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Correlated states with a regular dimeric structure of oriented valence bonds are studied for the 
2D Hubbard model, which gives a single-band representation of the Cu02 plane in a high- 
T, superconductor. The correlated state is constructed by subjecting an uncorrelated state to local 
unitary transformations and then minimizing the energy with respect to a transformation 
parameter. An analog of the order parameter for describing valence-bond structures by mean- 
field methods with arbitrary doping is thereby introduced for the first time. A phase 
diagram is obtained for two types of states aligned along the bonds, viz., a spiral spin state and a 
valence-bond structure. The region of compatibility with antiferromagnetic ordering of the 
spins is found. The characteristic features of the excitation spectrum and the form of the Fermi 
boundary in the correlated system are discussed, in particular, in light of the observed 
photoelectron spectra of high-T, superconductor single crystals. O 1996 American Institute of 
Physics. [S 1063-7761 (96)02607-81 

I. INTRODUCTION 

Exhaustive reviews describing the current state of the 
theory of electron correlations in high-T, superconductors 
were given in Refs. 1 and 2. The creation of a microscopic 
theory of high-T, superconductors requires knowledge of the 
electronic structure near the Fenni surface. Prospects in this 
area are tied to recent measurements of high-resolution 
angle-resolved photoelectron spectra (ARPES) of single 
crystals of lanthanum, yttrium, and bismuth ceramics (see 
Refs. 3-6 and the literature cited in Refs. 1 and 3). The main 
features of these photoelectron spectra include the small 
width of the bands in comparison to the calculated values, 
the presence of flat portions of the bands near the points 
M = ( 0 , ~ )  and (n,O), the characteristic nesting correspond- 
ing to quasimomentum near Q = ( ~ , T )  for 
Bi2Sr2CaC~208+6, and the gap below the flat band in 
Nd2-,Ce,Cu04. It would be natural to ask to what extent 
these features are due to electron correlations, and whether 
there are real electronic structures of a strongly correlated 2D 
system that could be responsible for the observed spectra. 

Among the hypothetical structures of the effective 
single-band Hubbard which models the Cu02 
plane in a high-Tc superconductor, spin-density waves," spi- 
ral spin states of various ~~rnmetry , '~ . '~  domain  wall^,'^,'^ 
and various mixed stated5 have been investigated. It would 
be interesting to extend these investigations to states with 
regular dimeric valence-bond structures and to discuss the 
possible experimental manifestations of such states. Valence- 
bond states were first introduced by ~nderson . '~  An analog 
of the order parameter for valence-bond states, which would 
permit the application of the mean-field methods that are so 
convenient for studying doped systems, however, was not 
proposed. The wave function of an essentially correlated 
state with dimeric valence-bond structures was constructed 
for the undoped 2D Hubbard model (n = 1) in Ukrainskii's 
w o ~ k . ' ~ , ' ~  

Our goal is to extend the description of such structures to 

doped systems, to investigate their stability, their compatibil- 
ity with antiferromagnetic order and the form of the Fermi 
surface, and the possible manifestations of such structures in 
photoelectron spectra. A state with a regular dimeric 
valence-bond structure is constructed using local unitary 
transformations of the Hamiltonian with subsequent treat- 
ment of the effective problem by the mean-field method. The 
possibility of an exact calculation of the energy and minimi- 
zation with respect to a transformation parameter (which is 
similar to minimization with respect to the incommensurate 
quasimomentum of spiral states) is important. In the present 
work we study dimeric structures of only one symmetry with 
valence bonds of one orientation. 

Due to the small differences between the energies of the 
different hypothetical electronic structures of the correlated 
states, the realization of only one of them in a high-Tc su- 
perconductor is doubtful. However, the distinct observation 
of the Fermi surface and the bands, i.e., characteristics which 
are very sensitive to the structure of a correlated state, in 
ARPES and other experiments employing single crystals 
calls for serious consideration of the feasability of a particu- 
lar structure and a discussion of its observable consequence. 

2. USE OF LOCAL UNITARY TRANSFORMATIONS TO 
CONSTRUCT DlMERlC VALENCE-BOND STRUCTURES 

We illustrate the idea of constructing such structures on 
a complex consisting of two centers with the orbits a and 
b and the parameters U and t for one-center repulsion and 
hopping. We consider a state with two holes in the complex. 
When Ult> 1, localization of each hole on a center and thus 
a decrease in the weight of the two-hole site configurations 
in comparison to their weight in the Hartree-Fock state can 
be achieved in two ways. One, which is widely known, is to 
transform to an antiferromagnetic function of the generalized 
Hartree-Fock method with different orbits for different spin 
projections. The other is to rotate in the basis of singlet states 
of the complex: 
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FIG. 1.  Valence-bond structure calculated in the present work. 

- - 
q , , = l f ; f ~ ) t q = l c o s  af;fi+- sin a$$). (1) 

Here 

f,= (a,+ b,)/ 6 and Tu= (a,- b,)l 6 (2) 

correspond to bonding and antibonding orbits (for t < 0). 
We now consider the 2D Hubbard model on a square 

lattice 

The "internal structure" of the site states and the parameters 
of the effective single-band model are presently well under- 
stood and can be accurately evaluated using several 
cluster models of the CuO, plane in high-T, 
s ~ ~ e r c o n d u c t o r s ? ~ ' ~ ~ ~ ~ ~ ~ ~  For us it is significant that the new 
single-band problem is still strongly correlated ( Ult > 1 ) . 
Our goal is to take these correlations into account. 

A very pretty function of a correlated state, in which the 
role of the orbits f and ?of the nonoverlapping complexes is 
played by Wannier orbits centered midway between the at- 
oms comprising the dimer, was constructed for the undoped 
case (n = 1 ) in Refs. 17 and 18. The structure of the dimers 
under consideration is shown in Fig. 1. However, the func- 
tion from Refs. 17 and 18 was not generalized to doped 
systems. In addition, because of the small number of varia- 
tional parameters, it corresponded to a higher energy than 
did the antiferromagnetic function of the standard general- 
ized Hartree-Fock method. 

To construct a general (n # 1 ) correlated state with the 
dimeric valence-bond structure shown in Fig. 1, we use the 
variational method of local unitary transformations 
(previously'9~20 applied to the single-band model of the 
Cu0, plane). 

The wave function of the correlated state can be rep- 
resented as the result of a unitary transformation of the un- 
correlated wave function of the Hartree-Fock approximation 
or the generalized Hartree-Fock method: 

Here each of the local unitary operators W n  is assigned to the 
nth cluster {a, ,b,}, which includes two nearest-neighbor 

lattice sites (Fig. 1). The operators W, preserve the number 
of particles and the spin projection onto the cluster, and com- 
mute with one another. 

Then the problem (3), with Hamiltonian H in the basis 
of correlated states q, is equivalent to the problem with the 
transformed Hamiltonian 

in the basis of uncorrelated one-determinant functions. Un- 
like Gutzwiller's nonunitary local transformation?' for (5) 
we can find an explicit expression of fi in terms of the Fermi 
operators of the system and perform an accurate, albeit cum- 
bersome, calculation of the energy for the Hartree-Fock 
functions @. 

An arbitrary unitary operator W, can be expressed in 
terms of the even Hubbard operators of the two-site complex 
{a, ,b,}. To choose the form of W, we take into account the 
following. Consideration of the correlations in the Hubbard 
model is most necessary for a mean number of particles per 
site n-- 1 or a mean number of particles in a cluster 
na+ nb=2, since in the limit n -+O or n+2 the Hartree- 
Fock approximation is exact. Therefore, we choose W, as 
the unitary rotation operator of the basis of only the singlet 
two-hole components of the cluster: 

Then W, can be written in the form 

Here the ~ $ 1 ~ ~  are the Hubbard operators in the basis of the 
states (6). 

Thus, W, is completely defined by the (as yet arbitrary) 
unitary matrix S i j .  The choice of the latter is suggested by 
the transformation (I), which is effected by the operator 

It is not difficult to see that in the representation (7) this 
operator corresponds to the unitary matrix 

c,= cos a, C+=(COS a+: 1)/2, [= sin a 1 6 .  
Expressions for several Hubbard operators in terms of a,, 
and b,, are given in the Appendix. 

We find an explicit expression for the Hamiltonian (5) of 
the new effective problem: 
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The summation is carried out only over the even n 
(n,+ ny = 2m) labeling the clusters. - - - 

Each of the transformed operators h,, a,, or b, as- 
signed to the nth cluster can be expressed explicitly in terms 
of the Hubbard operators of a two-site cluster in the basis of 
singlet two-hole components (6) and the one- and three-hole 
cluster functions 

Specifically 

- 
The expression for b,, is analogous to (16) with the replace- 
ments a+b and xa+xb. 

The quantities h!i,2j, x$$, , and x Y ~ ~ ? , , ~ ,  presented in 
the Appendix are the coefficients in the expansion of the 
original operators h, , a,, , and b,, in the Hubbard operators 
in the basis of the cluster functions (6), (13), and (14), and 
are equal to the corresponding matrix elements of these op- 
erators. 

Substituting the expressions (Al), (A2), etc. for the Hub- 
bard operators into (15) and (16) and then into (10)-(12), we 
obtain the final explicit expression for the complete trans- 
formed Hamiltonian in terms of the Fermi operators of the 
system. In particular, h, is expressed in terms of the even 
operators (Al), and the intercluster contributions to (10) can 
be rewritten in the form 

Here the operators q and Q referring to cluster n(m) are 

ab- ba +- + 
Pns - (Pns ) -ansbns 

The coefficients ga(b) can be recovered from (16) and (A2)- 
('46). 

As a result, we can accurately calculate the mean energy 

for the correlated state 9 constructed from the arbitrary un- 
correlated (one-determinant) function @. More specifically, 

(H) can be expressed explicitly in terms of one-electron av- 
erages (cLc, , )~ over @. The minimization of (H) with 
respect to @ for a given transformation parameter cu is ac- 
complished - by self-consistently solving the linearized prob- 
lem ( H ~ ) .  Subsequent minimization with respect to cu deter- 
mines the degree of stability of the structures involved in the 
transformation with alternation of the singlet pairing force in 
the bonds. 

3. LINEARIZATION SCHEME AND PROPERTIES OF SELF- 
CONSISTENT SOLUTIONS 

We describe the solution scheme for the valence-bond 
structure shown in Fig. 1. 

The state with antiferromagnetic ordering of the spins in 
the sublattices {a,) and {b,) corresponds to the one- 
determinant function @ of the generalized Hartree-Fock ap- 
proximation. At the same time, when cu is nonzero, the trans- 
formation W ( a )  introduces some inequivalence into the 
intracluster and intercluster bonds (a,b, and b,a,+,), - 
l=e,2ey, 2ex in the new problem H. As a result, with con- 
sideration of the symmetry in the most general case, the 
mean energy H= (H) depends on 11 real quantities: 

These are combinations of one-electron averages over the 
state 0: 

~ i - ~ i = ( b ~ u a m u ) a = ( b T , - u a m , - u ) ~  - 
Here l u = - a / l a I = 7 1  and m=n+l i ,  where li=(O,O), 
(1,1), or (2,O) for i=0,  1, and 2. The parameter Po=O was 
not included in (19). 

From the explicit dependence H(y ,) we find the linear- 
ized Hamiltonian 

XCOS kxlx cos kYIY, (23) 

1 v;=- dH C - sin kxlx cos kyly. 
4 v = 1  dPv 

186 JETP 83 (I), July 1996 A. A. Ovchinnikov and M. Ya. Ovchinnikova 186 



In the expressions under the summation sign 
l=l(v)=(l,,l,)=(O,O), (1,1), or (2,O) for v=O, 1, and 2, 
and the quasimomentum runs through values in half of the 
Brillouin zone of the original square lattice. 

The solution of the linearized problem for a fixed num- 
ber of particles makes it possible to calculate the averages 
(20) and thereby complete the self-consistent calculation pro- 
cedure. Here the eigenfunctions and eigenenergies hk equal 

These correspond to the upper and lower Hubbard bands. 
The two subbands are preserved even in the absence of an- 
tiferromagnetic order because of the alternation of the singlet 
pairing force. In the absence of an interaction (U = 0), the 
solution with a = 0, q5k = 0, and 19~ = - kx/2 naturally coin- 
cides with the accurate Hartree-Fock solution for this case. 

For an undoped system (n = 1 ), ,the complete solution 
= W@ is an analog of the solution constructed in Refs. 17 

and 18. Apart from the form, there are three more differ- 
ences. 

1) Our solution is also valid for a doped system and not 
just for n =  1, as in Refs. 17 and 18. 

2) The one-electron spectrum of the linearized effective 
problem EL reflects the excitation spectrum of the correlated 
system for states with a regular dimeric valence-bond struc- 
ture (see below). 

3) The solutions for n = 1 differ with respect to the num- 
ber of variational parameters. 

In our treatment, the variational parameters are the c P ~  
and ak for each k, and the self-consistent calculation proce- 
dure is simply minimization with respect to them and then 
with respect to a. At the same time, the solution in Refs. 17 
and 18 is characterized by only three variational parameters: 
(bo (instead of the + k ) ,  the parameter A in the rigorous de- 
pendence a k =  Akx/2, and an analog of a ,  i.e., the mixing 
parameter of the components of the singlet functions in the 
hole localization mechanism (I). Therefore, the energy of the 
undoped Hubbard model is lower in our method than in Refs. 
17 and 18. 

4. EXCITED STATES OF THE CORRELATED SYSTEM 

The question of excited states has a direct bearing on the 
interpretation of photoelectron spectra. 

In the new effective problem of H(a )  treated in the 
independent-particle approximation (in the Hartree-Fock 
method or the generalized Hartree-Fock method), hole- and 
electron-type Fermi excitations with quasimomentum k and 
spin projection a for n 3 1 are given by the expressions 

where X +  ( x )  creates a hole (electron) in the upper (A = 2) 
or lower (A= 1) Hubbard subbands for unoccupied (or oc- 
cupied) orbits A k in the ground-state function. When n> 1, 
the latter equals 

The band states of the hole representation are solutions of the 
linearized effective problem, and the product in (28) is taken 
over occupied orbits within the Fermi boundary. 

Because of the unitary nature of the transformation, the 
correlated states 

with different occupation numbers of the orbits xXk in q are 
correlated states with the excitation of m quasiparticles. They 
are normalized and orthogonal to one another and to the 
ground state q0= W a o .  As in the simple Hartree-Fock ap- 
proximation, the energies of the singly excited correlated 
states (29) are eigenvalues of the original Hamiltonian H to - - 
within second-order terms in V= H(a)  - HL(a), since 

The first-order contribution in V to the excitation energy van- 
ishes as a consequence of the self-consistent procedure for 
constructing the Hartree-Fock solution @,. 

We note that the quasiparticles in (29) are "dressed." 
The operators X k a =  W + ~ : ~ ( , W ,  which play the role of the 
creation operators of an elementary excitation, also reflect 
many-particle effects in the correlated state. This can be seen 
from their explicit expression 

in terms of the many-fennion operators (18). 
Thus, we now have a unique opportunity to describe 

both the ground and excited correlation states in the tradi- 
tional language of the population of one-electron states. This 
is a significant advantage of local unitary transformations. 

5. CALCULATIONS OF A DlMERlC STRUCTURE 
CONSISTING OF VALENCE BONDS HAVING THE SAME 
ORIENTATION 

The numerical procedure for self-consistently solving 
the effective problem f i (a )  within the generalized Hartree- 
Fock method followed by minimization with respect to a 
was implemented for a structure consisting of x-oriented va- 
lence bonds (Fig. 1). 

It was found that at any concentration S= n - 1 of addi- 
tional holes (n is the number of holes per site), the state with 
dimeric valence-bond structure (i.e., with a # 0) is lower in 
energy than the standard antiferromagnetic solution obtained 
by the generalized Hartree-Fock method without alternation 
of bonds ( a  = 0). Antiferromagnetic order and the valence- 
bond structure coexist over a wide range of Ult and hole 
concentration. Figure 2 presents the dependence of the mean 
energy per bond (2 lattice sites) on Ult when 
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FIG. 2. Mean energy per bond [H-2U(n- 1 )] calculated relative to its 
limiting value 2U(n- 1 )  at t = O  as a function of Ulr for hole concentra- 
tions n = 1 and n= 1.2. The solid curves correspond to states with dimeric 
valence-bond structures, and the short-dashed curves correspond to spiral 
states with Q= (q ,m) .  The long-dashed curve corresponds to an antiferro- 
magnetic state with a dimeric valence-bond structure. 

n = 1 and n = 1.2 for the correlated states with dimeric 
valence-bond structure (solid curves) and for spiral states 
with incommensurate quasimomentum Q = ( q ,  T )  . We cal- 
culated the latter using the equations in Ref. 13. In the un- 
doped Hubbard model ( n  = 1 )  the energies of the antiferro- 
magnetic states with dimeric valence-bond structure (DS + 
AF) and without such a structure are very close. However, 
the difference increases with increasing n. The energy be- 
comes less than the energy of the spiral state over a signifi- 
cant fraction of the parameter range. 

Figure 3 presents the dependence of the spin density 
(S,) in the a, sublattice (- (S,) in the b ,  sublattice) and the 
transformation parameter LY for the same hole concentrations 
n = l  and 1.2. When U - + m  a n d n = l ,  wehave a + - d 4 a t  
t>O. Inclusion of the hole-localization mechanism (I),  
which is an alternative to the antiferromagnetic 

FIG. 3. Dependence of the spin density S, on the sublattices and the trans- 
formation parameter a characterizing the fonnation of the valence-bond 
structure as a function of Ulr for a hole concentration n = 1 (solid curves) 
and n= 1.2 (dashed curves). 

FIG. 4. Phase diagram for states with dimeric valence-bond structure and 
spiral states (SP) aligned along the x axis. The dashed curve demarcates the 
region where antiferromagnetic order exists along with dimeric structure. 

mechanism, significantly lowers the magnetic moment 
2pB(S, )  at the lattice sites in the DS+AF state. 

Figure 4 presents the phase diagram in U l t  and 
S=n- 1 coordinates. The boundary of the region where 
dimeric valence-bond structure is more stable than the spiral 
state with Q = ( ~ , T )  (SP) is indicated by the solid line. The 
dashed line marks the boundary for the disappearance of' an- 
tiferromagnetic order in the complete solution of (4). We 
restrict ourselves here to a comparison of the solutions with 
the reference axis ( x )  along the bonds. Actually, according 
to Ref. 13, the spiral state with diagonal incommensurate 
quasimomentum Q= ( q , q )  is lower than the state with 
Q=(q,.rr).  Therefore, it would be interesting to consider 
dimeric structures of the same symmetry containing both x- 
and y-oriented valence bonds. Calculations of the simplest of 
these structures with four sites in the unit cell is a matter for 
the future. 

It was shown above that the spectrum of E X k  for the 
linearized Hamiltonian GL reflects the spectrum of Fermi 
excitations of the correlated system against the background 
of the ground state of the particular electronic structure. Let 
us dwell on the properties of the spectrum of the dimeric 
valence-bond structure in Fig. 1. The picture of two Hubbard 
bands, a lower and an upper, is maintained for the doped 
case. The energies ( E X k - p )  of the Hubbard bands for 
n = 1.2 and Ul t = 8 along the [TM,Y I'] and [TM,Y T] 
loops in the expanded (doubled) Brillouin zone ( . -T  
6 k, ,ky S T )  are presented in Fig. 5. The r, M,, M y  , and 
Y points correspond, respectively, to k = (O,O), (rr,O), 
(O,T), and (T ,T )  (the notation of the points is the same as 
that of Ref. 5 and differs from that of Refs. 1 and 22). 'The 
distinguishing feature is the presence of flat portions of the 
bands at the points M, and M y  that are asymmetric under the 
replacement x+y.  Within the basic Brillouin zone 
(I k,? kyl < v)  there are two very flat minima of the upper 
band (maxima of the lower band) on the x axis of the qua- 
simomentum at the points (+ qmin ,0) near i,= (T,O),  but 
there are no such features on the y axis. The depth and dis- 
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/ nG.  5. Profile of the spectrum EAt - p  (A=  1, 2) of 
eigenvalues of the linearized effective Hamiltonian H", 
along the [TYM,T] (solid curve) and [TYM,~] 
(dashed curve) loops for n = 1.2 and Ult  = 8. The abso- 
lute values I E ~ ~ - - ~ (  are the energies of the elementary 
Fenni excitations of the correlated system. 

placement of the minimum from the point M ,  increase with 
increasing U l t .  When S= n - 1 or U l t  is small, the asym- 
metry of the spectrum is small, and both k, and M y  have 
energies lower than the Fermi level. In this case the Fermi 
surface has the form depicted in Fig. 6a in the space of the 
expanded Brillouin zone. However, above a certain value of 
U l t ,  the asymmetry causes only the region near M ,  to be 
occupied in the upper band within the basic Brillouin zone 
(Ik,+.k,l<n-). The energies E ~ = E , , - ~ , ~  for all k along the 
boundary Ik,? k,l= n- of the basic Brillouin zone are essen- 
tially degenerate and are close to the chemical potential. For 
example, for U l t = 8  and n =  1.2, (Ek- Iu ) I t  varies from 
-0.00206 to -0.00218 as k moves from the point (.rr,O) to 
the point ( n - / 2 , d 2 ) .  Thus, part of the Fermi boundary es- 
sentially coincides with the lines I k , t  k ,  1 = n-, displaying 
characteristic nesting with Q = (n-, n-). 

The features just described, i.e., the flat portions at the 
points ( r , O )  and ( O , r ) ,  the almost degenerate energies of 
the quasiparticles along the nesting line of the Hubbard lat- 
tice without an interaction (Ik,? kyl = n-), and the presence 
of a "large" Fermi surface instead of hole pockets in the 
vicinity of the points ( 5  d 2 , k  .rr/2), were previously noted 
in the spectra of quasiparticles obtained from Monte Carlo 

calculations of the Green's functions for the r-J  
and in numerical simulations of the Hubbard mode1,2~-~~ as 
well as in experimental photoelectron 

If it is assumed that a real single crystal of a ceramic 
contains a CuOz plane with structures consisting of x- and 
y-oriented valence bonds, an additional Fermi boundary 
analogous to the boundary depicted in Fig. 6b and symmetri- 
cally reflected about the k,= k, line should be detected. Very 
similar boundaries with a characteristic nesting vector near 
Q = (n-,n-), as well as boundary segments parallel to k,  and 
k,, were observed in Bi2SrzC&u208+~ (Ref. 4). The flat 
portions of the spectra near M ,  and M y  observed in the 
photoelectron spectra of all ceramics would be understand- 
able under this hypothesis. We note that the observed profile 
of Ek along the [rxMr] loop in Refs. 3-6 was approxi- 
mated by a one-band curve instead of two curves corre- 
sponding to upper and lower subbands. This might possibly 
have led to the conclusion that not only the nearest-neighbor 
lattice sites, but also the diagonally related next-nearest- 
neighbor sites interact. However, all the measurements per- 
tain only to the Ei- p<O (E: -  /L<o) branches in the elec- 
tron (or hole) representations, and are therefore not 
inconsistent with the two-band interpretation. 

FIG. 6. Fermi surface in the expanded 
Brillouin zone for n = 1.2 when Ult  = 5 
(left-hand figure) and U l t =  8 (right- 
hand figure) in k, ,ky coordinates. 

-lr 0 -k 0 R 
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FIG. 7. Dependence of the chemical potential (solid curve) and the size of 
the gap between the upper and lower Fermi excitation bands (dashed curve) 
on the hole concentration for Ulf  = 8. 

Figure 7 presents the dependence of the chemical poten- 
tial and the size of the gap between the lower and upper 
bands of Fermi excitations on the hole concentration for 
Ult = 8. At the point where the antiferromagnetic order van- 
ishes ( n s 0 . 8  and 1.2) during electron and hole doping from 
the state of an undoped insulator ( n  = 1 ) , the chemical po- 
tential is positive, and reaches a maximum (minimum) above 
or below the limits of ,u(n) at n= 1 TO.  Together with the 
abruptly shrinking gap in the spectrum of quasiparticle exci- 
tations, this signals the emergence of a nonzero spectral den- 
sity of states N ( w )  within the insulating gap when n= 1. 
This conclusion is completely consistent with the calcula- 
tions of the spectral functions for finite Hubbard systems?5926 
where N ( o )  is displaced within the gap upon the transition 
from electron to hole doping. The calculation and quantita- 
tive comparison of the spectral functions for correlated states 
with dimeric valence-bond structures and those obtained for 
finite systems by the Monte Carlo method or exact diagonal- 
ization represent a similar problem. 

The large jump in ,u between e -  and h-doped systems 
observed both in the calculations of finite Hubbard 
systems1,23-26 and in our own calculations is usually'.25 
thought to be inconsistent with the constancy of the chemical 
potential observed in photoelectron spectra. However, it was 
forgotten here that the doping of the CuOz plane in a sample 
that is neutral as a whole is accompanied by the appearance 
of alternating charge in the parallel layers, whose field 
should compensate the jump in ,u of the isolated Cu02 plane 
considered in the models. 

The question of whether the entire body of data from 
photoelectron spectra can be attributed to the existence of 
dimeric x -  and y-oriented structures calls for calculations of 
the spectral functions, particularly with consideration of the 
many-particle effects. Consideration of the latter becomes 
realistic for the class of correlated states treated here. The 
investigation must also be extended to structures of valences 
bonds of different symmetry aligned along ( e , + e y )  and x-  
and y -oriented valence structures in a single Cu02 plane. 

6. CONCLUSIONS 

The method proposed for constructing a correlated :state 
by means of a unitary transformation of an uncorrelated state 
makes it possible to describe dimeric valence-bond structures 
for arbitrary doping. Mean-field methods have been succes- 
sively used to describe such structures for the first time.. 

An explicit expression has been obtained for the Hamil- 
tonian of the new effective problem, and an exact expression 
has been found for the mean energy. The many-particle cre- 
ation operator of the elementary Fermi excitations of a cor- 
related system with a given ground-state structure has been 
found. 

The following results have been obtained for valence- 
bond structures with the same orientation. 

(1) It has been shown that the correlated state with 
dimeric valence-bond structure is always more stable than 
the antiferromagnetic state of the generalized Hartree-Fock 
method, and that the energy difference increases with the 
concentration S= n  - 1 of additional holes relative to the un- 
doped system. 

(2) When S is small, the alternation of the singlet pairing 
force in the bonds in states with dimeric valence-bond struc- 
ture is accompanied by antiferromagnetic ordering of the 
spins. 

(3) The energy of the dimeric valence-bond structure 
investigated here lies below the energy of the spiral state of 
the same symmetry over a large range in 6 and the strength 
of the interaction Ult .  

(4) It has been shown for the dimeric valence-bond 
structure studied that the two Hubbard subbands in the spec- 
trum of Fermi excitations of the correlated system are main- 
tained upon doping. In accordance with the data from the 
photoelectron spectrum, the calculated spectrum is character- 
ized by the presence of flat portions near the points 
M = (T,O) and ( 0 , ~ )  and parallel portions of the Fermi 
boundary at large values of Ult (nesting with Q = ( T ,  T) ) .  

Investigations of valence-bond structures of different 
symmetry and direct calculations of the photoelectron spec- 
tra are needed to draw final conclusions regarding the exist- 
ence of dimeric valence-bond structure in real single crystals, 
as well as their role in the shaping of the dynamic character- 
istics of the strongly correlated systems discovered by nu- 
merical modeling.' 
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APPENDIX A 

Expressions for Hubbard operators 

We present some of the Hubbard operators ~ $ l ~ ~ ,  
x\",)-,,,~, and x$!,,, in a basis of the cluster functions (6), 
(13), and (14) (the superscript n  is omitted below) 
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Here the missing elements are X2i,2j= (X2j,2i)+ ; 
q=(l-n:)(l--ny); E=nyny;  Pz=n:(l-n?,). The ex- 
pressions for @, , and pb, are analogous. 

The odd Hubbard operators in a basis of the functions 
(6) and the functions I 1 X a) and 13 ha), where A = a and 
b, defined by Eqs. (13) and (14) can also be expressed in 
terms of Fermi operators. For example, 

Expansion coefficients h, , a,, , and b,, for Hubbard 
operators 

We present only the coefficients that appear in H for the 
transformation (7), (9): 

h(0) - 
2i,2j- (2ilh12j) = (: :!), (A3) 

t f i  t J z  i j 

Here ii= 1, 2 for A=a, b in the I l ia)  and 13Xa) states 
defined by Eqs. (13) and (14), and (,= - a /  la( = T 1. 
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