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The selection rules and expressions for the matrix elements of transitions are obtained in the 
semiclassical approximation for cubic semiconductors with consideration of the real band structure. 
The results are expressed in terms of the wave functions in a quantum well without a 
magnetic field and the characteristics of the classical motion of the particles in orbits in a magnetic 
field. It is shown that the intensity of a transition is the result of the interference of the 
fields of the emitting dipoles corresponding to the crossing points of the electron and hole orbits. 
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1. INTRODUCTION 

Magneto-optical transitions in quantum wells have been 
actively studied in recent years.' The hole wave functions 
and the transition matrix elements are usually calculated nu- 
merically for the lowest Landau  level^^-^ and, as a rule, in 
the cylindrical approximation. The warping of the valence 
band was taken into account in a calculation of the hole 
spectrum in a quantum well in Ref. 5 and in a calculation of 
the optical transitions in the bulk in Ref. 6. The purpose of 
the present work is a semiclassical treatment of interband 
magneto-optical transitions. Such a treatment will enable us 
to express the wave functions and transition matrix elements 
in a magnetic field in terms of the corresponding quantities 
in the absence of a magnetic field. It would then be possible 
to take into account features associated with the real band 
structure and the symmetry of a quantum well. We note that 
hole states in a magnetic field were previously treated semi- 
classically for the bulk case7 and in the spherical approxima- 
tion for a quantum well.') 

From a semiclassical point of view, optical transitions 
occur at the crossing points of electron and warped hole or- 
bits with coinciding centers. An oscillating dipole is associ- 
ated with each such crossing point. The interference of the 
fields of these dipoles shapes the intensity of each transition 
and leads to selection rules. The relative phases of the di- 
poles are determined by the geometric characteristics of the 
orbits, which, in turn, are related to the symmetry of the 
crystal. 

The overall symmetry properties of the wave functions 
of electrons and holes in a quantum well without a magnetic 
field are described in the Appendix. The following types of 
symmetry are considered: O h  and T d  symmetry for the bulk 
material in a symmetric quantum well (OhS  and TdS) ,  as 
well as in an asymmetric well ( O h A  and TdA) .  In addition, 
the frequently employed cylindrical approximation, i.e., CS 
and CA symmetry, is also considered. This approximation is, 
in fact, realized in a quantum well (in contrast to the bulk 

characteristics of the classical motion of the particles in or- 
bits in a magnetic field. We note that the classification of the 
states at the Landau levels in the valence band is ambiguous. 
The numbering chosen in the present work seems most natu- 
ral to us. For a specific size-quantized subband, two states 
correspond to each Landau level number. Under OhS sym- 
metry one of these states is symmetric, and the other is an- 
tisymmetric with respect to the reflection fi, , and they have 
opposite magnetic moments. 

In Sec. 3 semiclassical expressions are obtained for the 
matrix elements of magneto-optical transitions. Selection 
rules are derived for each of the types of symmetry enumer- 
ated above. The selection rules for CS and CA symmetry 
can be interpreted as an angular momentum conservation 
law. Under O h S ,  TdS,  and O h A  symmetry the angular mo- 
mentum is maintained with an accuracy to 4 N  ( N  is an in- 
teger). In all these cases the transitions are circularly polar- 
ized. Under TdA symmetry there is an additional axis in the 
plane of the well, and the transitions are elliptically polar- 
ized. 

The results of numerical calculations for a rectangular 
well with infinitely high barriers based on GaAs in the ap- 
proximation of OhS symmetry are presented as an example. 

It is assumed in this work that the well points in the 
[OOl] direction, and that the magnetic field and the light ray 
are perpendicular to the plane of the well (this Faraday ge- 
ometry). The Coulomb interaction between an electron and a 
hole is neglected. 

2. WAVE FUNCTIONS OF ELECTRONS IN A MAGNETIC 
FIELD 

The wave functions of valence-band electrons can be 
written in the form 

case) at values of the kinetic energ~(com~ared Here the are the Bloch amplitudes at the top of the va- 
with the size-quantized energy). lence band [see (AS)], and the $,, are the envelopes, which 

In Sec. 2 the wave functions of electrons at the Landau satisfy the following equation with an effective matrix 
levels in the valence and conduction bands are expressed in Hamiltonian: 
terms of the wave functions and the spectrum in a quantum 
well without a magnetic field, as well as in terms of the {&(z, i )  -HM,}&=E&, (2) 
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where 5% is a matrix that depends on the operators 
hk= - ihV - ( e l c ) A  ( k  is a two-dimensional vector in the 
plane of the well, and e = - lei is the electron charge) and is ,. 
an operator with respect to the variable z ,  M I  is a matrix that 
describes the direct interaction of the intrinsic magnetic mo- 
ment of the electron with the magnetic field, and 6 is a 
column vector with components $, . In accordance with the 
semiclassical method we write 6 in the form 

$= exp[iSlf i ] i .  (3) 

Then in the zeroth approximation with respect to h we obtain 
a 

the system of equations (it is assumed that M, is first-order 
with respect to h )  

&(z ,k ) i=  ~ i ,  (4) FIG. 1. Trajectories of the valence-band and conduction-band electrons. The 

where f ik=VS- (e1c)A. centers of the orbits are located at the point x= y = O .  The crossing points of 
the orbits are numbered (just like the corresponding sectors in the k plane; 

Equation (4) is the for the the see the Appendix). The arrows indicate the direction of motion of particles 
wave functions of an electron in the valence band in the in the orbits. 

absence of a magnetic field. In the case of OhS or CS sym- 
metry, it has two solutions: x?)(z,k) and X L - m ) ( ~ , k ) ,  
which correspond to the same energy E = E ( k ) .  The proper- 
ties of these solutions are considered in the Appendix. To be 
specific, we assume that the solution X?)(z,k) is symmetric 
and that XL-m'(z,k) is, therefore, antisymmetric with respect 
to the reflection fIz (the value of Iml is fixed by the type of 
the size-quantized subband: 1 m  1 = 312 for heavy-hole sub- 
bands and Iml= 112 for light-hole subbands). 

In analogy to Ref. 7 we can write 

solution, and the wave functions '4' in the magnetic field can 
be characterized by m or ( - m ) ,  respectively. Then the func- 
tion *(") is symmetric, and *Ir(-") is antisymmetric under 
the reflection fi, . 

To be specific, we now introduce the Landau gauge in 
the coordinates x and y (see Fig. 1): A,=O, A,= Hx. The 
x and y axes are turned through a d 4  angle relative to the 

X,= ~ - " ~ [ b , ~ ( ~ ) +  b_, i ( -"')] ,  ( 5 )  X and Y crystal axes, as is shown in Fig. 1. This choice of 
coordinate system was dictated by the shape of the hole or- 

where a is the Jacobian for the transformation from Carte- bits. The action is written in the form S= fiqy + hs(x) ,  
sian to radial coordinates, and the b , ,  satisfy the transfer q = const is an integral of the motion, 
equations 

( P )  M"= d~ c X ,  rr'X,t 9 (6) h c 
P?,' X - 4 .  

O - ~ H  
in which a and P run through the values of m and - m (the 
value of Iml is fixed) and M,,! is the magnetic moment 
matrix operator: 

In deriving Eqs. (6) we introduced the time on the trajectory, 
t, on which the kinematic momentum vector k depends: 
hdWdt= (elc)(vX H). 

It can be shown that the off-diagonal elements of the 
matrix M"P are equal to zero, i.e., Mm.-m=M-m,m- - 0 ,  be- 
cause $'") and i(-,) have different symmetries under the 
reflection nZ. Therefore, the system (6) decomposes into 
two independent equations for b ,  and b - ,  , each of which 
can easily be solved. The value b-,=O can be chosen for 
one of the solutions, and b,=O can be chosen for the other 

This choice of gauge corresponds to a family of trajectories 
having centers with the coordinates (xo ,yo). We assumed 
that xo=const and that the trajectories in the family have 
different values of y o ,  which constitutes the second radial 
coordinate (besides t). In this case u= lv,l. 

The equation E = E ( ~ )  defines k, as a function of k , ,  
and therefore of x ,  according to (8) .  At each point x there are 
two solutions of this equation for k, that differ in sign. (The 
x,y coordinate system, rather than the X,Y system, was cho- 
sen specifically because in this system the equation 
E= ~ ( k )  = const has two and only two solutions of k, at a 
given ky for a real band structure.) 

In accordance with the Keller-Rubinov method: the 
true wave function is a sum of functions corresponding to 
two leaves, on one of which k,>O, while on the other 
k,<O. Thus, the components of the wave function of the 
valence-band electrons in a quantum well in a magnetic field 
have the form 

147 JETP 83 (I), July 1996 A. Yu. Dobin and V. I. Perel' 147 



Here the normalization length is assumed to be equal to 
unity, w is the cyclotron frequency, h k  is the momentum of 
the electron in the classical orbit at the point x, 

In writing Eq. (9), we took advantage of the fact that in the 
second leaf $(x) changes sign and that the function i("') in 
the second leaf can be obtained using the operator  see 
(A7)]. The point a is the left-hand turning point, and t(x) is 
the time of motion from a to x. It was taken into account that 
upon passage from the first to the second leaf (passage 
through a caustic), a phase of ~ 1 2  is acquired, and a normal- 
ization factor is introduced? In (10) M denotes the diagonal 
element of the matrix MmP from (6). The index m (or 
-m) is omitted everywhere for the sake of brevity. 

The quantization conditions have the form 

where b is the right-hand turning point. If we introduce the 
area A of the orbit in the k plane and the magnetic moment 

1 T 
p= ,j Mdt 

0 

[T is the orbital period, and t(b)= - TI2 for the valence- 
band electrons] into the discussion, (12) can be rewritten in 
the form 

where A is the magnetic length. We stress that by virtue of 
(AIO), the values of M and, therefore, the magnetic moment 
p differ in sign for the states Q("') and *(-") belonging to 
the same Landau level. 

Let us now consider the changes caused by lowering of 
the symmetry due to the lack of an inversion center (Td 
symmetry for the bulk material or asymmetry of the quantum 
well). We assumed that the Hamiltonian in Eq. (2) can be 
written in the form &(z,k) = k 0 ( z , k )  + &(z,k), where 
ko (z ,k )  is the Hamiltonian in the approximation of OhS 
symmetry, and the perturbation &(z,k) is due to the absence 
of the inversion center. We first assume that this perturbation 
is small. Then in the zeroth approximation we can write 
g 0 ( z , k ) i = ~ i  instead of Eq. (4), and we can include 
&(z,k) in the transfer equation along with ( - HM ,,). For 
i we obtain Eq. (9, in which i("') and i(-"') are eigenfunc- 
tions of the Hamiltonian h0 (z ,k )  that are assigned to the 
same energy E=co(k). In Eq. (3) for 6 it must be borne in 
mind that the action S is determined by the energy c0(k). 

The modified transfer equations will have the form (6) 
with replacement of the matrix ( -  HM@) by the matrix 
G ~ P =  - HM@+ uffP. In these equations the terms fidbldt 
and HMb are of order h o b  (hw is the distance between 
neighboring Landau levels), and the term Ub is of order 
A E ~ ,  where AE is the splitting between the two branches of 
the size-quantized subbands (without a magnetic field) 
caused by the lack of an inversion center. When h w 9  AE, 
we can neglect the term Ub in the modified transfer equa- 
tions, and we wind up with the case of OhS (or CS) sym- 
metry considered above. Thus, even when there is no inver- 
sion center, in a sufficiently strong magnetic field the states 
can be considered nearly symmetric or antisymmetric under 
the reflection fi, . As the magnetic field weakens, we go over 
to the situation h w 4  A E , in which the two branches assigned 
to one size-quantized subband are quantized in the magnetic 
field independently of one another. 

We shall not dwell on the solution of the modified trans- 
fer equations in this limiting case. Instea:, we at once [with- 
out assuming that the perturbation &(z,k) is small] consider 
Eq. (4), assuming that it has a unique solution for each of the 
two nondegenerate (when k Z 0)  branches of the size- 
quantized subband. Now, instead of the system (6) we have 
one transfer equation for each of the branches. Equations 
(7)-(13) remain in force as before. The quantization condi- 
tions (13) give two independent Landau ladders, which are 
shifted along the energy scale relative to one another by an 
amount of order A E 9 h W. 

We focus our attention on one significant circumstance. 
The wave functions in the absence of a magnetic field, 
which are used to construct the semiclassical states in a mag- 
netic field, can contain an arbitrary phase factor that depends 
on k. The choice of this phase factor cannot, of course, alter 
the physical results. In fact, according to (7), the multiplica- 
tion of i by the phase factor exp[iP(k)] leads to the addition 
of (-dpldt) to HMIh. As a result 6 acquires only the 
constant phase factor exp[iPo], where Po is the value of 
P(k) at t=O. However, variation of the phase factor alters 
the magnetic moment p and the numbering of the Landau 
levels. More specifically, if the phase P(k) acquires an in- 
crement 2 r N  (where N is an integer) during a complete 
period, the magnetic moment p [according to (12)] acquires 
the term ( - NfioI H), which corresponds to a change in the 
level number n [under the quantization conditions (13)] by 
n+N. 

It can be shown that by assigning the indices m to the 
states [i.e., by assigning transformation laws using the opera- 
tors Q;"') or g:)], we fix the increment of the phase of the 
wave function in a complete period to an accuracy of 
277-4N (N is an integer). Thus, the magnetic moment p is 
fixed to an accuracy of 4NfioIH, and, therefore, the 
Landau-level number is fixed to an accuracy of 4N. 

Under OhS (or CS) symmetry the assignment of the 
indices m and -m to states having the same Landau-level 
number leads to the usual scheme of Landau levels split by 
+-pH. In cases of lower symmetry this scheme is main- 
tained approximately, if the magnetic field is strong enough 
for hw to be greater than the splitting between the two 
branches of the spectrum in the absence of a magnetic field. 
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FIG. 2. Dependence of the g factor (dotted lime), the cyclotron mass (solid 
line), and the maximum and minimum mass in the plane of the well (dashed 
curves) on the hole energy for the Erst heavy-hole subband; 
elhh= ( y I  - 2 Y 2 ) ( f i 2 2 m o ) ( n / ~ ) 2  is the size-quantized energy of the first 
heavy-hole subband in a well of width L. 

In the opposite limiting case this scheme no longer holds: the 
two Landau ladders associated with the two branches of the 
spectrum are independent. Despite this, as before, it is con- 
venient to assign the indices m and - m to them. 

To conclude this section, we present some results of the 
numerical calculations for the first heavy-hole size-quantized 
subband in a rectangular quantum well based on GaAs with 
infinite barriers. The lack of an inversion center in GaAs was 
ignored (i.e., OhS symmetry was assumed). We used the 
wave functions and the spectrum E , ( ~ , ( P )  in the absence of a 
magnetic field that were obtained in Ref. 10 with the Lut- 
tinger parameters yl  = 6.8, y2= 1.9, y3 = 2.7, and K = 1.2. 

Figure 2 shows the plots of the energy dependence of the 
hole cyclotron mass 

h2 dA,  
mu=- - 27r d e ,  ' 

as well as the greatest (in the [110] direction) and smallest 
(in the [loo] direction) effective lateral masses 

The figure also shows the hole effective g factor 
g* = 4 p u H l h o u .  The value of p ,  was calculated using Eqs. 
(6), (7), and (12), and w,=eHlm,c.  

The wave function of a conduction-band electron can be 
constructed in a similar manner [compare (A20)] 

The expression for 4, coincides with (9) when x , ( z ,k )  is 
replaced by v , (z ,k)  and j= 312 is replaced by j= 112. Under 
the quantization conditions (13) we must replace (-no) by 
n o .  

3. MATRIX ELEMENTS OF INTERBAND OPTICAL 
TRANSITIONS 

The probability of optical transitions can be expressed in 
terms of the matrix elements of the operator $.e, where e is 
the light polarization vector (when the direction of the light 
ray is chosen normal to the plane of the quantum well, the 
vector e has the components ex and e y )  and $ is the momen- 
tum operator, which acts only on the Bloch amplitudes. On 
the basis of the definitions of these amplitudes (see the Ap- 
pendix), we have 

where P = i (Aixl%),  e ,  =ex? i e y  , and the remaining 
matrix elements are equal to zero. Using the equations ob- 
tained above, we find 

In the overlap integrals of the electron and hole envelopes we 
neglect in terms that oscillate rapidly in x ,  and we take the 
remaining integrals over x by the saddle-point method. At 
the saddle point d A  0ldx = 0, where A 0= 0 , (x )  - 0 , (x ) ,  and 
in the semiclassical approximation only the difference be- 
tween the actions As = s , (x )  - sc (x )  should be differenti- 
ated. (Here and in the following, the subscript v refers to the 
valence band, and the subscript c refers to the conduction 
band.) Then the saddle point is determined by the condition 
kux= kc,, while according to (8) we have kUy= kc, for all 
x .  This means that the main contribution to the overlap inte- 
gral is made by the crossing points of the trajectories of the 
valence-band and conduction-band electrons (Fig. 1). 

Taking into account that 

we have 

Thus, 

Here 
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The subscript 1 indicates that the corresponding quantity 
must be taken at the orbit crossing point labeled 1. The co- 
efficient B is identical for all meeting points. 

In a bulk material with Oh symmetry (OhS and OhA 
wells), according to (A7) and the analogous equations for the 
conduction band, we have 

where A, =mu - m, + 1.  Then, it follows from Fig. 1 and the 
quantization conditions (13) that 

where An = n u  - n, . Performing the summation in Eq. (19) 
with the use of (21) and (22), we find the selection rules 
A + +  A n = 4 N ,  i.e., 

Here the plus sign corresponds to right-handed polarization, 
and the minus sign corresponds to left-handed polarization. 

The left-hand side of the equality (23) can be interpreted 
as the change in total angular momentum during the transi- 
tion (which includes the "momentum" of the electron 
n + m and the photon + 1 ). The lack of conservation of an- 
gular momentum is due to warping of the orbits. 

When the selection rules (23) are obeyed, 

The number N in the selection rules (23) is restricted 
with semiclassical accuracy by the condition for crossing of 
the electron and hole orbits. This condition can be illustrated 
by the model used for Fig. 2 (a rectangular well in GaAs 
with infinite walls). The solid curve in Fig. 3 depicts the 
dependence of the area of the hole orbit on the hole energy. 
The dashed curves show the areas of the electron orbits in- 
scribed and circumscribed around the hole orbit with the 
assigned energy (see the inset in Fig. 3). To determine the 
energy range of the holes whose orbits cross a given electron 
orbit, the following construction must be performed. The 
area (in the k plane) of the electron orbit A,= 27rncX-2 is 
determined from the number n, of the electron Landau level, 
and it is plotted on the y axis. The segment (E,,,~~,E,,,,) 
marked off in Fig. 3 on the x axis gives the range of hole 
energies sought. The range (A,,mi,,Au,,,) on the y axis is 
the corresponding range of hole orbit areas, which can be 
used to determine the number of the hole Landau levels 

FIG. 3. Areas of orbits. Inset: limiting cases for the relative positions of the 
electron and hole orbits. An explanation is given in the text. 

( ~ , , , ~ ~ ~ ~ / 2 1 r < n , < ~ , , ~ ~ ~ ~ / 2 7 r )  for which the semiclassical 
treatment of optical transitions performed above has mean- 
ing. We note that the relations between A,  and n,  and be- 
tween A, and nu do not take into account the magnetic mo- 
ments of the particles, which would provide only superfluous 
accuracy. 

Equation (19) expresses the transition dipole moment as 
a sum of the moments of the eight dipoles corresponding to 
the eight crossing points of the electron and hole orbits. 
When the selection rules (23) are obeyed, all the dipoles with 
even numbers oscillate in phase (this is also true for the 
dipoles with odd numbers). 

In the case of a symmetric quantum well, the selection 
rules (23) must be supplemented by a restriction associated 
with the symmetry under the reflection fi, : only transitions 
between states with identical symmetry are allowed. [Other- 
wise, according to (A9), the integrand in Eq. (20) is an odd 
function of z, and f + (k)  = O.]Then (A1 1) yields the relation 

Let us now move on to the case of TdS symmetry. Here 
we must use the operators @im) instead of Q?), as well as 
the relations (A17) instead of (A7). However, Eqs. (21) are 
retained, so that the selection rules (23) and the expressions 
(24) for the transition matrix elements are also retained. 

The situation changes significantly in the case of TdA 
symmetry. Here we have the symmetry not of a square, but 
of a rectangle oriented along the [110] axis. There are no 
symmetry relations like (A2) that would express the wave 
function in all sectors of the k plane in terms of its values in 
one of the sectors. However, there is such a relation between 
sectors 0 , 3 , 4 ,  and 7, as well as between sectors 1 , 2 ,  5, and 
6. Summing in Eq. (19) with the use of the permissible (with 
consideration of these restrictions) relations from (21) and 
(22), we obtain the selection rules 

(+ 1 +n,+m,) - (nc+mc)=2N.  (26) 

Here 
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It is seen that the selection rules (26) actually do not depend 
on the sign of the circular light polarization. 

Finally, let us consider the cylindrical approximation. In 
this approximation the orbits of both the conduction-band 
and valence-band electrons are circles. The radii of these 
circles must be close (in accordance with the condition 
A n G  n ,  ,nc);  otherwise, the overlap integral in (17) will be 
small. It follows from the quantization conditions (13) and 
cylindrical symmetry that 

where $(x) is the angle between the radius vectors of elec- 
trons at the points x and a ,  and $(x) = cp + "14. The depen- 
dence of the envelopes ,y,(z,k) on the angle cp is given by 
Eq. (A13), whence 

The overlap integral in (17) can be calculated by transform- 
ing from integration over x to integration over @ and utiliz- 
ing the fact that 

As a result we obtain the selection rules (23), but we must set 
N = 0 in them, which corresponds to conservation of the total 
angular momentum during the transition. Under these condi- 
tions 

The selection rules obtained above are presented in Fig. 
4 for transitions between the first exciton size-quantized sub- 
band and the first heavy-hole subband. The solid lines depict 
transitions that are allowed in a symmetric well in the cylin- 
drical approximation ( C S  symmetry). Transitions with a 
change in the Landau-level number by 2 are caused by the 
mixing of heavy- and light-hole states and are of low inten- 
sity when the hole kinetic energies are small (compared with 
the size-quantized energy). 

Under O h S  symmetry (i.e., with consideration of the 
warping of the valence band), besides the transitions indi- 
cated, transitions with a n,+n,  + 4N shift, which are not 
depicted in Fig. 4, become possible. Consideration of the 
Td symmetry of the bulk material (rather than O h )  or the 
asymmetry of the quantum well makes the transitions repre- 
sented by the dashed lines in Fig. 4 possible (with a possible 
n , - + n , +  4N shift). 

The same scheme of selection rules is also maintained 
for transitions between electron and heavy-hole size- 
quantized subbands with numbers of identical parity 
( lhh-3e,  2hh-2e, .  . .). 

FIG. 4. Transitions between the first heavy-hole size-quantized subband and 
the first electron subband. The Landau level n, in the conduction band is 
fixed. Only the Landau levels n ,  in the valence band from which a transition 
is possible to the n, level under cylindrical symmetry are shown. The ar- 
rangement of the right-hand Landau ladder relative to the left-hand ladder 
(along the energy axis) is schematic, and in reality is shifted due to the 
presence of a magnetic moment and the possible splitting of the two 
branches of the spectrum in the absence of  a magnetic field. 

If the subbands of the electrons and heavy holes partici- 
pating in a transition have different parities, the scheme de- 
scribed above changes. Under O h S  or C S  symmetry the tran- 
sitions represented in Fig. 4 by dashed lines are allowed, and 
lowering the symmetry makes the transitions represented by 
the solid lines possible. It is noteworthy, however, that in this 
case the optical transitions in a symmetric well always result 
from the mixing of heavy- and light-hole states, and there- 
fore their intensity is low when the hole kinetic energies are 
low. 

Simultaneous consideration of the lack of an inversion 
center in the bulk material and the asymmetry of the quan- 
tum well (TdA symmetry) leads to the appearance of an ad- 
ditional axis in the plane of the well. In this case all the 
transitions noted in Fig. 4 are possible in both polarizations, 
i.e., they are elliptically polarized. 

Transitions between electron and light-hole subbands 
can be treated similarly. 

To illustrate this, Fig. 5 presents an example of a calcu- 
lation of the possible transitions in the model used for Figs. 2 
and 3. The curves 8-16 numbered give the energies of the 
hole Landau levels with the respective numbers as a function 
of the magnetic field. The hole levels that can participate in 
transitions to the electron level having nc= 10 with plus po- 
larization are depicted. The solid portions of the curves cor- 
respond to orbits that cross the particular electron orbit. 

Horizontal segments are shown at three values of the 
magnetic field. Their lengths are proportional to the square 
of the absolute value of the transition matrix element I F + I ~  
[calculated from Eq. (24)l. We note that the intensity of a 
transition is proportional to IF + 1 2 /  h2 .  

The intensity has some special features when the elec- 
tron and hole orbits touch one another (see the inset in Fig. 
3). In this case the vector product in the denominator of the 
expression for B in (22) vanishes. These features are similar 
to those found by ~ o r t n o ~ "  for the distribution function of 
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FIG. 5. Energy of the hole Landau levels participating in transitions to the 
electron level n,= 10 with "plus" polarization. An explanation is given in 
the text. 

photoexcited electrons in a quantum well without a magnetic 
field. 

Thus, the selection rules and expressions for the matrix 
elements of interband optical transitions in a quantum well in 
a magnetic field have been obtained in this work. The warp- 
ing and complex structure of the valence band have been 
taken into account. The matrix elements in the semiclassical 
approximation have been expressed in terms of the wave 
functions of the electrons and holes in the absence of a mag- 
netic field. It has been shown that in this approximation the 
intensity of a transition can be regarded as resulting from 
interference of the fields of the eight dipoles corresponding 
to the crossing points of the electron and warped hole orbits. 
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APPENDIX A: WAVE FUNCTIONS IN A WELL WITHOUT A 
MAGNETIC FIELD 

Let us first consider a symmetric well with Oh symmetry 
for the bulk material (an OhS well). It is assumed that the 
well points in the [OOl] direction (the z axis). The X and Y 
axes are directed along the [loo] and [OlO] crystal axes in 
the plane of the well. We write the wave function of a 
valence-band electron in the form 

where k is the wave vector in the plane of the well, the u, 
are the Bloch amplitudes corresponding to angular momen- 
tum j = 312 and projection of the angular momentum onto the 
z axis p =  + 312, + 112. The superscript m  has the following 
meaning: when k t O ,  only one term with p = m  remains in 
the sum (Al) in the case of OhS symmetry under consider- 
ation. Thus, m  is the projection of the angular momentum 
onto the z axis when k t O .  It is customary to use the value 

of Iml to distinguish between the size-quantized subbands. 
The subbands with m =  + 112 are usually called light-hole 
subbands, and those with m  = 2 312 are called heavy-hole 
subbands. In an OhS well the + m  states are degenerate for 
all k. 

The k plane can be divided into eight sectors (Fig. 1). If 
is assigned for sector 1, its values for all the remaining 

sectors can be found to within a constant phase factor (which 
may depend on k) from symmetry arguments. This can be 
accomplished by successively applying the operators k ,  
fix, and R ,  which commute with the Hamiltonian. Here K is 
the time-inversion operator, fix causes reflection in the YZ 
plane, and R effects rotation through 71.12 about the z axis. 
These operators are defined in the following manner:12 

Here the $, are Pauli matrices, and IIx and R ,  acting on a 
radius vector with the components (X,Y,z), transfer it to 
(-X,Y,z) and (- Y,X,z), respectively. At the same time, 
the operators i, fix, and R do not alter m ;  therefore their 
application yields a state belonging to the same branch of the 
size-quantized subband. If k lies in sector I, we can specify 
the wave functions in the sector with the number m  by the 
equality 

Here the operators Qn act in the k plane and translate the 
vector k to equivalent points on the k plane (see Fig. 1): 

where IIx and R denote reflection and rotation in the k 
plane. If we use cp to denote the angle between the vector k 
and the X axis, Q2,+' translates cp to cp+pn/2, and Qzp 
translates cp to p 71.12- cp. 

The operations (A3) form the group of a square. We 
define the operators Qim) in the following manner: 

It is easy to verify that the operators Q:~) do, in fact, trans- 
late 9f"" into and the equality (A2) indicates a defi- 
nite choice of phases in sector n relative to sector 1. The 
phase factors in (A4) were chosen such that the operators 
(A4) form a group that is isomorphic to the group of a square 
(A3) for any half-integer j and m .  Thus, the equality (A2) is 
valid for any k and not just for k from sector 1 .  

Let us dwell on the question of why the operators Q:) 
in (A2) were chosen to be different for different values of 
m .  In principle, the phases of the functions l.~r%) in different 
sectors could have been determined from (A2) using the op- 
erators Q ~ O )  with any fixed half-integer value of mo that 
does not depend on m. However, it is natural that when 
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k+O, the function TF) should not depend on the direction 
of k. The phases in (A4) were chosen so as to be compatible 
with this requirement. 

We choose the phases of the Bloch amplitudes according 
to Ref. 13: 

where the V, are spin functions with a spin projection onto 
the z axis equal to 5 112. Then 

k u  6' =(- l)j+fiu-,, f i x ~ p = ~ - p ,  

fi,u,=(- 1)j-pu,, ku,= exp(-ip.rr/2]uP. (A61 

Using (A2), (A4), and (A6), for the envelopes we can find 

It is seen from (A7), in particular, that the envelope XF) 
with ,u=m (which remains as the only nonzero envelope 
when k+O) is not altered by the transformations Q?). 

The uniqueness of the wave functions requires that both 
Eqs. (A7) yield identical results on the sector boundaries. 
This means that 

("'(z,k)=(- l)m-"XF)*(z,k) for p=O, XP (A84 

?T 
X~)(~,k)=exp[i(,u-m)d2]X~)*(z,k) for cp= - 4 ' 

(A8b) 

It can be assumed that a state with given m has definite 
(independent of the number of the size-quantized subband) 
symmetry with respect to the reflection operation II,, i.e., 
either f i , ~ ~ ~ )  = qLm) or I?,qLm)= - 9Lm) . (The operator 
fI, commutes with the Hamiltonian and with the operators 
Q:) .) Hence it follows for the envelopes that 

The plus sign corresponds to the case in which the state is 
symmetric for the particular value of m ,  and the minus sign 
corresponds to the case in which it is antisymmetric. 

States with opposite values of m have opposite symme- 
try. If the state q?) is symmetric, 'Pipm) is antisymmetric. 
The latter state can be obtained from the former by applying 

A ,. 
the operator i E ,  where j is spatial inversion. In fact, KI 
anticommutes with I?, and therefore alters the symmetry. It 
can be assumed for the symmetric state pim) that 

It follows from this equation and (A9) that 

j+1/2 (m)* xLm(z,k)=(- 1 )  X-, (z,k). (A1 1) 

The relation (A10) must be compatible with the transforma- 
tion rules (A2). This requires that 

It can be shown that this relation does, in fact, hold for the 
operators (A4). 

The cylindrical (or spherical) approximation is often 
used. In this case the Harniltonian is assumed to commute 
with the operator iQ= exp(-&cp) for rotation through an 
arbitrary angle rp. We define ir) by means of the relation 
k('@)= (P exp(imrp)k,. Then, if the function qim) is specified 
at rp=O, it can be obtained at all cp using the operator 
R(") Q : qp)=k(,m)(?p)I (P=o), whence 

The symmetry under the reflection Q4 (which leaves the 
straight line cp= - d 2  in k space in place) shows that 
XF)lQ= -m12 is a real quantity. We note that (A13) satisfies 
the relations (A7). Equations (A9)-(All) hold, of course, if 
the well is symmetric. 

We have hitherto considered OhS (or CS) symmetry. 
We now move on to the case of an asymmetric well when 
the bulk material has Oh symmetry (an 0,A well). In this 
case two branches of the spectrum assigned to one size- 
quantized subband are nondegenerate when k # 0. When 
k+O, they become degenerate, but they turn into linear com- 
binations of states with m and - m, rather than into states 
with a definite angular momentum m. Nevertheless, it is con- 
venient to transform the states of one of these branches using 
the operators Qim) and the states of the other branch using 
QiPm) and to denote the corresponding wave functions by 
qLm) and qi-"). [We reiterate that the sign of m no longer 
has the same meaning that it had in the case of OhS symme- 
try, although, as before, Iml indicates whether the states be- 
long to a heavy-hole subband (Iml= 312) or to a light-hole 
subband (I m 1 = 112). ] Then Eqs. (A2)-(AS) remain valid, 
but (A9)-(A1 I), of course, do not hold. Equation (A13) con- 
tinues to be valid for CA symmetry. 

The operators that commute with the Hamiltonian in- 
clude z k 2 ,  which leaves the wave vector k unchanged. 
Since the states are nondegenerate in the case under consid- 
eration, kk2qLm) can differ from qkm) only by a phase fac- 
tor: 

Hence it follows for the envelopes that 

The phase yk depends on the choice of overall phase factor 
of the wave function. 

In the case of Td symmetry for the bulk material in a 
symmetric well (TdS symmetry), instead of the rotation k ,  
the rotation-reflection operator f i , ~  commutes with the 
Hamiltonian, and instead of the reflection fix, fixk com- 
mutes with the Hamiltonian. Therefore, instead of the opera- 
tors (A4), we can introduce the operators Cim) : 
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These operators [like the operators (A4)] form a group that is 
isomorphic to the group of a square (A3) and satisfy a rela- 
tion that is analogous to (A12). 

The following relations now follow from the equality 
pZk= gLrn)9p) instead of Eqs. (A7) and (A8a) [Eq. (A8b) 

remains valid]: 

X f ) ( z , ~ 2 p k ) =  ( -  l)(p+l)(j-p) exp[(m - p ) ( p + 2 ) ~ / 2 ]  

X(m)(z,k)=(- CL l)j-rnXF)*(-z,k) for cp=O. (A19) 

The equalities (A14) and (A15) also remain valid for this 
type of symmetry. 

The case of an asymmetric well with Td symmetry for 
the bulk material (TdA symmetry) requires special consider- 
ation. Here we no longer have the symmetry of a square, but 
the symmetry of a rectangle, in the k plane. The correspond- 
ing group consists of the operations Ql  , Q , ,  Q, , and Q6,  
which are defined by Eqs. (A3). Accordingly, the wave func- 
tions transform according to (A2) when n= 1, 2, 5, and 6. 
We note that for such n we have er)= Q?) and Eqs. (A7) 
and (A17) coincide. The boundary conditions for cp= ~ 1 4  
[Eq. (A8b)l remain valid, but there are no boundary condi- 
tions for cp = 0. 

The wave function of the conduction-band electrons can 
be written in a form similar to (Al): 

where p = + 112, m = 5 112, w, = iYvP . Here Eqs. (A6) re- 
main valid after the formal replacement of up  by w, and 
j= 312 by j=  112. All the remaining relations follow from 
them and therefore remain valid after the replacement of 
qk by ak, xP by v,, and j=3/2 by j=1/2. 

We note that Eqs. (A6) must be modified for a split 
valence band. 
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