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The relation between localized low-frequency excitations, which are known from the theory of 
low-temperature anomalies in glasses, and structural defects, which play a decisive role 
in plastic deformation, has been studied. We examine the position dependence of the decay of 
the strain field, corresponding to a local mode, as a function of the anharmonicity of the 
system. The long-range strain field due to localized modes has been calculated, its properties have 
been analyzed, and the results have been compared to the data obtained independently by 
computer simulation. O 1996 American Institute of Physics. [S 1063-776 1 (96)02 107-51 

I. INTRODUCTION 

It is well known that low-temperature anomalies in 
glasses can be interpreted only assuming molecular mobility 
that does not exist in crystals. It is natural to relate this mo- 
bility to the presence of structural defects in a disordered 
medium, generating both tunneling modes and soft localized 
 vibration^.'-^ 

Presently there are reasons to suppose that these struc- 
tural defects are also responsible for plastic deformation of 
g~asses.5'6 

Models of low-frequency local mobility proposed in re- 
cent years can be efficiently applied to the analysis of elec- 
tronic and thermodynamic properties of glasses, but are not 
adequate for describing their plastic properties. The reason is 
that interaction between structural defects is important in this 
case, and in order to take this interaction into account, the 
defect model must be consistent with elastic-continuum 
theory. 

This reconcilliation of the two models is described in the 
present paper, which suggests a continuum description of a 
structural defect. Calculations of soft local vibrations based 
on this model are given. 

In Sec. 2 we discuss the feasibility of a localized mode 
due to local nonuniformity of elastic and density properties. 
Section 3 is dedicated to a qualitative analysis of the role of 
anharmonicity in generating soft localized modes. In effect, 
the region where anharmonicity arises is a structural defect, 
for which model is given in Sec. 4. Finally, in Sec. 5 we 
discuss the soft localized mode as a small perturbation of an 
equilibrium configuration due to a structural defect. 

2. VIBRATIONS OF LINEAR ELASTIC CONTINUUM WITH A 
POINT-LIKE SINGULARITY OF ELASTIC MODULI 

The simplest model of a defect in glass can be described 
in terms of a local nonuniformity of elastic parameters and/or 
density. In the theory of elastic continua, it can be defined as 
a point-like singularity; to be specific, let us suppose that all 
the parameters of the continuum have delta-singularities at 
the point R = 0: 

Here p is the continuum density, and m,  1, and r are the 
amplitudes of the singularities of the Lam6 coefficients p 
and X, and of the density, respectively. 

Let us consider the feasibility of localized waves caused 
by this singularity. The boundary condition for such waves is 
their decay at infinity, hence the elasticity equations can be 
reduced to the d'Alembert equations in which transverse and 
longitudinal waves are separated.7 For simplicity, we only 
consider centrally symmetrical longitudinal waves. In this 
case, the strain field is characterized by a potential described 
by the scalar d'Alembert equation: 

In this equation U is the elastic displacement vector and Q, is 
the scalar potential. 

Given Eqs. (1) and (2) and the central symmetry of vi- 
brations, the equation for vibrations due to a structural defect 
can be reduced to 

where 

The terms containing first derivatives of the delta function 
and scalar potential are omitted in Eq. (3) because the solu- 
tion is presumed to be centrally symmetrical and the pertur- 
bation of elastic moduli point-like. 

With the change of variables 

we transform Eq. (3) to the form 
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where 

We solve the equation containing the Laplacian in the form 
of Eq. (5) using the Hankel transform of order 112: 

where 

and s is the transform parameter. After substituting 
= qo exp(- wt) into Eq. (4) and using the Hankel trans- 

form, we obtain 

where 

Thus we have 

Finally, the inverse transform yields 

Given a specific model of the defect kernel, the param- 
eter w can be derived from Eqs. (8) and (10). In other words, 
if we assume that Eq. (8) is valid at a small distance R = K ,  

the parameter w can be derived from the equation 

In some range of parameters, this equation has complex 
roots w = d +  io with a negative real part, which implies the 
existence of a localized vibrational mode. As expected, char- 
acteristic vibrations of the combined defect continuum sys- 
tem decay exponentially with distance. Excitation of such 
vibrations can be described in terms of linear resonance, i.e., 
there is an external-field frequency o at which these vibra- 
tions have maximum amplitude. This shape of the vibrational 
spectrum is typical of crystals with interstitial  defect^.^ Simi- 
lar results, namely exponential decay with time and distance, 
were obtained in solving for the characteristic vibrations of 
an infinite elastic medium with a spherical void? 

The strain field potential described by Eq. (10) decays 
exponentially with distance. In other words, the mode due to 
a defect caused by a point-like singularity in an elastic con- 
tinuum is highly localized. Highly localized high-frequency 
modes are well known in a wide range of amorphous sys- 

tems, and the present approach to these defects can be ap- 
plied to the elastic strain field generated by such vibrations. 
Linear vibrations in the vicinity of a screw dislocation in a 
crystal also turn out to be highly ~ocalized.~ 

Higher harmonics and transverse waves can also be ma- 
lyzed using this technique. This analysis is not given in the 
paper because it is very cumbersome. It is obvious, however, 
that the basic qualitative conclusions about the nature of 
these vibrational modes (such as exponential decay and 
strong localization) also apply to more complex vibrations. 

Can a model based on such vibrations adequately de- 
scribe the low-frequency localized excitations responsible for 
the anomalous thermodynamic properties of glasses at low 
temperatures? The answer should probably be negative. 
First, according to our present understanding of thermody- 
namic anorna~ies,'~ parameters characterizing phonon ab- 
sorption are universal for a wide range of glasses (essentially 
all glasses except metallic ones). This universality can be 
theoretically interpreted only by assuming a strong interac- 
tion among localized vibrational modes. The strong interac- 
tion demands that the elastic strain field as a function of 
distance be described by a power law ( R - ~ ,  see Ref. 10) 
rather than by an exponential one, i.e., the vibrational mode 
must be localized weakly rather than strongly. Second, all 
computer simulations" and physical experiments indicate 
that the localization region of a soft mode is notably larger 
(three to four coordination spheres) than that of a high- 
frequency mode, and spectral bands of the two types of ex- 
citation are separated, since strongly localized high- 
frequency modes occur on the high-energy edge of the 
phonon spectrum. 

These considerations lead us to conclude that soft vibra- 
tions cannot be described using the linear approach. This will 
obviously be so even if we abandon the model of a point-like 
perturbation of an elastic continuum. 

This means that the anharmonicity of interatomic inter- 
action must be included in the model of localized vibrations, 
and the effect of the anharmonicity on the vibrational spec- 
trum must be considered. 

3. VIBRATIONS OF ELASTIC CONTINUUM WlTH A 
STRUCTURAL DEFECT WlTH ANHARMONICITY OF 
INTERATOMIC INTERACTION TAKEN INTO ACCOUNT 

Anharmonicity is included in the model of longitudinal 
waves, which was invoked in the linear approximation in the 
previous section. Let us consider Eq. (2) for the elastic strain 
potential supplemented with terms describing a cubic 
nonlinearity 12: 

We consider small oscillations in the system described 
by Eq. (12) in the presence of a permanent structural defect. 
To this end, we express the solution for the potential @ as a 
sum of the field generated by the structural defect and a 
small time-dependent component (as in the previous section, 
only solutions with central symmetry are discussed): 
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FIG. 1. One-dimensional three-atom model. 

Substituting this expression into Eq. (12) and retaining only 
terms linear in f, we obtain 

The substitution f = fo exp(iot) turns Eq. (14) into a Bessel 
equation with a nonvanishing right-hand side. By using an 
approach similar to that of the previous section, i.e., assum- 
ing point-like singularities in elastic moduli and density, we 
can prove that the equation has localized solutions with the 
following properties.8 

(1) If 

acquires the equation can be the standard Bessel form with 
an imaginary exponent v. In this case, it can be solved using 
the K-transform, and its solutions can be expressed in terms 
of Bessel functions of the first kind, which decay as a power 
of the distance. 

2) If DB does not fall in the interval defined by Eq. (IS), 
solutions similar to those discussed in the previous section 
can be expressed in terms of modified Bessel functions of the 
third kind (Besse or Macdonald functions), which decrease 
exponentially with distance. 

Thus, power-law decay of the localized vibration ampli- 
tude with distance (weak localization) is a property of a non- 
linear elastic continuum with a structural defect only over a 
certain range of the volume dilation around the defect and 
the anharmonicity parameter. The anharmonicity factor B 
can be estimated to be 

where a3 is the coefficient of the cubic term in the inter- 
atomic potential (the interatomic distance a. is included be- 
cause this factor must have the same units as the elastic 
modulus. 

In the case of positive dilation (D<O), (15) is satisfied 
if and only if the anharmonicity of the interatomic potential 
is negative, i.e., a3<0.  If the dilation volume is negative, 
(15) is satisfied if the coefficient of the cubic term of the 
interatomic potential is positive, although the absolute value 
of this factor turns out to be comparable to the elastic moduli 
of the material, i.e., to the linear rigidity of this potential. 

The relationship between features of the phonon spec- 
trum due to a structural defect and the specific microstructure 
of the center of this defect is a very difficult problem. In 

FIG. 2. Typical shape of two-atom interaction potential. The presence of an 
inflection point enables us to introduce an effective two-well potential. 

order to get some idea of this relationship, we consider the 
simplified three-atom model shown in Fig. 1. Suppose that 
the atoms interact with each other through the potential given 
in Fig. 2. In this case, the effective potential acting on the 
atom 2 varies with interatomic distance as shown in Fig. 3. 

This potential obviously undergoes a transition between 
states with one and two equilibrium positions. Let us focus 
our attention on the region around this transition. If the po- 
tential has two wells, its second derivative at the center is 
negative. The transition between the states with one and two 
wells leads to a sign change in the quadratic term of the 
potential expansion around the center. This means that from 
continuity considerations, at least one of the two relations 

FIG. 3. Effective potential acting on the middle atom in the three-atom 
model at different distances between atoms. 
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between the coefficients of the linear and nonlinear terms in 
the potential expansion mentioned above must be satisfied 
near the transition, resulting in weak localization of the de- 
fect phonon mode. 

It is clear that far from this transition (near the minimum 
of the pairwise interaction potential), the condition of weak 
localization cannot be satisfied because the positive anhar- 
monicity factor is small compared to that of linear rigidity. 
Therefore the necessary condition of weak localization in 
this model is that the potential parameters be in the vicinity 
of the transition between the states with one and two wells. 

From the viewpoint of real glasses, this conclusion is 
very approximate. Really, the proposed model implies that 
the anharmonicity is constant throughout the continuum, 
whereas in real materials the transformation can take place 
only in one or more neighboring bonds of a defect kernel. 
Note, however, that since the elastic stress rapidly drops with 
the distance from the defect, the nonlinear interaction takes 
place mostly in the neighborhood of the kernel. This sug- 
gests that the above conclusion also applies to realistic sys- 
tems with strong local nonlinearity. 

Thus, using the above reasoning and the terminology of 
Ref. 13, we may assert that there are states with "softened' ' 
one-well and two-well potentials in which weak (power-law) 
localization of vibrations is possible. According to the inde- 
pendent conclusions reported in Refs. 3 and 13, these states 
are responsible for the anomalous thermal conductivity and 
heat capacity of glasses at temperatures near absolute zero. 

On the other hand, it is clear that the microstructure of 
such states is very different from that of the bulk material 
(this depends on proximity to the transition point). Therefore 
we may conclude that generation and evolution of structural 
defects under consideration leads to irreversible modifica- 
tions in the microstructure (topology) of the amorphous sys- 
tem. Thus there is every reason to suppose that such defects 
may also control the process of plastic deformation in an 
amorphous system. 

The approximate estimate of the anharmonicity effect 
given above does not yield an expression for the long-range 
strain field due to a localized vibrational mode that can be 
compared to computer  simulation^."*'^ But it follows from 
the above discussion that the oscillation amplitude drops as a 
power of the distance. For a more detailed description of the 
elastic strain field due to a soft localized vibrational mode, 
we have to consider a model of a static point defect. 

4. MODEL OF A STATIC STRUCTURAL DEFECT 

From the viewpoint of the theory of a continuum with 
Volterra defects, an arbitrary point defect can be described as 
a set of cuts, splices, and inserts in an infinite elastic con- 
tinuum in a local region. The distinctive feature of all com- 
binations of such elements is that the elastic displacement 
field decays as R - ~ ,  and accordingly the stress field decays 
as R - ~ .  This stress distribution is typical of vacancies. 

The presence of a "defect ringw5 implies anisotropy of 
the local elastic field caused by the break of one interatomic 
bond (the alignment of this bond defines a singular direction 
in the elastic field generated by a defect). It is reasonable to 
suppose that the system is axially symmetric about this di- 

rection, which means that all other sources of anisotropy 
have a weaker effect on the elastic field than one broken 
bond. 

Writing the elastic equilibrium equations for an isotropic 
continuum in spherical coordinates, 

UB C O S O ~ U +  
p [ 2  v u , + 7  R2jd,",R ---- 2 s i n 2 6  ax)] 

X + p  d B  +--- 
R sin 8 dR - 0, 

where 

1 d2 + 
R~ sin 8 3' 

1 d 1 a 
L?Z= 7 - ( R ~ u ~ ) +  - 

R dR 
-(sin 6UB) 

R sin 8 d8 

1 dU+ +-- 
R sin 8 d + '  

assuming that all components of the displacement field are 
proportional to R-2, and taking the polar axis (0= 0) as a 
symmetry axis of the strain field due to a structural defect (in 
this case, all its components are obviously independent of 
4), we obtain the following singular solution: 

In this equation y= 2pl(3A +5p) .  The parameters A and 
C are determined by the microscopic structure of the defect 
core. The parameter C determines the contribution of dila- 
tion to the defect strain field. In fact, if we take the limit 
A -+O in Eq. (17) and assume that A C = const, we obtain the 
field generated by a conventional vacancy or a dilation ten- 

ter. 
Another approach to the strain field generated by a point 

defect can be based on the concept of one broken interatomic 
bond. From the viewpoint of the theory of elasticity, this 
approach is equivalent to a pair of equal forces, directed 
oppositely, and applied to two points on a straight line 
aligned with the forces in the continuum. The resulting field 
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can easily be calculated and is called in the literature a field 
generated by a pair of forces with zero momenL7 This field is 
described by the following equation: 

(no summation over the repeated index is assumed). In this 
equation F is the applied force and h is the distance between 
application points (usually the limit h - + O  at Fh  = const is 
considered). By comparing Eqs. (17) and (18), we can find 
the relation between the parameter A and parameters of the 
defect core: 

5. SMALL PERTURBATION OF A STATIC DEFECT AS A 
LOCALIZED MODE 

It is known that the displacement field in a dynamic 
problem can be expressed as a sum of potential and solenoi- 
dal components: 

U=V@+curl W, (20) 

which, in turn, are determined by the scalar and vector 
d' Alembert equations: 

where 

The problem is to find the profile of the localized vibra- 
tional mode due to an anisotropic structural defect whose 
strain field is determined by Eq. (17). It is natural to suppose 
that the dynamic strain field has the same symmetry as the 
steady-state defect field. Then it is easy to obtain expressions 
for the scalar and vector potentials: 

@ = G I  f iZ5/2(k2~)(3  cos 20+ l)eiO', 

In this equation 

is the spherical Bessel function of order 512. 
It follows from Eq. (22) that the singularity in the dy- 

namic mode is described by the function R - ~ ,  which contra- 
dicts the accepted model of a steady-state defect. A solution 
which describes a microscopic model of a "breather" in a 
defect structure in terms of the theory of elasticity and is due 
to a pair of equal and oppositely directed forces periodic in 
time should, obviously, have a singularity at the origin simi- 

lar to that of the steady-state solution. This condition is sat- 
isfied if the following constraint is imposed on the param- 
eters of the scalar and vector potentials: 

Given this condition, we finally obtain the following expres- 
sions for the displacement field of the soft mode generated 
by a structural defect: 

X ( 3  cos 28+ 1 )eiO', 

- 6 4; Z512(k2R) sin 28eiY'. I 
These expressions yield an estimate of the localization 

radius of the studied mode equal to the position of the first 
zero of the radial displacement component (this radius is, 
naturally, a function of the frequency). Then we can compare 
the localization radius derived from our model to the results 
of computer simulations and calculations of the spectrum of 
a disordered system of identical spheres." According to 
these data, low-frequency localized modes exist in a fre- 
quency band of ( 0 . 0 5 - 0 . 1 ) ~ ~ ~  , where om, is the optical 
phonon frequency in the system. In these calculations, the 
localization region of the excitation contains about three or 
four coordination spheres, which is in good agreement with 
the estimate derived from Eq. (24). 

Our results lead us to the conclusion that the linear 
theory of elasticity applied to the calculation of the profile of 
a localized vibrational mode yields fairly accurate results 
even for the region near the defect kernel. Therefore its ap- 
plication to the analysis of static defects and their interaction 
is justified. 
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