to the determination of the corre- 
sponding group of scaling transformations that leave the 
Hopf equation invariant possible only when horizontal and 
vertical components with different transformation laws can 
be separated in the energy and helicity dissipation fields. We 
then obtain the following group: 

A similarity theorem that permits determination of the aniso- 
tropic spectral characteristics follows from (2.29). The ab- 
sence of a dependence of the spectrum on the arbitrary pa- 
rameters y, p, and S leads to a spectral density of the form 

195 JETP 83 (I), July 1996 S. S. Moiseev and 0. G. Chkhetiani 195 



which corresponds to the Lumley-Shur ~pectrurn.'~ In (2.30) 
we have introduced scales that characterize the minimum 
size of the inhomogeneities in which the effects of buoyancy 
and the gradient of the mean temperature are significant: 

It is noteworthy that there is no intermediate spectral range 
similar to the Bolgiano-Obukhov range observed in the ab- 
sence of an independent source of temperature fluctuations. 
There are two ranges: a Kolmogorov (helical) range with 
E(k)m k-'I3 (k-7t3) and a Lumley-Shur range with E(k) 
~ k - ~ .  

Thus, when there is a helicity flux in a stratified medium, 
spectral differences are observed in the range 
1,4k-'4LB0. In the buoyancy range both energy dissipa- 
tion and helicity dissipation have little influence on the form 
of the turbulence spectra, but in the absence of a source of 
temperature fluctuations they specify a characteristic scale 
that distinguishes different spectral ranges. 

3. TURBULENT HELICAL SCALING IN A COMPRESSIBLE 
MEDIUM 

Let us consider the turbulence spectra in the presence of 
a helicity flux in a compressible medium. In an ideal nonen- 
tropic gas, as in the incompressible case, the helicity is in- 
variant. Various relations have been obtained for turbulent 
scaling, depending on the physical suppositions. Zakharov 
and sagdeev16 showed that in the case of a weak deviation of 
the sound dispersion law from a linear dependence and a 
weak level of excitation, the universal turbulence spectrum 
in the inertial range is proportional to k-3". Kadomtsev and 
Petviashvili noted17 that under a linear sound dispersion law 
the spectrum is specified by shock waves, i.e., discontinuities 
in the density of the medium, and is proportional to k-2. 

At the same time, an evaluation of the characteristic 
times for the formation of a shock wave and the transfer of 
energy over the spectrum, which prevents the formation of 
shock waves, shows that they are of the same order," so that 
the form of the spectrum in a compressible medium remains 
not entirely clear. In fact, acoustic, vortical, and entropic 
modes coexist and interact with one another in a compress- 
ible medium. Since sound energy can be converted into heat, 
it was theorized by Moiseev et ~ l . ~ , ' ~  that compressibility 
plays the role of a kinetic energy sink, along with viscosity 
and thermal conductivity. An analysis of the group of scaling 
transformations of the corresponding equation for a charac- 
teristic functional made it possible to obtain an energy spec- 
trum in the form 

where po is the density of the fluid in the unperturbed state, 
Co is the velocity of sound at po,  and y is the adiabatic 
exponent. The spectrum transformed into ~ m k - ~ ,  i.e., a 
shock-wave spectrum, when y-+ 1 and into the Kolmogorov 
spectrum of an incompressible fluid Em kPy3 when y t w .  It 
was noted in Ref. 20 that the exponent of the density in the 

spectrum (3.1) was improperly defined, which precludes a 
fully correct transition to the Kolmogorov spectrum 
~ m k - " ~ .  shivamoggi20 corrected the error by invoking the 
Zakharov-Sagdeev hypothesis regarding the kinetic energy 
density in acoustic turbulence for this purpose. Below we 
show, in particular, that the correct exponent of the density 
was potentially present in Ref. 9, but was omitted in the final 
stage. 

We next investigate helical scaling in a compressible 
medium. We consider the spectral characteristics in the range 
of k space where the dissipation coefficients and, therefore, 
the variation of the entropy with time can be neglected. As in 
Ref. 19 we consider a model equation of state 

In this case the variation of the entropy is a third-order term, 
and the flux can be considered nonentropic when the qua- 
dratic effects are considered. The basic system of equations 
in this case contains the Navier-Stokes equation and the 
continuity equation: 

Here F is a random force that excites turbulence, and 5 and 
5 are the first and second viscosities. The statistical proper- 
ties of the fluid and the random force can be described by the 
characteristic functional 

where yi(x) and yp(x) are smooth arbitrary functions. The 
averaging is carried out over the distribution probability of 
the external forces. Differentiating (3.5) with respect to time 
and taking the equation of motion into account, we obtain 

Here Di and D, are the variational differentiation operators 

and j is a source that describes the influence of the external 
forces on the fluid: 
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We assume that the forces start to act at time t=O and that 
the fluid is at rest and has a uniform density distribution at 
t=O. A closed description of the statistical properties of the 
fluid in terms of the functional @ is possible only when the 
source can be expressed in terms of @. As was shown in 
Refs. 9 and 11, this is possible, in particular, if the random 
force can be represented in the form 

where g(x,t) has a Gaussian distribution law and is delta- 
correlated with respect to the time: 

The use of the Fumtsu-Novikov equation makes it possible 
to obtain an expression for the source and to close Eq. (3.6): 

Other methods of perturbing a compressible fluid that lead to 
nonlocal energy transfer that depends on density correlations 
at the turbulence scales were also discussed in Ref. 9. 

When turbulence is excited by random Gaussian accel- 
eration, which corresponds to a relatively low pumping level, 
the characteristic functional satisfies Eq. (3.6) with the 
source (3.10) and the initial condition of a fluid at rest at 
t=O: 

Let us consider the invariance properties of the Cauchy prob- 
lem for the functional @. The constant A. = 1 '- YC; would 
seem to make the group of scaling transformations a three- 
parameter group. Equation (3.6) with the source (3.10) is 
invariant under the following group of transformations: 

where L is the correlation scale of the external exciting force. 
Here E is the energy dissipation in a compressible fluid, and 
77. is the helicity dissipation in a compressible fluid normal- 
ized to the density of the fluid, so that as in the case of an 
impressible fluid, the ratio F//17 specifies the scale that di- 
vides the Kolmogorov range into two subranges. The simi- 
larity theorem is formulated as invariance relative to the 
group of transformations (3.12). We require that 
a2B+ - V)C, 1, i.e., 

This enables us to eliminate the velocity of sound from the 
nonlinear terms in the Navier-Stokes equation during renor- 
malization of the source and sink and corresponds to acoustic 
mechanisms of energy and helicity dissipation. Then the 
renormalization of the energy and helicity dissipation (and 
the viscosity coefficients, which we shall not write out be- 
low) returns us once again to a two-parameter group of scal- 
ing transformations: 

,*=p, 'y l l (~- I )~21(~-~)-  
0 8, 

a L =  L', ~ r - ( B + ~ ) ~ ( x ) =  yl(x'), 

The transformation (3.13) transfers us to new measure- 
ment scales for the parameters. The uniqueness of the solu- 
tion of the Cauchy problem for Eq. (3.6) leads to the simi- 
larity theorem 

Unlike similarity hypotheses, (3.14) is an exact relation. Let 
us examine the correlation function 

Its spectral density can be expressed in terms of @: 

where dS(k) is an area element of the surface of the sphere 
I kl = k. It can be shown that 

E(k,t)dk. I," 
Transforming in (3.16) to a functional that depends on the 
primed variables and setting a= k, we have 

It follows from the arbitrariness of P that dEldp= 0, whence 
we obtain the following spectrum in the helical range: 

When F was renormalized in Refs. 9 and 19, the factors 
proportional to the density and the adiabatic exponent were 
omitted, and a totally incorrect result was consequently ob- 
tained. To determine the form of the spectrum we need an 
additional hypothesis regarding the asymptotic behavior of 
W in the range lh9k - ' 4L .  The locality hypothesis allows 
us to replace W by its asymptote. 
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We note that in the limit y~ 1 the spectrum that we 
obtained becomes 

where e is the base of the natural logarithms. The form of the 
spectrum suggests that the shock sink weakens in the helical 
case. When we move over to the Kolmogorov range, is 
specified by the leading term in the asymptotic behavior at 
klhBq, and we obtain 

In the limit of an incompressible fluid ( Y A W )  we have 

The hypothesis that compressibility can serve as a sink 
for turbulent motions leaves only two parameters in the 
group of scaling transformations of the equation for the char- 
acteristic functional, making it possible to obtain spectral 
dependences both in the Kolmogorov range and in the helical 
range. This hypothesis was confirmed by an analysis of the 
turbulence of drift waves2' 

4. CONCLUSIONS 

Thus, the mechanism that generate the mean helicity 
lead to a second cascade range in addition to the Kolmog- 
orov range in the system. The constant that does not depend 
on the scale of the helicity here is its flux. Nevertheless, note 
that this requirement, like the requirement that the energy 
flux be constant in the Kolmogorov range, is not inflexible. 
The spectral exponents can be obtained for an arbitrary trans- 
formation group parameter /I, while the requirements that the 
fluxes be constant hold only for fixed values of P (Ref. 21). 
The spectral characteristics undergo significant changes, 
which are associated, as we understand, with at least a partial 
reverse cascade into the large-scale region. 
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