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The special features of conduction in porous amorphous silicon are investigated. Protracted non- 
Debye current relaxation (lasting tens of minutes) has been detected after a bias voltage is 
applied to the structure. It is shown, first, that the dynamic conductivity increases with the 
frequency of the electric field as w0.94, and second, that the static conductivity varies with 
temperature as a(T) rn ~ x ~ [ - ( T ~ / T ) ~ . ~ ~ - ~ . ~ ] .  The entire body of experimental data is described 
well by a hopping conduction mechanism with a variable hopping length between 
superlocalized electron states in a fractal space of dimension 2<D<3,  which depends on the 
porosity of the material. The superlocalization exponent in the electronic wave functions 
on the fractals is found to be {= 1.9, which attests to the validity of the interpretation of 5 as 
half of the fractal dimensionality of the random walks. O 1996 American Institute of 
Physics. [S 1063-7761 (96)02407-91 

1. INTRODUCTION 

There has been growing interest in the investigation of 
the physical properties of silicon subjected to electrochemi- 
cal etching in hydrofluoric acid, i.e., porous silicon, not only 
because this material is promising for applications in opto- 
electronic devices, but also because some unusual charge- 
transport laws, which reflect features of its structure, have 
been discovered in it. For example, a study of static hopping 
conduction in layers of porous amorphous silicon1 obtained 
by ion implantation in crystalline Si followed by anodization 
has shown that the effective geometric dimension D of the 
current paths can have a fractional (fractal) value, which de- 
pends on the etching regime of the structures and, therefore, 
on the topological layout of the silicon skeleton. At low tem- 
peratures, at which the electron hopping distance becomes 
greater than the transverse diameter of the silicon columns, 
charge transport was one-dimensional and took place along 
chains of localized states separated by long pores perpen- 
dicular to the surface. A transition from the three- 
dimensional Mott regime of hopping conduction to the one- 
dimensional regime as the temperature is lowered has also 
been discovered and studied in detail in porous 
a-Si, -,Mn,. ') Features of the frequency characteristics of 
the ac conductivity that attest to the fractal structure of the 
system have been obtained in crystalline porous silicon 
(c-PS). 

The existence of self-similar properties of the porous 
silicon skeleton over a range of geometric scales has been 
pointed out in many experiments on the structural analysis of 
this material. They include the results of the small-angle 
scattering of x rays,3.4 neutron scattering: and high- 
resolution electron microscopy.6 Of course, the presence of 
the developed internal fractal surface characteristic of porous 
silicon should also influence the electrophysical properties of 
this substance. 

Diffusion and transport in disordered media are often 
modeled by random walks over fractal structures. It is as- 

sumed that a walk in space itself builds a fractal medium, 
selecting the sites visited according to certain probability 
laws. The track left by such walks forms a percolation clus- 
ter. One distinguishing feature of porous silicon is the fact 
that the space itself initially has self-similar structure inher- 
ent in the silicon skeleton formed after anodic etching. 'This 
has a very important consequence, which determines the de- 
tails of charge transfer on the fractals. In fact, in contrast to 
the Anderson decay law *(r) exp[-rla], the wave func- 
tion of electrons localized on fractals decays more rapidly at 
large r (Ref. 7): T ( r )  a e~~[-(r /a , )~] ,  where the superlc~cal- 
ization exponent 5 is greater than unity and depends on the 
Euclidean dimensionality of the system. As a result, the mi- 
croscopic rates of tunneling transitions of electrons on fiac- 
tals are significantly lower than the rates in systems with 
Euclidean dimensionality, resulting in a considerable in- 
crease in resistance and slowing of various kinetic processes. 

The present work is devoted to a detailed investigation 
of the features of hopping conduction in porous amorphous 
silicon obtained by spray deposition in a ultrahigh vacuum 
followed by electrolysis in a solution of HF. The main results 
of the work include the following: 

(1) ac conductivity in the porous material increases with 
the frequency of the electric field as w0.94 and is governed by 
subbarrier hopping of electrons in a medium with fractal di- 
mension D=2.1-2.5 and a superlocalization exponent 
[= 1.9; 

(2) after a voltage step is applied to the structure, non- 
Debye current relaxation lasting tens of minutes is observed, 
pointing out the partial nonergodicity of porous silicon as a 
Ferrni glass; 

(3) the temperature dependence of the static hopping 
conductivity of porous silicon with a porosity greater than 
37% at high temperatures follows the law Inclr(T) 
cc - ( T ~ / T ) ~ . ~ ~ - ~ . ~ ,  which attests to a fractal dimension D 
equal to 2.2-2.3 for the medium. 
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TABLE I. Preparation conditions and characteristics of the structures. 

No. j, mA/cm2 i,.h, s d, p m  E P, % 

Depth, nrn 

FIG. 1. Distribution of fluorine atoms obtained by SIMS in a structure 
subjected to electrolytic etching at a current density of 30 mA/cmZ for 8 s. 

2. EXPERIMENTAL SAMPLE 

Films of amorphous silicon 300 nm thick were grown on 
a degenerate arsenic-doped silicon substrate with the (1 11) 
orientation in an ultrahigh-vacuum molecular-beam-epitaxy 
(MBE) system. The substrate temperature did not exceed 50 
"C, despite the heating effect of the electron-beam evapora- 
tor. Immediately before the plates were inserted into the 
growth chamber, a thin layer of Si02 was chemically grown 
on the Si surface, and it was subsequently removed in the 
MBE chamber at 800 OC in a stream of silicon with a flux 
density equal to 1013 atoms/cm2. s, after which the 7 X 7 su- 
perstructure characteristic of a clean Si(ll1) surface was ob- 
served. The growth rate of amorphous Si did not exceed 1.5 
k s ,  the structure was monitored directly in the chamber by 
high-energy electron diffraction, and the thickness of the 
a-Si layer was determined by a quartz thickness meter. The 
concentration of dangling bonds measured by electron spin 
resonance in similar a-Si layers deposited on glass was 
N =  1.3X 10" cmP3. Below we refer to amorphous silicon 
that has not been subjected to electrolysis as compact silicon. 

Porous silicon was created by electrochemically etching 
the compact structures in a 42% solution of 
HF:H20:C3H,0H (1 : 1 :2). To obtain structures with different 
density deficiencies, the anodic current density and the etch- 
ing time were varied. 

Figure 1 presents the depthwise distribution of fluorine 
atoms recorded by secondary-ion mass spectrometry (SIMS) 
for a sample anodized for 8 s at j= 30 mA,lcm2. Knowing the 
thickness of the amorphous layer, we were able to determine 
its porosity, which amounted to -69%. Since fluorine atoms 
are immobilized on the pore surfaces, the depthwise varia- 
tion of the specific surface and the porosity can be evaluated 
from the distribution of fluorine. It is seen that in a-Si the 
porosity decreases somewhat with depth. This is attributable 
to chemical dissolution of the surface layers. This effect is 
far more pronounced in the crystalline substrate, and it cor- 
responds to the published data regarding the strong dissolu- 
tion of n + - ~ i  as a result of electrochemical etching8 

We established that the resistance of crystalline porous 
silicon exceeds the resistance of porous amorphous silicon. 

Therefore, to eliminate the contribution from c-PS to the 
resistance of the structure, measurements of the transverse 
resistance were performed in samples obtained at lower cur- 
rent (j= 15 m~lcm'), in order that the thickness of the po- 
rous layer not exceed the thickness of the amorphous layer. 

Contacts were deposited on the porous layer at a -30' 
angle to eliminate penetration of the metal into the pores and 
short-circuiting of the layer. All electrophysical measure- 
ments were performed on the ohmic portion of the current- 
voltage characteristic, which corresponded to the 2200 mV 
voltage range. 

The samples were prepared as detailed in Table I. The 
density deficiency of porous silicon (the porosity P )  is usu- 
ally determined by a gravimetric method. The sample is 
weighed before etching, after etching, and after removal of 
the porous layer in KOH. However this method requires 
large thicknesses of porous silicon (more than a micron) to 
achieve the required weighing accuracy. In our case the po- 
rous layers were thinner than 0.3 p. As a result, the porosity 
was determined gravimetrically with a large error and had a 
value of P=50220% for samples Nos. 3-5. No mass 
change could be detected after anodic etching in sample No. 
2. The value of P can be determined more accurately by 
measuring the dielectric constant E in the effective-medium 
approximation? which has proved itself in the case of crys- 
talline porous ~i l icon. '~ According to Ref. 9, P and E are 
related by the expression 

where csi= 12 is the dielectric constant of compact a-Si. The 
value of E was found by measuring the capacitance of the 
structures at lo2-lo6 Hz and T=77 K. It was taken into 
account that the capacitances of the porous and compact lay- 
ers of a-Si were connected in series. The results obtained by 
this procedure are presented in Table I. 

3. DYNAMIC CONDUCTIVITY 

Information on the charge transfer mechanism in a dis- 
ordered system is often obtained by measuring the dynamic 
conductivity. The electrical conductivity is measured as a 
function of the frequency w of the alternating electric field. 
Also, the dynamic conductivity o,,(w)=a(w,T) - a(0,T) 
should vary, depending on whether the charges move along 
extended states or jump between localized states. When car- 
riers are excited through the mobility edge into the region of 
delocalized states, the conductivity does not depend on the 
frequency up to lo8 Hz. If conduction is mediated by 
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FIG. 2. Dependence of the dynamic conductivity on the frequency of the 
electric field for porous silicon sample No. 5 (T=300 ( I ) ,  230 (2). 130 (3) 
K) and for compact a-Si (T= 300 K (4)) .  

phonon-stimulated hops between localized states, the con- 
ductivity should increase with the frequency according to a 
power law. 

Dynamic conduction involving phonons is a relaxation 
mechanism, under which an electron passes from one level 
to another at a distance R by means of the absorption or 
emission of a phonon of frequency 

where vo is the characteristic phonon frequency (in silicon it 
is of the order of 10'~-10'~ Hz). The electric field alters the 
equilibrium occupation numbers of the sites, causing relax- 
ation to the equilibrium state specified by the instantaneous 
value of the field. There is a delay accompanied by the dis- 
sipation of energy. The optimum states for such transitions 
form compact pairs at a considerable distance from one an- 
other. There are no transitions between pairs, and thus they 
cannot participate in the static conduction, but a high- 
frequency field induces displacement currents. It is clear that 
states of both percolation and finite clusters take part in dy- 
namic conduction. 

Considering the situation in which hops occur between 
states near the Fermi level, Austin and ~ o t t "  obtained the 
expression 

where the exponent s is a weak function of the frequency and 
is given in the three-dimensional case by the expression 

In disordered and amorphous semiconductors we usually 
have s-0.8. 

Figure 2 presents the dependence of the conductivity on 
frequency for compact and porous a-Si (the etching time was 
12 s). In the frequency range 0= lo2-lo6 Hz the law (2) is 
valid for both systems, with s=0.79-+0.01 for compact 
a-Si and s = 0.942 0.01 for the porous sample. We can use 
Eq. (3) to evaluate the characteristic phonon frequency. Tak- 
ing o= lo4 Hz and s=0.79, we obtain vo= 2 X 1012 Hz. An 

attempt to evaluate v, using Eq. (3) in the case of porous 
silicon leads to the physically unreasonable value 
vo-5 X lo3' HZ. In our opinion, this disparity stems from 
the fractal nature of the space filled by the silicon. According 
to Ref. 12, hopping conduction on fractals with a dimension 
D and a superlocalization exponent 5 in the wave functions 
should vary with frequency according to (2), where 

There are two theoretical models, which interpret 5 dif- 
ferently. 0ne13 defines the superlocalization exponent as half 
the fractal dimension of the random walks D,= 3.8 and is 
supported by experiments on carbon-black-polymer com- 
posites. The other15 identifies 5 with the dimension of the 
shortest path in a typical cluster Dmi,= 1.36. Taking J== 1.9 
(Ref. 14), w= lozp6 HZ, and vo=2X 1012 Hz, from (4:) we 
found that D lies in the range from 2.1 to 2.5. In the case of 
l= 1.36 we obtained an underestimate: D = 0.8- 1.2. 

4. ANOMALOUS CURRENT RELAXATION 

The next unusual result of the present work is the obser- 
vation of prolonged current relaxation after a voltage step is 
applied to the structure. The experiment consisted of apply- 
ing a fixed bias Uo= 50 mV to the sample at time to= 0. 'I'his 
caused the appearance of an electric current I(t) in the sys- 
tem, which decreased with the passage of time to its station- 
ary value I,=l(r = m). Figure 3a shows the relative variation 
of the current as a function of time Al(t)/l, = [l(t) - 1,]/IS 
for various layers of porous silicon at room temperature. It is 
noteworthy that similar relaxation of the conductivity of a 
metal-insulator-conductor channel in an In203 transistor 
was observed in Ref. 16 at T=4.2 K after a gate voltage 
Ug> 100 V was applied and was attributed to nonequilib- 
rium charge transport in the hopping regime. 

In our opinion, the cause of the relaxation behavior is 
closely related to the appearance of dynamic conductivity at 
the moment when the electric field is turned on. We assume 
that a voltage is created at time to and reaches its stationary 
value Uo at time t . Then, during the interval At = t, - to the 
sample experiences a variable electric field, which results 
from the superposition of a large set of harmonic signals. 
Displacement currents appear in it in finite clusters, ancl an 
ordinary current appears in the percolation cluster. At times 
t> t l  the displacement currents decay as a consequence of 
redistribution of the electrons among the sites, and a less 
conductive stationary state is established. In ordered systems 
relaxation is usually a Debye (normal) process and takes 
place within very short times, whose determination requires 
a special experimental setup. An analysis of the relaxation 
curves in porous amorphous silicon revealed the following. 

1) The dependence I(t) exhibits nonexponential behav- 
ior: it cannot be described by a single relaxation time; the 
dashed line in Fig. 3b is the result of fitting an exponential 
function to the experimental plot of I(t)  by the least-squiwes 
method, and the relaxation process cannot be described by a 
power function (Fig. 3b, dotted line). 

176 JETP 83 (I), July 1996 Yakimov et a/. 176 



FIG. 3. a) Current decay kinetics after applying a 50-mV voltage step 50 
mV to the structure. The numbered curves correspond to the numbered 
samples in Table I. b) Approximation of the current relaxation in sample 
No. 2 by the exponential function A exp(-rlro) (dashed curve) and by the 
power law At-" (dotted curve). 

2) The current decays over times significantly exceeding 
the Maxwell time, which equals 10-~-10-' s in the present 
case. 

The fact that dielectric relaxation is anomalous in many 
glasses and polymers has been known since about 1970.17 It 
was found that a protracted decay law describes diverse 
types of relaxation in many complex disordered materials: 
for example, the residual magnetization of spin glasses, lu- 
minescence decay in porous glasses,'9 diffusion in porous 
materials, and processes occurring during the chromato- 
graphic separation of ~ubstances.~' The kinetics of the de- 
crease in the nonstationary photoconductivity in amorphous 
materials are also often anomalous21 in the sense that they 
are described by a power law, rather than an exponential law. 
However, the characteristic times of such processes are still 
very small ( 1 0 - ~ - 1 0 - ~  s). Several theories have been pro- 
posed to explain the protracted law: a) anomalous dispersion 
of the times of the events; 2) direct transfer on fractals; 3) 
dynamics with hierarchical constraints; and 4) diffusion with 
fractally distributed times. The common factor among these 

models is the existence of a hierarchy of relaxation times, 
whose distribution is fairly broad. The strong spatial inho- 
mogeneity inherent to all disordered media, which deter- 
mines the distribution of the interatomic distances, makes the 
range of microscopic transition rates very broad. Thus, spa- 
tial disorder leads to temporal disorder. Clearly, the presence 
of superlocalization in porous silicon should significantly 
shift the distribution function of the transition times toward 
larger values, thereby drastically slowing the kinetics of vari- 
ous reactions. 

The lack of a steady state in the electronic subsystem of 
porous silicon during the conduct of a real physical experi- 
ment attests to the nonergodicity of this system as a Fermi 
glass. The concept of a Fermi glass as applied to Anderson 
insulators has existed since Mott's pioneering but, 
many of the properties of disordered systems predicted on 
the basis of this model are still only scientific hypotheses. 
One of these properties is the nonergodicity of Fermi glasses. 
As we know, experimentally measured macroscopic param- 
eters are averages over time, while the theory gives averages 
over a statistical ensemble of microstates that imitate the real 
states at different moments in time. In ergodic systems all the 
microstates are achievable during the course of a real physi- 
cal experiment; therefore, the two types of averages can be 
considered identical. This permits the comparison of theo- 
retically determined and experimentally observed macro- 
scopic parameters. In nonergodic systems such a procedure 
is far from trivial. The concept of nonergodicity as applied to 
porous silicon must only be used to stipulate a restricted time 
interval (t< lo3 s), within which ergodic behavior probably 
exists. This permits investigation of the temperature depen- 
dence of the static conductivity udc after the system relaxes 
to a stationary state. 

5. TEMPERATURE DEPENDENCE OF THE STATIC 
CONDUCTIVITY 

Figure 4 presents the temperature dependence of the 
conductivity in Arrhenius coordinates after current relaxation 
for 30 min at room temperature. It is seen that the conduc- 
tivity of the porous layers is significantly lower than the 
conductivity of compact a-Si and depends on the etching 
time (the porosity of the material). It is convenient to inves- 
tigate the behavior of udc(T) by analyzing the local activa- 
tion energy for W(T) = - d(ln u)ld(llkT) . 
Here we take advantage of the fact that the known laws 
describing the variation of udc(T) on the insulator side of an 
Anderson junction are special cases of the general expression 

udc( T) = ui exp[ - ( Ti l T)"] , (5) 

where the exponent n is closely related to the dimensionality 
of the medium. 

It is easily seen from (5) that 

w(T)= n ( k ~ ~ ) " ( k ~ ) ' - ' .  (6) 

Figure 5 shows the temperature dependence of the acti- 
vation energy obtained by direct differentiation of the experi- 
mental points for udc(T). Two hopping conduction regimes 
are realized for the porous layers: in the high-temperature 
range 250< T< 300 K the activation energy decreases mono- 
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FIG. 4. Temperature dependence of the static conductivity in samples 1-5. 

tonically with increasing temperature, and at low tempera- 
tures W(T) scarcely depends on T. For compact a-Si the 
activation energy varies with the temperature over the entire 
range of T investigated. Table I1 presents fits to the experi- 
mental data on ad,(T) using Eq. (7) in the high- (ao .  To, 
and n) and low-temperature ( a l ,  T I ,  and n l )  ranges. In our 
preceding study1 (see also the reference in footnote 1) the 
transition detected in porous a-Si,-,Mn, and a-Si obtained 
by ion implantation, from a conduction regime with variable 
activation energy to a regime with a constant value of W as 
the temperature decreases, can be ascribed to a change to 
one-dimensional electron trajectories as the hopping distance 
increases. Below we do not dwell in detail on one- 
dimensional transport, and we discuss only the behavior of 
the conductivity at high temperatures. 

Several hopping conduction mechanisms that lead to dif- 
ferent values of the exponent n have been described in the 
literature: 

(1) n = 1/(D + 1 ) - the familiar Mott law in the absence 
of Coulomb  correlation^^^; 

(2) n = 1 for one-dimensional hopping c o n d u c t i ~ n ~ ~ - ~ ~ ;  
(3) n = l l (D + 5) for charge transfer along fractals be- 

tween states with a superlocalized wave f~nct ion. '~ 
Using the expression n = 1/(D + 1 ), we find that 

D = 3.00k0.25 for compact a-Si and D = 3.15? 0.27 for po- 
rous silicon with porosity 37%. Therefore, in these samples 
the dimensionality of the space responsible for transport of 
the static current is Euclidean. This makes it possible to use 
the familiar relation for Mott's law kTo = 16g3a3 to deter- 
mine the three-dimensional density of states g 3 .  Taking 
To = 5 X lo7 K for sample 1 and To = 8 X lo7 K for sample 2, 

FIG. 5. Temperature dependence of the activation energy for conduction 
obtained by direct differentiation of the experimental dependence of 
a,,(T) in samples 1-5. 

we obtain g3 = 1.36X lo2' e ~ - l . c m - ~  and g , =  8.5X 1 0 ' ~  
eV-' X C ~ - ~ ,  respectively. An attempt to determine the di- 
mensionality of the system in structures with high porosity 
from Mott's law leads to the clearly underestimated result 
D = 1.17k0.06 to 1.2230.06 for n = 0.45k0.02 to 
0.462 0.02. In order for the procedure for evaluating D to be 
correct in this case, the details of the localization of the wave 
functions on the fractals must be taken into account, as in the 
analysis of the dynamic conductivity. Taking 5= 1.9 and us- 
ing the formula n = 51 (D + c), we obtain D = 2.232 0.20 to 
2.322 0.10 (see Table 11). 

The appropriateness of the fractal conduction mecha- 
nism used to interpret the experimental data can be tested by 
evaluating the superlocalization radius a,  and the typical 
hopping distance over the percolation cluster R t .  The two- 
sided inequality 

should hold. 
The first condition is necessary for the hopping conduc- 

tion mechanism with variable hopping distance, and the sec- 
ond is necessary for superlocalization when electrons tunnel 
between sites. 

To evaluate a, ,  we utilize the relation between To and 
a, found in Ref. 13: 

where lo is the minimum scale on the basis of which a fractal 
medium can be constructed. It is natural to take the mean 

TABLE 11. Parameters of the temperature dependence of the static conductivity. 

No. o , ~  lo3, f l - l . c m - '  T O ,  K n D u l ,  W 1 . c m - '  T,, K "1 

1 83000t 4100 (5.072 0.04) X lo7 0.25" 0.02 3.002 0.30 - - - 
2 81% 13 (8.07r0.02)~ lo7 0.2420.02 3.1520.27 (1.82 0.1) x 24302 353 0.81 + 0.03 
3 3.220.5 (1.25t0.02)X 10' 0.45t0.02 2.3220.12 (3.920.1)X 23532 60 0.892 0.02 
4 1.72 0.4 (I.OOtO.05)X lo5 0.4620.02 2.2320.10 (1.44t0.05)X 19952 70 0.96 2 0.04 
5 3.7-CO.7 (1.34t0.03)X lo5 0.4620.02 2.2320.10 (5.4t2.1)X lo-' 2016? 253 0.992 0.04 
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distance between silicon atoms, which equals 0.27 nm, as 
lo. The value of To for porous silicon with fractal conduc- 
tion (samples Nos. 3-5) equals 1.OX lo5 to 1.3X 10' K. Us- 
ing this value, as well as D = 2.23-2.32 and [= 1.9, from (8) 
we obtain a,= 1.1 nm. The typical hopping distance found 
with the optimization procedure in Ref. 13 

R , ( T ) = ~ , ( T ~ I T ) " ( ~ + ~ ) .  (9) 

Then R,(T)=5.2. ( ~ O O / T [ K ] ) ~ . ~  nm, and the inequalities (7) 
do, in fact, hold. 

6. CONCLUSIONS 

In closing, we compare the values of the fractal dimen- 
sionality of the medium D derived from different experi- 
ments. Analyses of the frequency dependence of the dynamic 
conductivity and the temperature dependence of the static 
conductivity in porous silicon give approximately the same 
value of D, which depends only on the porosity of the ma- 
terial. This is a convincing argument favoring a single ap- 
proach to the various electrophysical phenomena based on 
the idea of a fractal space. 

It is noteworthy that fractal topology produces the most 
distinctive consequences specifically in porous amorphous 
silicon, i.e., a material in which hopping conduction is the 
dominant mechanism of current transfer. It is known that the 
self-similarity of porous silicon exists only in a restricted 
range of scales L: lo< L < 5. According to the data in Refs. 2 
and 4, the correlation length 5 can have a value of the order 
of 100 nm. On scales L > (  the system behaves as a homo- 
geneous semiconductor with a dimensionality equal to the 
Euclidean value. The hopping distance R, which amounts to 
several nanometers, serves as the characteristic scale on 
which hopping conduction occurs as a physical phenomenon. 
The fact that lo<R<5 also makes hopping transport have 
fractal properties. 
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