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Spin relaxation is investigated in a system of interacting 2D electrons in a strong magnetic field 
perpendicular to the layer. The process corresponds to the annihilation of two-dimensional 
spin excitons with the emission (or absorption) of a phonon when the spin-orbit terms in the 
Hamiltonian are simultaneously taken into account. At low temperatures the deviation 
from equilibrium is uniquely specified by the number of "zero-point" excitons, which form a two- 
dimensional condensate. Annihilation in the condensate is accompanied by the acquisition 
of finite momentum by one of the zero-point excitons. When the z component of the total spin 
approaches the equilibrium value, relaxation is driven by the annihilation of "thermal" 
excitons, whose distribution is characterized by a Bose function. O 1996 American Institute of 
Physics. [S 1063-7761 (96)01907-51 

1. INTRODUCTION 

Spin polarization and relaxation in a system of two- 
dimensional electrons under the conditions of the quantum 
Hall effect (QHE) has already been the subject of numerous 
experimental (see, for example, Refs. 1-4) and the~ret ical~-~ 
studies. There is interest in this particular case, because such 
investigations provide a way to determine the fundamental 
properties of a 2D system in a strong magnetic field. One 
common feature of all the experiments cited was the fact that 
the two-dimensional layer was formed in them by a GaAsI 
AlGaAs semiconductor heterostructure, although the main 
results of the theoretical studies are valid, in principle, in the 
case of diamond-like semiconductors (a GeISi junction). The 
other experimental conditions, which of course also deter- 
mine the specific spin relaxation mechanism, were consider- 
ably more diverse. In formulating the problem we adhere 
mainly to the experimental conditions in Ref. 3, i.e., we re- 
strict ourselves to a spin-orbit relaxation mechanism in a 
homogeneous (without consideration of the edge effects), 
"pure" (with no paramagnetic impurities) system, and we 
neglect the exchange interaction of the electrons with band 
holes (see Ref. 10) in view of the small concentration of the 
latter. In addition, in accordance with Ref. 3, we assume that 
initially the deviation of the polarization from its equilibrium 
value is generally considerable, and that the total number of 
electrons in the system No is fixed during the entire relax- 
ation period, the filling factor v being odd: 

v=2n+ 1,  where v = ~ ? I . A ~ J & ~ L ~ .  (1.1) 

Here L X  L is the size of the 2D system, A =  ( c h l e ~ ) " ~  is the 
magnetic length, Bl)z (the magnetic field is perpendicular to 
the plane of the layer), n is the number of the half-filled 
Landau level (in Ref. 3, n = 0, 1). 

The Zeeman energy g,ubBS, removes the degeneracy 
with respect to the z component S, of the total spin. This is 
why the ground state of the system is a state with IS,[ equal 
to the highest possible value S = N l 2 ,  where ~ l r ,  ~ ~ 1 2 7 r A ~  
is the number of orbital states or the number of electrons in 
the nth Landau level, which amounts to the same thing, even 
when the Coulomb interaction is taken into account (in the 
absence of any off-diagonal terms with respect to S, in the 
Hamiltonian). We stress that such a simple "ferromagnetic" 
type of ground state is a consequence of the condition (1.1). 
The recent experiment in Ref. 4, in which the magnetization 
of a 2D system was determined (from the NMR Knight shift) 
as a function of v and the temperature, underlines the valid- 
ity of this assertion for v= 1, on the one hand, but demon- 
strates the radical alteration of the ground-state structure 
when v deviates from unity, on the other. As was asserted in 
some theoretical studies:-9 a complex spin and charge tex- 
ture appears in this case in the form of a lattice of so-called 
Skyrmions with a characteristic period proportional to 
11 - v(-'I2. We assume that (1.1) holds at least to an accu- 
racy of 1-2%; therefore, the ground state remains "ferro- 
magnetic," and the lower part of the spectrum, which is 
pertinent to the low-temperature range, is determined by 
spin-wave excitations (in accordance with the measurements 
in Ref. 4), which are the spin analog of two-dimensional 
Mott ex~itons.l'-'~ 

A special role is played in the spectrum of excited states 
by zero-point spin excitons, i.e., the lowest states in the spec- 
trum, which are separated from the nominal vacuum by the 
Zeeman gap E = lg 1 ,ubB and have a two-dimensional mo- 
mentum h q  equal to zero. The generation of zero-point ex- 
citons signifies only a change in the component S, of the 
system without a change in its spatial wave function. The 
corresponding transition is described by the action of the 
creation operator Q: for zero-point excitons on an arbitrary 

128 JETP 83 (I), July 1996 1063-7761/96/070128-18$10.00 O 1996 American Institute of Physics 128 



4 4 -(1 

/ \ 
FIG. 1.  a) Diagram of the annihilation of a zero-point 
exciton in a condensate. b) Diagram of the annihilation of 
a supracondensate non-zero-point exciton. 

state. Up to a normalization factor, this operator raises or 
lowers the spin index (depending on the sign of g): 

where the index i labels the electrons, the a are Pauli matri- 
ces, and a+ = (a,+ iu,)/2. If the Hamiltonian of the system 
B is diagonal with respect to S, , we have the commutation 
relations [ B , Q ~ ] =  ?EQ; (here Q ~ = Q ~ = ( Q ~ ) ' ) ,  from 
which it follows that the state obtained by applying Q: to 
the original eigenstate of the system will also be an eigen- 
state with the same value of the total spin S, but with an 
energy exceeding the initial value by 8. In such a system the 
zero-point excitons are noninteracting, and no exchange en- 
ergy appears when they are generated. 

Clearly, a significant deviation of I S , \  from its equilib- 
rium value (which is close to M I 2 )  in terms of exciton states 
can be interpreted as the appearance of a macroscopically 
large number of zero-point excitons in the system, which 
form a two-dimensional condensate (see Ref. 12). The return 
of S ,  to the equilibrium value under these conditions corre- 
sponds to the "spin-orbit destruction" of the condensate or 
annihilation of the zero-point excitons, which amounts to the 
same thing. 

At the same time, it is clear that spin relaxation is simul- 
taneously also energy relaxation (when one exciton is anni- 
hilated, a quantity of energy close to E is lost); therefore, it is 
possible, for example, when the nonstationary field due to 
the interaction of the electronic system with lattice vibrations 
is taken into account. To visualize this, we illustrate a relax- 
ation process in Fig. la. The broken lines in the diagram 
depict two zero-point spin excitons, which transform virtu- 
ally into two spin excitons with finite momenta1) (depicted 
by the thin lines). Then, an electron in one of these "non- 
zero-point" excitons passes to another Landau level with 
simultaneous spin flip by means of the spin-orbit interaction 
(the corresponding vertex is denoted by a cross), so that 
IS,I increases by unity, and the spin exciton transforms vir- 
tually into a purely orbital or cyclotron exciton, conserving 
the same q (the thick line in the diagram). Finally, the inter- 
action with the lattice returns the electron that has already 
been flipped to the original level, the orbital exciton vanishes 

(outlined arrow), and the momentum is imparted to a phonon 
(wavy line). The process as a whole involves annihilation of 
one of the two original zero-point excitons, with simulta- 
neous conversion of the other exciton into a non-zero-point 
exciton and the emission of a phonon. The probability of 
annihilation is given by the square of the absolute value of 
the corresponding vertex part. The rate of such relaxation in 
the condensate is proportional to the square of the number of 
zero-point excitons, and the relaxation process is nonexpo- 
nential. 

The direct annihilation of non-zero-point excitons gov- 
ems the relaxation process at a later stage, when the conden- 
sate is depleted and the system is close to equilibrium. The 
corresponding process is illustrated in Fig. lb. The relaxation 
rate is clearly proportional to the number of supracondensate 
non-zero-point excitons, which, in turn, is governed by the 
equilibrium Bose momentum distribution function. The func- 
tional dependences of the rate on the number of zero-point 
and non-zero-point excitons are thus fundamentally different. 
As equilibrium is approached, the relaxation process natu- 
rally becomes exponential. 

In the method used here we redefine the exciton states. 
For this purpose, in the one-particle Hamiltonian we go over 
to a basis which diagonalizes it in first order with respect to 
the spin-orbit interaction (Sec. 2), and in this basis we define 
the exciton creation operator, which we use to construct the 
states of the many-particle problem (Secs. 3 and 4). Thus, 
each exciton ceases to be a pure spin exciton, and it contains 
a small "admixture" (as indicated by the ratio of the spin- 
orbit energy to the cyclotron energy) of an orbital excitation. 
As a result, the electron-phonon interaction operator in the 
excitonic representation includes terms that do not conserve 
the number of excitons in the system, and the calculation of 
the vertex parts in the diagrams in Fig. 1 reduces directly to 
a calculation of the matrix element of the transition between 
two states differing with respect to the total number of exci- 
tons by unity. 

It must be borne in mind that apart from the processes 
illustrated in Fig. 1, at finite temperature there are analogous 
processes involving the absorption of a phonon. In addition, 
when S, of the system approaches the equilibrium value, the 
reverse processes of exciton generation must be taken into 
account (at equilibrium the annihilation and generation 
fluxes become equal). The calculation of the transition ma- 
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trix elements corresponding to all of these processes is elabo- 
rated in Sec. 5. 

Section 6 contains a direct calculation of the dependence 
of the spin polarization on time, and the summation is per- 
formed over the statistical distribution of the possible exciton 
states. We also assume there that the electronic system is a 
quasiequilibrium system characterized by the same tempera- 
ture as the phonons. The time for establishing thermal equi- 
librium is determined by the spin-diagonalized electron- 
phonon scattering matrix elements, and it is consequently 
considerably shorter than the spin relaxation time. 

Section 7 is devoted to a discussion of the calculation 
results and a comparison with presently available measure- 
ments. 

2. ONE-PARTICLE HAMILTONIAN 

As in the theoretical studies in Refs. 11-17, we shall 
assume that the usual conditions of the QHE, a two- 
dimensional system, and the presence of a strong magnetic 
field hold:2) 

Here d is the characteristic thickness of the layer, and 
2 r,=h eolrnce2 is the Bohr radius of the electron in the 

material. In energy units these inequalities take the form 
Id= e2/e0k <iiwC<fi2/mcd2, where o, is the cyclotron fre- 
quency and Pd is the interaction parameter, which is the char- 
acteristic value of the Coulomb energy per electron. As a 
result, for two-dimensional electrons the one-particle Hamil- 
tonian can be written in the effective-mass approximation 
with consideration of the spin-orbit terms in the form 

fi 
- iPk(k+u+ - k - a _ ) ,  where fiwCh2=-. (2.2) 

112, 

We used the usual notation: 

The energy is measured relative to the zeroth Landau level. 
The sign of the second term was chosen on the basis of the 
assumption that g<O. The form of the third and fourth spin- 
orbit terms is determined by the specific details of the two- 
dimensional problem, although they have different origins. 

The term with the coefficient a was first introduced into 
the effective-mass Hamiltonian in Ref. 18 to describe the 
band structure of semiconductors with a wurtzitic crystal lat- 
tice. In cubic semiconductors it appears when the symmetry 
is broken, for example, as a result of uniform deformation in 
a certain direction not coinciding with one of the principal 
axes of the crystal;20 however, in our case this term in (2.2) 
is associated with the anisotropy of the quantum well in the 
z direction. Usually a is assumed to be proportional to the 
mean electric field l?= - (dVeffldz) (this quantity can be 
nonzero only because of a difference between the effective 
masses on different sides of the heterojunction, see Ref. 19), 

although there is a similar spin-orbit correction to the 
Hamiltonian in the case of deformation that is nonuniform in 
the z dire~tion.~' The value of a was calculated specifically 
for the Kane model in Ref. 21. Estimates based on experi- 
mental results were presented in Ref. 22. If it is assumed that 
A-  cm, we obtain a- 1 K. Here and in the following it 
is assumed in all the evaluations that we are dealing with 
magnetic fields B > 10 T and that the material constants cor- 
respond to GaAs; therefore, in particular, '2?L> 130 K, and 
fiw, > 200 K. 

The last term in (2.2) appears because of the "three- 
dimensional" removal of the degeneracy with respect to the 
spin for the S band in crystals with no inversion center (for 
example, in GaAs), and is proportional in the three- 
dimensional case to the cube of the components of k (Ref. 
23). The first power of the components of k appears in the 
two-dimensional case?4 and the first of the conditions (2.1) 
must hold for a system in a strong magnetic field, in which 
the scale of the variation of the one-particle wave functions 
in the (x,y) plane is characterized by A .  In addition, we 
assume that the principal axis of the crystal is parallel to the 
z axis. It is known that 

(see Refs. 5, 6,  and 24), where G is the band-gap width of 
the semiconductor, and y,, is the spin-orbit constant, which 
is 0.07 for G ~ A s . ~ '  

The parameter d in this formula has a specific meaning. 
It is determined by averaging the square of the z component 
of the wave vector of a 2D electron in the layer, i.e., 

where f(z) is the corresponding size-quantized function in 
the heterojunction. As a result, we obtain p- 1 K. Also tak- 
ing into account that g = - 0.44, we find the dependence of 
the Zeeman gap on the magnetic field measured in teslas: 
~ = 0 . 3 B  K. Therefore, in any case the inequality 

holds with a broad margin. 
We use the following dimensionless quantities every- 

where below: x,y,z4xA,yA,zA; L,L,,d+LA,L,A,dA, and 
k d  k/A. The expression (2.1) remains the same form here, 
and we need only set A =  1 in it. In the Landau gauge 
A= (0, Bx, O), the first term of the Hamiltonian can be 
diagonalized in the basis 

$,,(x,y) = L-'12e'J'yp,(p +x), where cp,(x) 

(H,(x) is a Hermite polynomial). The action of the operators 
is governed here by the rule kt to(x+p) = (, , (x+p).  For 
convenience here we introduced the following notation 

130 JETP 83 (I), July 1996 S. M. Dikman and S. V. lordanskii 130 



FIG. 2. Mixing of spin states in different Landau levels (n,n? 1). The type 
of spin-orbit interaction is indicated by the corresponding Greek letter. 

When the spin-dependent terms in (2.2) are taken into ac- 
count, the state of the electron can be represented in the 
spinor basis 

and the action of the operators u, reduces, as usual, to rais- 
ing or lowering of the spin index. 

If a= 0, the Hamiltonian is easily diagonalized for any 
values of w , ,  E ,  and P (Ref. 6), since the diagonalization 
can be performed independently for each pair of states 
(Gnpt ,lCI,-,pL). In exactly the same manner, when P=O, 
only the states ($,pt ,#,- lpl) undergo pairwise mixing, and 
the Hamiltonian can also be diagonalized exactly. A diagram 
of the mixing of different states is shown in Fig. 2. If ap 
Z 0, exact diagonalization is impossible, but in our case it is 
sufficient to use perturbation theory, since 

after which in first order we find the eigenstates 

which diagonalize the Hamiltonian (2.2) to second order in 

The corrections to the energy reduce to renormalization of 
the gap and weak inequivalence between the spin sublevels, 

Any state in the conduction band can be expanded in the 
spinor basis (2.6), (2.8), 

Treating the coefficients in (2.10) as particle annihilation op- 
erators, we obtain the Hamiltonian in the second- 
quantization representation 

Here ~ , , = t i w , n - ~ / 2 - ~ ~ ( n + l ) ( t i w , + ~ ) + u ~ n ( h w , - ~ ) .  
The basis (2.6), (2.8) is normalized up to linear terms, and its 
normalization to terms quadratic in u and v would provide 
only superfluous accuracy. In precisely the same manner, 
when the spin is determined in states a and b, we have 
sp'b)-  + 112 to second order in u and v.  

3. CLASSIFICATION OF SPIN-EXCITON STATES 

Let us first consider the states of a many-electron system 
in the zeroth approximation with respect to (for the sake 
of brevity, we refer to spin-orbit terms in the Hamiltonian as 
such). The states obtained as a result of the N-fold action of 
the operator Q: on the ground state are of primary interest. 
When only zero-point excitons are present in the system, we 
call such states zero-point exciton states. The total spin S for 
them is identical and is always equal to the maximum value 
JP-12. Due to the presence of the Zeeman gap, the zero-point 
exciton states are not degenerate with respect to S,, and 
since (1.2) is a pure spin operator, their spatial wave function 
is the same as in the ground state, and the energy measured 
from the ground state is simply equal to NE. For its part, the 
energy of the Coulomb interaction is determined completely 
by the spatial wave function. Hence it follows that for a 
prescribed value of S,, the minimum energy of the system, 
which is equal to NE, is achieved in a zero-point exciton 
state, and that 

When there are other excitations in addition to the zero- 
point exciton states, the energy is no longer a multiple of 
E. The state with a nonzero two-dimensional momentum 
hq that is closest to the zero-point exciton state with an 
assigned value of S, is a quasiparticle state of the spectrum 
with N- 1 zero-point excitons (N being determined from 
(3.1)) and one excited (non-zero-point) exciton. In principle, 
the spectrum can contain excitations of the molecular- 
exciton type; however, we assume that the concentration of 
non-zero-point excitons is always small; therefore, their in- 
teraction and the probability of formation of excitonic mol- 
ecules can be neglected. Of course, the creation operator 
Q: of non-zero-point spin excitons is defined (see Refs. 16, 
17, and 25) such that its action on the eigenstates of the 
system would also diminish S, by unity. At the same time, it 
is not difficult to see that generation of a non-zero-point 
exciton in the system should also reduce S by unity (see Ref. 
15), and, as we shall see, the operator Q: does not commute 
with s2. 

Indeed, let us first consider a state for which N= 1 and 
q# 0, and which can clearly be expanded in a basis of states 
with different values of S, but with the same momentum and 
the same Sz=M/2- 1. The expansion will clearly contain 
only one term, i.e., a state with a total spin equal to 
J V . / ~ -  1, since the possible values of S in the terms of the 
expansion must not be smaller than S , ,  and any state with 
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S equal to ~Y12  vanishes (it is a zero-point exciton state, and 
its momentum must unequivocally be q=O). Because Q: 
and s2 commute, this result can easily be extended to any 
state with one non-zero-point exciton for an arbitrary value 
of S,. As a result, considering N-exciton states in which no 
more than one exciton is non-zero-point, we find for them 

We turn our attention to the fact that for a real macro- 
scopic system, AS = S - S, must be proportional to the order 
parameter characterizing the presence of a spin condensate in 
the system when the exciton-exciton interaction is neglected 
(i.e., under the conditions of a "rarefied" gas of nonzero- 
point excitons). In fact, because of (3.2), the total spin S of 
the system differs from H I 2  by the number of non-zero- 
point excitons. Comparing with (3.1), we see that above the 
critical point (where all the excitons are non-zero-point 
AS=O, and below it AS is equal to the macroscopically 
large number of zero-point excitons in the condensate. This 
quantity is determined by the deviation of the total "classi- 
cal" spin of the system as a whole from the z axis. The angle 
of deviation 8 can be chosen as the order parameter, and then 
AS= S(1- cos 8). 

Before analyzing how (3.1) and (3.2) change when the 
corrections due to as, are taken into account, we note that 
(3.1) can be regarded as an operator equality. This means 
that the operator S, is specified in the excitonic representa- 
tion (i.e., it is expressed in terms of the exciton number op- 
erator N). In precisely the same manner it can be found in 
the excitonic representation that 

Basis of exciton states with consideration of Xso 

Since the basis of one-particle states of sublevels a and 
b introduced in the preceding section diagonalizes the 
Hamiltonian B1 to second order in S s 0 ,  it is natural now to 
redefine the creation operator for zero-point excitons: 
Qof = J I . - " ~ z , ~ ~ ~ ,  . Here and in the following we omit the 
subscript n, since within the basis (2.8) we restrict ourselves 
to the single-band approximation, i.e., all the Fermi operators 
always have the same orbital index n. When Xs0=O, this 
definition of Q: reverts to Eq. (1.2). 

We now present the expression for the creation operator 
for non-zero-point excitons, 

(compare with Refs. 16, 17, and 25). In the next section we 
see that just this form of Q: gives a solution of the two- 
particle problem with a pairwise interaction within the 
single-band (with respect to n) approximation. The ground 
state 10) must obviously be defined as a state with a com- 
pletely filled a subband and a completely empty b subband, 
so that we have a; 10) = bplO)=O for any p. Of course, the 
zero-point exciton state and the state with one non-zero-point 
exciton, which we considered above, are now defined in the 
following manner: 

IN,o)=(Q,+)~Io), 

 IN,^)= (Q:)~-'Q,+~O) 

x ((ql , ~ l 1 ~ 2  9q2)tcSN, . ~ ~ ~ q ~  ,q2) (3.5) 

(compare Ref. 16). It is easy to see that the exciton number 
operator is diagonal in the basis of these states, i.e., 

and that its eigenvalues are equal to N. The orthogonality of 
the states (3.5) can be verified directly using the commuta- 
tion rules of the exciton operators presented in Appendix A. 

We can treat (3.1) and (3.3) as operator equalities after 
replacing N by k in them. It is understood that the operators 
S, and s2 thus defined are no longer pure spin operators, but 
their properties with respect to the basis (3.5) remain abso- 
lutely unchanged. The "internal structure" of the one- 
particle states a and b in this case is of no significance, since 
the form of the excitonic distribution for S and S, remain the 
same as when is equal to zero. Thus, the states (3.5) are 
eigenstates for the "new" operators S ,  and s2 ,  and they 
correspond to the same eigenvalues of S, and different ei- 
genvalues of S2 in accordance with the rule (3.2). Th' 1s can 
be seen directly, for which it is convenient to use, for ex- 
ample, Eqs. (A12) and (A1 3) from Appendix A. 

4. SPECTRUM OF THE SYMMETRIC MODEL. SPIN-ORBIT 
CORRECTIONS TO THE EXCITON STATES 

The Hamiltonian of the electron-electron interaction 
Bin, is defined in the usual manner (see, for example, Ref. 
14) in terms of the Fermi I) operators of 2D electrons and the 
Coulomb potential of the pairwise interaction averaged in the 
layer over z (using the size-quantized wave function f(z)), 
Y(r) (r is a two-dimensional vector). If the expansion (2.10) 
is substituted for the I) operators, in which case we are con- 
fined to the single orbital state n (the summation over n is 
eliminated) and the operator terms proportional to the small 
parameters u and v are totally neglected, we obtain the 
Hamiltonian of the symmetric model 

(the model is called symmetric because the same vertex Wo 
appears in front of all ltoperator terms in (4.1)). The vertex 
in (4.1) has the form Wo= L - ~ s ~ + ~ ~ , ~ ; + ~ ~ J ~  

X (Ap,Sp), where Ap=p,-p1=p;-p, Gp=p-p' 
=p i  - p , and J, is one of the functions that appear when 
the matrix elements are calculated (see Refs. 14 and 15), and 
which are defined in the following manner in terms of the 
Fourier component V(q) of the Coulomb potential: 
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X exp(iq,Ap), where q, = Sp ,  

and 

This expression contains one-particle functions that have 
been redefined according to the rule (2.6), and it is assumed 
that at least one of the indices j or rn equals zero. L: is a 
Laguerre polynomial (L: = L,). 

Before proceeding to an analysis of the next higher order 
corrections in u (and v )  to the interaction Hamiltonian, let us 
briefly dwell on the known results that have been obtained 
for the symmetric  mode^.'^^'^"^"^ The states (3.5) defined in 
the preceding section are eigenstates of the Hamiltonian 
Bl +@:! . This can easily be seen, if we take into account 
the commutation relations [Bl ,Q;] = E,Q: and 
[.%$:),Q~]=o, as well as the fact that the state Il,q) is an 
eigenstate of the two-particle problem: 

These relations can be proved comparatively easily us- 
ing the commutation rules (Al) and (A2) (see also Refs. 
12-16), from which Eo and g(q) can also be determined. 
Obviously, the constant Eo simply renormalizes the ground- 
state energy, and 8(q)  is the Coulomb part of the energy of 
a non-zero-point exciton, which has an exchange origin (we 
recall that generation of a non-zero-point exciton changes the 
total spin). Thus, the energy of the system in the states (3.5) 
is 

The characteristic values q are specified by the temperature 
of the system, 

Hence, in any case it follows that q-=3 1 ; therefore, it is suf- 
ficient to restrict ourselves to the quadratic approximation 

q2 
g(q) = -, where M i  

2Mn 

The first of the conditions (2.1) allows us, in addition, to 
assume that V(p)=2m%lp.  In particular, for the zeroth and 
first Landau levels we then obtain 

(see Refs. 11-13,15 and 16). 
Besides the states (3.4), in the following we shall also 

encounter the state 

which is not an eigenstate of the Hamiltonian (4.1) and is not 
orthogonal to the basis state (3.5) with q equal to q1+q2. 
The degree of this nonorthogonality is, however, small. Us- 
ing (A5)-(A13). (A18), and (A19). we can show that the 
properly normalized convolution of this basis state with the 
state (4.7) is at most of order Jlr 'I2, if N- N - ~ l r  and 
q (ql + q2) Z 0. The mean energy in the state (4.7) can also 
be calculated using (Al), (A2), and (A19): 

+O($)  for JY-N-JY. 

If a and b are particle states that correspond to the basis 
(2.8), Eqs. (2.8), (2.9), (3.9, (4.4), and (4.6) give a solution 
of the spectral problem to first order in u for the states and, 
accordingly, to second order in P for the energy. At the same 
time, these response functions comprise the zeroth approxi- 
mation in %lfio,, since the interaction in them is taken into 
account (exactly!) only within the single-band model with 
respect to n.  Clearly, the same result can be obtained if the 
problem is solved in the reverse order, i.e., if the "pure 
spin" single-band states (3.5) of the interacting 2D electrons 
are first found in the zeroth approximation in BSo and then, 
by applying the operator SS0 to these states, corrections are 
found in first-order perturbation theory, which reduce to re- 
determination of the spin sublevels and their conversion into 
sublevels a and b.  We now ascertain the consequences of the 
main corrections that have yet to be taken into account. 

The next most important correction is the first order 
spin-orbit correction with consideration of the interaction, 
i.e., a correction to the state that is first order in Bso and 
simultaneously of the same order in 9Llfi o, . This correction 
can be calculated exactly within our approximation. For this 
purpose we must first calculate the interaction Hamiltonian 
in the next approximation after (4.1): 3Yht= %,"! + 2%$) . 
The operator 3@,!: "ruins" the symmetric model. It is pro- 
portional to the first powers of u and v and contains 
Coperator terms with the combinations a'a'a b ,  
a'b'bb, b'a'aa, and b'b'ba, which "toss" an electron 
from one sublevel to another. The coefficients of these terms 
differ, although as before, they are functions of A p  and Sp 
due to the homogeneity of the system. As a result, we can 
redefine the corrections to the eigenstates (3.5) 

Here the overline shows that we have passed from the state 
defined by Eqs. (3.4) and (3.5) to an improved state, in which 
the number of excitons is no longer a quantum number. The 
doubled notation [I)) means that the exciton states (3.5) were 
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properly normalized (see Eqs. (A17) and (A18) in Appendix 
A). To avoid misunderstanding, we note that an asymmetric 
model, but only one in which the number of particles in the 
sublevels was conserved, was also considered in Ref. 14. 

The coefficients C' are small. It is not difficult to show 
on the basis of general arguments that they vanish if q=O, 
and that they are of order q u P 4 l ~  when N - ~ V a n d q s l .  As 
a result, the corresponding contribution to the spin relaxation 
process in the range of parameters of interest to us (which is 
determined by the experimental conditions and partially by 
the need to obtain final response functions in analytic form) 
is negligible, as we shall see below (see Sec. 6). Omitting the 
details of a rather cumbersome calculation, which reduces to 
a determination of the matrix element 

P ( N ? ~ )  =((q,NIl*;/ll~+ 14))  

(since C i  = E-',u(N- 1,q) and c;= - E-' ,x+(N,~)) ,  we 
find 

where 

and J (x) is a Bessel function. In addition, we took advan- 
tage of the fact that the interaction is isotropic, and we as- 
sumed that JY;A+-N+ 1. If we also take into account the 
first of the conditions (2.1) and the condition ( 4 3 ,  in the 
linear approximation we have 

Jm iuq+ +uq- 
c&9)'2 JI'. , 1 (4.11) 

EM, 

In physical terms, the coefficients C: specify the prob- 
ability of quantum fluctuations from the state IN,q) to the 
states I N  t 1 ,q). The fact that this probability of the creation 
or annihilation of a zero-point exciton vanishes if q = 0 
allows us to interpret such events as results of interactions 
with a non-zero-point exciton (we are considering deviations 
from the symmetric model, so that the zero-point excitons 
become interacting). Naturally, the probability must be pro- 
portional to the concentration NIJY'; therefore, in a weakly 
excited system, in which N<J"J; the C; have an additional 
small factor that is proportional to (Nt~t')'". 

We note that the response functions (4.9)-(4.11) found 
here can also be obtained, in principle, in an alternative man- 
ner via systematic perturbation theory in @,": and X s o ,  and 
that they reduce to second-order corrections specified by ma- 
trix elements of the form ((q,N' 1 ( I S Y s 0 ~  @:)[ t ~ , ~ ) ) .  Un- 
der such an approach it must obviously be assumed that the 
basis states (3.5) are defined in the zeroth approximation in 
=so. 

To conclude this section we dwell on several features of 
the spectrum that appear when second-order corrections in 
BSo are taken into account. As we see, qualitatively the 

structure of the eigenstates generally undergoes significant 
changes in this case, which nevertheless are not reflected to 
any appreciable extent in the spin relaxation process. 

According to perturbation theory, the quadratic spin- 
orbit corrections in the first approximation in Sin, are de- 
scribed by matrix elements of the operators 

There are obviously corrections of two kinds. The first cor- 
responds to matrix elements that are diagonal with respect to 
N, have a relative magnitude of order u2 (as well as of order 
u2 and uu), and can be interpreted as being due to a weak 
interaction between excitons (including zero-point excitons) 
that does not alter their numbers. These matrix elements give 
corrections of order u2% to the exciton energies, which are 
small compared to the corrections already taken into account. 
The inequality 

along with (1.1), (2.1), (2.7), and (4.5) is assumed to be a 
necessary condition for solving the current problem. We note 
that together with (4.5), this condition ensures that the coef- 
ficients c,$ in (4.9) are small. As can easily be shown, it 
holds over the parameter range of interest with a wide mar- 
gin. 

Corrections of the second type appear as a consequence 
~ - 

of the existence of off-diagonal matrix elements with respect 
to N for the operators (4.12) and describe quantum fluctua- 
tions between ( ~ , q )  and I ~ + 2 , q ) .  In the present case these 
matrix elements, unlike (4.10), do not vanish when q=O in 
the general case. Therefore, their magnitude is determined 
not by the interaction between zero-point and non-zero-point 
excitons, but by the interaction of all N excitons with one 
another, which results in the pairwise creation or annihilation 
of zero-point excitons. If N is macroscopically large, then 
they, like the diagonal matrix elements, are proportional to 
N, i.e., they are also macroscopically large. Then two states 
with "microscopically" similar energies differing by 26 in 
the zeroth approximation in Bs0 mix. The situation is essen- 
tially similar to what occurs when a perturbation theory is 
devised for a degenerate or almost degenerate spectrum. This 
problem is known to reduce to the investigation of a matrix 
secular equation. In our case it is an J ~ X N  matrix, in 
which the Nth diagonal element in the leading approximation 
is equal to NE and the off-diagonal elements are determined 
by the operators (4.12) between the bras and kets 
((0,NII . . . llN+2,0)) and ((0,Nt211 . . . I[N,o)) (when N 
is large, the presence or absence of a non-zero-point exciton 
in the system does not have any effect on the analysis of the 
effects under consideration) and by the denominator 
(hw,12. As an analysis shows, when ap=O, the off- 
diagonal elements vanish identically. Along with the possi- 
bility of exact diagonalization of the one-particle Hamil- 
tonian (see Sec. 2), this is another manifestation of the latent 
symmetry maintained under this condition. If cup # 0, the 
off-diagonal elements are equal in order of magnitude to 
Nuu 2%'. 
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Investigating the matrix equation, we can easily under- 
stand how the eigenstate of the system with a mean number 
of excitons N  is organized. The state I N , o )  clearly "spreads 
out" into a large number of I N  + 2s ,0) states. The absolute 
values of the coefficients in this expansion decrease with 
increasing Is\, differing appreciably from the value for 
s = 0 only when Is1 > ( N U V % / E ) ' ~ ~ .  Thus, the "spread" of 
the number of excitons AN is small compared with N ,  al- 
though it is a large number: A N - ( N U V % / E ) " ~ .  The re- 
quirement that the eigenstates corresponding to different 
mean values of N  be orthonormal imposes certain conditions 
on the coefficients of the expansion in the basis (3.5). In 
particular, they must be rapidly alternating functions of the 
index. Utilizing this and the other properties of the coeffi- 
cients, we can evaluate the matrix elements of the electron- 
phonon Hamiltonian for transitions with a change in the 
mean value of N .  As expected, in the final analysis the role 
of the "spreading" reduces to small corrections proportional 
to (uv)' for the parameters characterizing the spin relaxation 
process. 

5. ELECTRON-LATTICE INTERACTION. SELECTION 
RULES. MATRIX ELEMENTS OF THE ONE-PHONON 
PROCESS 

Let us, first of all, dwell on several features of the 
electron-lattice interaction in a 2D system in a strong mag- 
netic field, and, in particular, let us ascertain the specific 
details of the action of the corresponding operator on the 
spin-exciton states under consideration. The three- 
dimensional Hamiltonian of the interaction with the lattice 
for 2D electrons in the one-phonon approximation is known 
to have the form (see, for example, Ref. 26) 

where 

W + ( r )  is the electron creation operator, P:, is the phonon 
creation operator (s is the polarization), L, is the dimension 
of the sample along z, and &(k) is the renormalized vertex, 
which includes the micro- and macroscopic fields created by 
the phonon. The integration with respect to z has already 
been performed, and reduces to the renormalization 

eS(k)=  ~ , ( k ) /  f*(z)eikzzf(z)dz, 

the wave function of the corresponding size-quantized level 
f(z) being identical for all ~Yelectrons by virtue of (2.1). 

If we now set q=O,  (5.2) will simply be equal to the 
operator of the number of 2D electrons in the layer, i.e., the 
parameters are conserved. Any off-diagonal matrix elements 
of the Hamiltonian (5.1), (5.2), including the ones corre- 
sponding to transitions with a change in the number of exci- 
tons, vanish in this case. Spin relaxation (the annihilation of 
an exciton) is thus impossible, if the participating phonon 

has a vanishing momentum component in the plane of the 
layer. We stress that this selection rule is a result of the 
two-dimensional character of the problem (the first of the 
inequalities (2.1)), and it holds to all orders of approximation 
in S s o .  

The two-dimensional character of the layer and the pres- 
ence of a strong magnetic field are responsible for another 
specific selection rule, which we first formulate for 
B s o = O .  The transitions defined by the matrix elements of 
the Hamiltonian (5.1), (5.2) are possible only with conserva- 
tion of the spin state. In particular, under the condition (1.1) 
this means that the action of the operator (5.2) on the ground 
state of the system can specify transitions only to states of 
other magnetic bands when q is nonzero, since the exciton 
states closest to the ground state in the same band are spin 
excitations. However, a transition to a band with a Landau 
level having a different number is in fact energy-forbidden in 
our case, since it is assumed that the cyclotron frequency is 
greater than the permissible frequency of a phonon; there- 
fore, the action of (5.2) on the ground state is identically 
equal to zero or reduces to trivial multiplication by a con- 
stant, if q =  0 .  We obviously arrive at precisely the same 
result in the case of an arbitrary zero-point exciton state. 
After the action of the spin-zero operator (5.2) on it, a state 
with nonzero q, but with the same value of S equal to 
M I 2  as in the original state would be obtained, in clear con- 
tradiction to the condition (3.2). 

Thus, if the presence of other magnetic bands is ignored 
and Bso is neglected, both transitions with a change in N  
(i.e., to other spin states) and transitions with a change in q 
from zero to a nonzero value and vice versa (even with con- 
servation of the same value of N )  are forbidden for the 
Hamiltonian (5.1). Only transitions between states with non- 
zero but unequal initial and final momenta and with conser- 
vation of the value of N  are allowed. 

We now ascertain how these rules should be reformu- 
lated, even to first order in to B S o .  In this case the operator 
Be,ph clearly includes terms that do not conserve the number 
of excitons in the system; therefore, the result of its action on 
a zero-point exciton state is now not zero, but a state that can 
be expanded in the basis (3.5). At the same time Be,ph con- 
tains terms that are diagonal with respect to N .  As can easily 
be shown, the latter can be specified only by corrections of 
even order in Bso; therefore, within our approximation they 
should remain unchanged (the same as for B s o = O ) .  Pre- 
cisely these corrections will determine the matrix elements 
of the transitions between the states (3.5) with conservation 
of the number of excitons. As a result, such transitions are 
impossible if either of the states (the "initial" or "final" 
state) is a zero-point exciton state, this being a direct conse- 
quence of the maintenance of the selection rules for the ei- 
genvalues of the operator (3.3). In other words, the rule se- 
lecting against zero-point exciton states remains in force, but 
applies only to transitions without a change in N .  

One-phonon Hamiltonian in the excitonic representation 

We would like, above all, to find the one-phonon Hamil- 
tonian to first order in X s , .  We substitute the expansion 
(2.10) into Eq. (5.2), and restricting ourselves, as before, to 
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only interband (with respect to n )  transitions and to the first 
order in u and v ,  we see that the convolution of the spinors 
(2.8) reduces to the integrals (4.3), after which we can use 
the familiar difference equation for Laguerre polynomials, 
~ ( ( x )  - L:- (x) = L~- ' (X) .  As a result, bearing in mind the 
definitions for Q: (3.4), as well as for A; and B; (see Eq. 
(A4) in Appendix A), we find the operator that acts on the 
electron states in the excitonic representation 

The operators A k q  and B + ,  are diagonal with respect to N in 
the space of the basis states (3.9, i.e., they do not alter the 
total number of excitons, but only change the exciton mo- 
mentum by Tq because of the commutation relations (A9). 
As it should be when there is no spin-orbit interaction, the 
electron-phonon Hamiltonian is diagonal with respect to the 
spin. It is also not difficult to see that the matrix elements 
calculated using (5.3) satisfy all the selection rules discussed 
above. 

Matrix elements of the operator (5.3) 

The representation (5.3) must now be substituted into 
(5.1). We are interested in processes that alter the z compo- 
nent S, of the total spin of the system. They should be speci- 
fied by the matrix elements of the Hamiltonian (5.1) between 
states with different mean numbers of excitons. But in the 
present approximation, the mean number of excitons in the 
states (4.9) is simply equal to the quantum number N; there- 
fore, remaining within the first approximation with respect to 
the spin-orbit interaction, we must calculate 

( ( q ~ - q , ~ *  lIIHe,ph(q)lIN,ql)) 

The Hermitian conjugate of (5.3) is obtained by simply re- 
placing q by - q, whence 

Substituting the expression in square brackets in (5.3) and 
the states given by (3.5) and (3.9)-(3.11) into (5.4), we see 
that to first order in SS,, the calculation reduces to the sum 
of the expressions 

and 

The normalization of the basis states (3.5) and the cal- 
culation of the "4-exciton" convolutions (A10) and (A1 l) 
are performed differently, depending on whether one of the 
states (the initial or the final state) is a zero-point exciton 
state or not. In addition, if one of the bras or kets in (5.6) is 
a zero-point exciton state, then according to the properties of 
the operators Aq and Bq (A8) and (A9'), by calculating (5.6) 
we obtain a value identically equal to zero, in complete 

agreement with the general rule for the action of the 
electron-phonon Hamiltonian on zero-point exciton states. 
Stated differently, the vertex parts of the diagrams in Figs. l a  
and b are described in the excitonic representation only by 
the matrix element (5.7) with q, = 0 (annihilation of a zero- 
point exciton, Fig. la) and q, = q (annihilation of a non-zero- 
point exciton, Fig. lb), respectively. Let us examine these 
two cases. 

1) q1 = 0. Substituting the states normalized according to 
(A17) and (A18) into (5.7) and using (A12) and then (A18) 
for a second time, we easily find 

2) q= q1 # 0. The calculation in (5.7) reduces simply to a 
calculation of the norm (A18) with nonzero q, so that for 
states normalized according to (A17) we obtain 

Now, generally speaking, we must consider three more 
cases, in which q, # 0 and q # ql . Contributions to the ami- 
hilation are made here by both matrix elements (5.6) and 
(5.7). The corresponding calculation can be performed, but 
here, in addition to (A17) and (A18), Eqs. (A9'), (A14), 
(A8), and (A9) and Eqs. (A3), (A14), and (All) must be 
employed successively in (5.6) and (5.7), respectively. Nev- 
ertheless, we shall not present the response function, since in 
the final analysis the corresponding contribution to the anni- 
hilation flux in the present approximation will be small com- 
pared to the total contribution of the fluxes determined by 
cases 1 and 2. In fact, the third case corresponds to a two- 
exciton process, which results in annihilation of the zero- 
point exciton, while the momentum of the non-zero-point 
exciton changes, but it still remains a non-zero-point exciton. 
The annihilation rate is proportional to the product of the 
concentration of zero-point and non-zero-point excitons, 
which in any case under the conditions of a developed con- 
densate is smaller than the square of the concentration of the 
zero-point excitons (the "gas" of non-zero-point excitons is 
tenuous), i.e., when N - M  the annihilation flux will still be 
determined by the process corresponding to case 1 (F, 
cc N2/.K). If the condensate has already been depleted to a 
considerable degree ( N ~ J Y )  and the system is close to the 
critical point, the process that is linear with respect to the 
concentration of the non-zero-point excitons becomes the 
dominant one (case 2, Fig. lb). Thus, it is clear from general 
arguments that the annihilation flux in the third case will 
always be less than the larger of the fluxes specified by 
6 and -P; .3)  

The matrix elements (5.8) and (5.9) describe processes 
accompanied by phonon emission. In case 2 phonon absorp- 
tion is impossible, in principle, and in case 1 the phonon 
absorption process is described by a similar matrix element 
except that it must be replaced by -(-q,N). 

The matrix elements describing transitions that produce 
an exciton likewise do not require a separate calculation in 
the general case, since they are specified by (5.5) (now 
is defined in terms of * ( - q) , and 6 is defined in terms 
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of 6 * ( - q)). Here, however, one important comment 
should be made. By restricting the treatment to the basis 
(3.5) alone, which would seem to be legitimate when the 
effects of the direct interaction of excitons are neglected, we 
have, nevertheless, overlooked the possibility of induced ex- 
citon generation. Let the system be in the state  IN,^,), but 
let another nonzero-point exciton with momentum q be gen- 
erated as a result of the absorption of a phonon with momen- 
tum q. In our treatment the matrix element c(- q,N) cor- 
responds to such a process, i.e., the presence of the first 
exciton is ignored. In the present case this leads to an error. 
We correct it by taking into account that exciton generation 
processes are actually significant only when N < N .  We uti- 
lize Eq. (A19), which enables us to calculate the matrix ele- 
ment 

as a replacement for (5.4). Here the bra is the two-exciton 
state (4.7), which was normalized using (A19). Substituting 
(5.3) into this expression, we find that the matrix element 
f l ( -q ,N)  should be redefined or, more specifically, re- 
placed by 

(which is valid when N ~ J Y ;  and for this reason we naturally 
do not write an overline over the states in (5.10)). 

In the next section we already need the actual form of 
the vertex U,(k), but here it is sufficient to restrict ourselves 
to acoustic phonons. The corresponding expression is deter- 
mined by the deformation and piezoelectric interactions and 
was presented for cubic crystals, for example, in Refs. 26 
and 27. The square of the absolute value of the matrix ele- 
ment always appears in the response function; therefore, re- 
stricting ourselves to the case of the isotropic model of a 
crystal, we at once write the expression for the quan- 
tity 

'~TE ,h( k) 1 
, where - 

P ~ T A  ?A( k, 

This equation, which results from summing over 
s, is derived in Appendix B. Here E , ~ =  hcskIA 
=(hc, Jg2+kz)/~ is the phonon energy. The literal mean- 
ings and numerical values of the parameters TD , rp , and 
po of the electron-phonon interaction are also defined in 
Appendix B. 

When (4.5) is taken into account, the characteristic en- 
ergy of a phonon participating in the annihilation of an ex- 
citon should be at most of order &. Hence J k , j ~ A ~ l h c , ,  
which leads to the condition k,d< 1 because of the first in- 
equality (2.1) for a material such as GaAs. This condition, in 
turn, allows us to assume that 

6. EFFECTIVE ANNIHILATION TIME. TIME DEPENDENCE OF 
THE z COMPONENT OF THE TOTAL SPIN OF THE 
SYSTEM 

The effective annihilation time clearly equals 

Here 3%-(N) is the annihilation flux or the mean number of 
excitons annihilating per unit time; B + ( N )  is the generation 
flux, i.e., the mean number of excitons generated per unit 
time; and N(O) is the equilibrium number of excitons in the 
system. To find the fluxes B', the quantum-mechanical 
probability of the respective transition must be multiplied by 
the statistical probability of finding the system in the particu- 
lar quantum state. Then the summation must be performed 
over all possible states corresponding to the specified value 
of N and the temperature of the system. 

A certain difficulty arises in carrying out this procedure, 
because in a literal sense the states (3.5) are not states of the 
system in which the number of non-zero-point excitons is 
greater than unity. At the same time, it is clear that neglect of 
the interaction of the non-zero-point excitons with one an- 
other should, in fact, reduce the calculation of the quantum- 
mechanical transition probability to the calculation of the 
matrix elements (5.4). In this approximation we can describe 
a system with N1 non-zero-point excitons by constructing an 
N1-exciton state by the same technique as (4.7), i.e., by ap- 
plying the operators Q; to the zero-point exciton state N, 
times. Equations (4.8), (A19), (5. lo), and (5.1 l), which were 
obtained for a two-exciton state, are generalized in a corre- 
sponding manner. 

We stress that the "interference" terms appearing be- 
cause the operators Qqi and Q + ~  with nonzero qi and qj do 

q1 
not commute (see the commutator (A5)) must be neglected 
when the matrix elements are calculated. One exception is 
the case in which qi= qj. Here it turns out that the "inter- 
ference" term contains a "coherent" component, which is 
not small compared to the leading components of the matrix 
element. In (A19) this leads to the presence of 6q, ,q2 on the 
right-hand side, which is the only difference between the 
"correct" matrix elements and (5.4). 

The appearance of Sqi,,, is associated with induced ex- 
citon generation. Let N =  No+ N,, where No and NI are the 
numbers of zero-point and non-zero-point excitons, respec- 
tively. We recall that a necessary condition is that 

(n(q,) is the momentum distribution function of the non- 
zero-point excitons); therefore, induced generation is much 
weaker than the spontaneous process. Actually, it must be 
taken into account when the difference between the fluxes in 
(6.1) becomes small, i.e., when equilibrium is approached. 
Below, unless specially stipulated otherwise, we neglect the 
terms SqiYqj and use the matrix elements (5.8) and (5.9) to 
calculate the fluxes. 

Neglecting the interaction of the excitons means that the 
calculation of the Gibbs probability of finding the system in 
a particular quantum state reduces to the Bose distribution4) 
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for n(q,). The probability of the transitions described by the 
matrix elements f i  should be multiplied by n(ql) and then 
summed over the permissible values of q1 (here q=  ?q l )  
and k,. The fluxes 2%' from the zero-point exciton states 
(the matrix elements 6) must be calculated separately. An- 
nihilation is significant in these states, only if No%-Nl. 
Therefore, the presence of non-zero-point excitons can sim- 
ply be neglected, and it can be assumed that in this case the 
entire system is in a zero-point exciton state, i.e., the statis- 
tical probability is equal to unity. 

Kinetics of exciton annihilation and generation processes 

The next step needed to calculate the fluxes 5%' is es- 
tablishment of the ranges of allowed values of q l ,  q, and 
k, , over which the summation should be performed. Accord- 
ing to time-dependent perturbation theory, these values are 
determined by the energy conservation law, but here, despite 
the identity (5.9, there is no symmetry between annihilation 
and creation. The corresponding equations, from which the 
phonon component k, should be determined, have the form 

where the superscripts T refer to the exciton annihilation 
and creation processes, and the subscripts e and a refer to 
phonon emission or absorption. One of the 8 (see (4.6)) in 
these equations must vanish in the cases considered in this 
work. Thus, in case 1 (ql  = O), creation with emission of a 
phonon is impossible, and in case 2 (q=ql )  annihilation 
with absorption is impossible. 

It follows from (6.3) and (6.4) that when annihilation 
with emission of a phonon occurs in case 1, the absolute 
value of the transverse momentum of the phonon has an 
upper bound, which is found by solving the inequality 

We denote this value by q, , i.e., 

The analogous process in case 2 can occur with any value of 
q ,  , since E ,  is known to be smaller than the maximum en- 
ergy of an acoustic phonon. 

On the other hand, when annihilation occurs with ab- 
sorption, the absolute value of the transverse momentum has 
a lower bound: 

The solution of this inequality is written in the form 

Figures 3a and b graphically illustrate the solution of the 
inequalities (6.5) and (6.6) for case 1, Fig. 3a corresponding 
to the annihilation of a zero-point exciton with emission of a 
phonon, and Fig. 3b describing the process with absorption. 

Let us now examine Eqs. (6.3) and (6.4) with the super- 
script +. The emission of a phonon in case 2 is governed by 

FIG. 3. a, b) Graphical determination of the range of possible values of the 
transverse momentum of the phonon (hatched area) in processes which alter 
the number of zero-point excitons in the system: a-annihilation (case 1 )  or 
creation (case 2) accompanied, respectively, by the emission or absorption 
of a photon (inequality (5.5)), b-annihilation in case 1 with absorption of a 
phonon or creation in case 2 with emission (inequality (5.6)). c. Relationship 
between the energies in the annihilation (with phonon emission) and cre- 
ation (with absorption) of a non-zero-point exciton in the case in which the 
number of zero-point excitons in the system remains unchanged. 

(6.6) and (6.6') with the replacement of q by q l ,  so that the 
range of permissible values of q l  in this process has a lower 
bound: q l  >q, (q= q l ) .  The absorption of a phonon is al- 
ways possible in case l, and in case 2 it is specified by (6.5) 
and (6.5'), again with the replacement of q by q l ,  i.e., in 
this case q,<q,  and q=  -q , .  

Thus, the creation of an exciton in case 2 is illustrated by 
the same Figs. 3a (absorption of a phonon) and 3b (emis- 
sion). Figure 3c shows the relationship between the energies 
in cases in which the momenta of the phonon and the exciton 
are formally unrestricted (annihilation with emission of a 
phonon in case 2 and generation with absorption in case 1). 

As we know, when the annihilation and creation fluxes 
are calculated, the terms in the sum over the momenta q ,  , q, 
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and k, contain 6 functions of A:, ((6.3) and (6.4)). As a 
result, the summation over the phonon component k, is 
eliminated, so that it can be expressed in a definite manner in 
terms of the momentum transfer q and q l  for each of the 
processes considered. Solving Eqs. (6.3) and (6.4) for I k,l , in 
the cases under consideration here we obtain only two sig- 
nificantly different roots: I k,I = k' . We write them using the 
quadratic approximation (4.6) for the exciton energy: 

Expressions for the fluxes B* in a general form 

We henceforth utilize the fact that the condition q < 1 
leads to q 9  1 for the characteristic phonons that determine 
the leading contribution to the fluxes; therefore, the factor in 
front of @*) in (5.4) can be assumed to be equal to unity. 
As a result, the processes that are specified by the matrix 
elements 6 and accompanied by the emission of a phonon 
make the following contributions to the creation and annihi- 
lation fluxes 

(the upper row corresponds to the upper sign +). In this 
expression nph(k) is the Bose distribution function of the 
phonons. This equation was obtained by summing the square 
of the absolute value of the matrix element of the Hamil- 
tonian (5.1) (with multiplication by 2%-8(A')lh)) over all 
possible statistical realizations of the exciton and phonon 
states. In this process we made L and L, dimensionless and 
used (5.12) and (5.13). The angle cp specifies the orientation 
of q in the plane, and summing over cp reduces to averaging 
over the directions of 1 q 2 1 2 / ~ A  and can easily be per- 
formed, since the remaining quantities do not depend on cp: 
k2=q2+[k,"(q)12 (see (6.7)). There is a constraint on the 
sum over q only when an exciton is created; therefore, 
q + = q a  (see (5.6')), and q-=O. To find B:~ the following 
changes must be made in (6.8): only the upper row is left, 
but k: is replaced by k; the summation over q is performed 
from zero to qe (see (6.5')), and the 1 added to nph is re- 
moved. 

Similarly, in case 1 we have 

Here q" were defined above. Similarly, [k'(q)I2 in the sum 
with q2 gives k2(q). Averaging over the angle is performed 
just as in (6.8), since the matrix elements (5.8) and (5.9) give 
an identical dependence on q. The equation for 5%'; has a 
form similar to the lower row in (6.9), except that the sum 
over q should not have a lower bound, but should be 

bounded from above by q,, k,(q) must be replaced by 
k t  (q) (see (6.7)), and, in addition, 1 + nph must be substi- 
tuted for nph .  Finally, we recall that, generally speaking, the 
matrix element (5.10) must be calculated instead of 
C ( q ) .  

Calculation of the exciton annihilation time in the strongly 
nonequilibrium case within a condensate 

The calculation based on Eqs. (6.10)-(6.12) must be 
performed in reference to a specific situation. The character- 
istic values of the momentum transfer of a phonon and an 
exciton are determined to a considerable degree by the tem- 
perature, which is restricted, first of all, by the requirement 
(6.2). If a system of 2D electrons is in equilibrium, the num- 
ber of excitons in it is prescribed by the requirement that the 
chemical potential p,, , which appears as a parameter in the 
distribution n(ql),  be equal to zero. In this case, going over 
from the summation in (6.2) to integration, we easily obtain 
(see, for example, Ref. 12) 

Hence it follows that in or near equilibrium the condition 
(6.2) holds even when T+P6. A deviation of the z compo- 
nent of the total spin from its equilibrium value causes the 
exciton chemical potential to begin to increase. Nevertheless, 
it cannot exceed the width of the Zeeman gap, but, on the 
other hand, even when it is equal to E, , the number of non- 
zero-point excitons remains restricted. This is because the 
smallest absolute value of the non-zero-point momentum in 
the sum (6.2) is "cut off" in any case by the quantity 
2vlL or by the quantity specified by consideration of the 
exciton-exciton interaction. The latter is found by requiring 
that the energy of the dipole-dipole interaction of a non- 
zero-point exciton with the mean field created by the other 
excitons is %q,q,,(&l~)3, where q l T - - ( ~ , ~ ) 3 1 2 ~ ~ l ~ I .  
The interaction energy must be lower than the kinetic energy 
q~ /2Mn,  whence we obtain the lower cut-off parameter q l  . 
Moving over to the integral expression in (6.2), we find that 
for pe,= E, the critical value of the number of non-zero- 
point excitons is 

Thus, when N>N,, a condensate is present in the system,12 
and the condition (6.2) leads to the requirement 

M , T 3 9  1, where 5% 14- 16. (6.13) 

It is easy to show that in the present, highly nonequilib- 
rium case our treatment is valid if the temperature does not 
exceed 1 K. In a real situation, this means, in particular, that 

T@~,fic,/X, where t-khc,lX. (6.1 4) 

In the components B(L,2)(r,a) the same function can be 
summed (integrated) over the angle. As a result, with con- 
sideration of (5.12) we find 
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Now we can substitute (6.15) into (6.8) and (6.9) and inte- 
grate over q. Here the different dependences of the PA and 
DA interactions on q and k ,  cause the contribution to the 
integrals that are proportional to 9 - i '  and 9-GI for B(e,n) to 
be determined by different characteristic values of q .  For 
example, for 931, we have 

DA:  q 2 - M , E ,  k,--k-A ~ l f i c ,  , but 

PA: o < ~ ~ - ~ ~ ~ ~ c , ( ~ M ~ E ) ~ ~ ~ / A E ~ ~ ~ ,  

The flux 2%; also includes induced phonon emission, 
which is proportional to nph(cph),  but in the case of the 
DA interaction this part of the flux can be neglected by vir- 
tue of (6.16) and the condition (6.14). At the same time, the 
flux associated with the PA interaction is determined mainly 
by low-energy phonons with eph-.(ficS l h )  J;i?;;~r. and, 
generally speaking, the induced emlssion must be taken into 
account. In precisely the same manner, B,, which is pro- 
portional to nph , is determined in our approximation only by 
the PA interaction, and the characteristic values of q and 
k, for it correspond to the second row in (6.16) (after the 
replacement of q ,  by 9 , ) .  As a calculation shows, in this 
case 93; is simply equal to the component of 5%; specified 
by the induced emission. Finally, calculating the sum 
9; =93,-tB, (see (6.9) and the remarks pertaining to 
this equation), with consideration of (6.14)-(6.16) we find 
after integration with respect to q 

N~ s;=- M ~ E ~ ( u ~ + ~ ~ )  1 

TON' 
where T; = 

6 h c S p ~ h 2  [- 70 

The asymptotic values of Q ( 5 )  are 

We note that Eq. (6.17) (like the other response functions 
presented below for the fluxes and relaxation times) was ob- 
tained for both the DA and PA interactions to leading order 
in ( ~ c , I A ) ~ M , I ~ ,  which is clearly small because of (2.4) 
and (6.14). As we have already stated, the flux thus obtained 
describes the annihilation associated with the spin-orbit in- 

teraction of zero-point excitons with one another, the pres- 
ence of non-zero-point excitons being ignored. Therefore, 
Eq. (6.17) can be used only if N % N , .  

Let us now determine 2%; . The characteristic values of 
q and k ,  for this flux with consideration of the condition 
(6.14) are identical in both cases of D A  and PA electron- 
phonon interactions, 

In addition, we always have BY&2o<Bye. Substituting (6.15) 
into ( 6 4 ,  for p , , = c ,  in the leading approximation we ob- 
tain 

Here we have formally retained the factor (1 - N / J P " ) ~  to 
show that the flux vanishes when N = J K  In fact, comparing 
(6.17) and (6.19), we find 

5%; T JP" -- - -- 
3; [ E L  41 * 

therefore, when N - N ,  2%; is the leading contribution to 
the flux. 

Let us trace how the response function varies as N de- 
creases. It follows from (6.20) that when 

both (6.17) and (6.19) are valid. However, when (6.12) and 
(6.13) are taken into account, it is not difficult to see that this 
relation can actually hold only in comparatively weak mag- 
netic fields, for which, in turn, the second of the conditions 
(2.1) is violated. When N decreases to values of order N , ,  
(6.17) has, as we have seen, superfluous accuracy, and (6.19) 
gives a correct response function only if the right-hand side 
of (6.20) is much greater than unity. Hence we obtain the 
condition M n c 9 <  1. If this condition is not satisfied, both 
(6.17) and (6.19) give an estimate that is correct only in 
order of magnitude when N -  N ,  . 

We note that in the case considered here of a strong 
deviation of the z component of the total spin from equilib- 
rium, the contribution of the reverse creation fluxes 92; to 
(6.1) is naturally small compared with the contribution of the 
annihilation fluxes B I T  This, however, can be proved di- 
rectly using (6.8) and (6.9) and taking into account the re- 
marks pertaining to them. Thus, when the conditions (6.13) 
and (6.14) hold, we have 

( (5%; + B i ) I N  [Eqs. (6.17) 

( if N - N ,  and M , ~ 9 4 l .  

The time dependence of the number of excitons in the 
system is given by 

140 JETP 83 (I ) ,  July 1996 S. M. Dikman and S. V. lordanskii 140 



Therefore, when N@N, , substituting (6.17) into this expres- 
sion, we can easily determine the explicit time dependence 
of S ,  (we recall that Sz is related to N by (3.1) with an 
accuracy to the neglect of small corrections, whose relative 
magnitude is of order u2), 

Exciton annihilation time below the critical point (Ne N,) and 
near the equilibrium value MO) 

The flux 3%; is determined by the interaction of zero- 
point excitons with one another. Formally, the number of 
zero-point excitons in the system No should appear in Eqs. 
(5.8) and (6.17) instead of N; therefore, below the critical 
point 5%; is equal to zero in principle, so that the annihila- 
tion flux is Bi . It must be taken into account in the calcu- 
lation that the chemical potential pex is now smaller then 
E, . It is a function of the total number of excitons N = N , 
and in the present case in the model of an ideal two- 
dimensional Bose gas it is specified by the simple formula 

j N )  where 5=-In pe,=e,-TS Jy- 9 

which is valid when N,-N>NM,T. All that remains is to 
substitute the Bose functions of the excitons and phonons 

(here sph(q)= E,+ g(q)) into (6.8) and to integrate the total 
momentum over them. When we go to equilibrium, where 
the number of zero-point excitons is considerably less than 
N, , we no longer need to require the conditions (6.13) and 
(6.14). Here we assume that the temperature is restricted 
only by T+ 96, which allows us to use the quadratic approxi- 
mation for the exciton energy (4.6). 

One significant point is the need to now take into ac- 
count the reverse creation flux, which is of order 3%; near 
equilibrium. In the present case the reverse flux, which is not 
associated with a direct exciton-exciton interaction, is 

The absolute value of the corresponding matrix ele- 
ment fl(-q) is equal to that of the annihilation matrix 
element c ( q )  (see (6.9)) and governs the spontaneous cre- 
ation of an exciton from the vacuum. The correction for the 
possibility of induced creation with consideration of the re- 
mark made in the preceding section simply reduces, accord- 
ing to Eq. (5.1), to the multiplication of (6.9) by 1 + 
The presence of the 6 term signifies doubling of the 
quantum-mechanical probability of exciton creation, as soon 
as an exciton with the same wave vector as the exciton being 

created is present in the system. The induced creation flux is 
proportional to the number of occurrences of such doubling, 
i.e., to n(ql) .  

Thus, the integrand for the reverse flux contains the fac- 
tor nph(q)[l +n(q)] and the same matrix element as the 
forward annihilation flux. Subtracting the creation flux from 
the sum 32, + %& we obtain the response function 

Here the functions can be expressed in the following 
manner in terms of integral Bose functions 

Their asymptotes are well known. When 5 4  1, they take the 
values F ,  = 7r2/6 and F2 = .rr4/15, and at large values of 5 
they are exponentially small and equal respectively to 
~ e l - ~ .  Therefore, we once again obtain Eq. (6.19) by the 
time N@NM,T (provided, of course, in addition, T 4  E). 

As equilibrium is approached, the response function is 
obtained by expanding FK( l )  near €,IT: 

where 

~ ( 1 )  = In(TIE), and ~ ( 2 )  = r2/3. The equilibrium number of 
excitons is specified by Eq. (6.10). Substituting (6.29) into 
(6.27) and (6.1), we find the annihilation time near equilib- 
rium 

Equations (6.29) and (6.30) hold if N-N(') 
4 J V ~ , e ( e ' n ' ~ -  1). 

The general expression (6.27) under the appropriate con- 
ditions (see (6.13) and (6.14)) is suitable for application up 
to values of N of order N,, so that, in principle, (6.27) to- 
gether with (6.22) defines, according to Eq. (6.23), the time 
dependence of S,  over the entire range of values of N. Near 
equilibrium the spin relaxation process becomes exponential 
with the characteristic time (6.30). 
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7. DISCUSSION AND CONCLUSIONS 

Let us obtain concrete numerical values of the inverse 
relaxation times for GaAs as a function of the magnetic field 
and the temperature. We neglect the spin-orbit constant 
a, and in the expression for P(B) (2.3) we assume that 
d= 33 A. Substituting the corresponding values of the mate- 
rial constants, as well as the values of po ,  r~ , and rp given 
in Appendix B, into (6.17) and (6.30), we find 

The first of these quantities specifies relaxation in a conden- 
sate (see (6.24)), and the second describes exponential relax- 
ation near the equilibrium value s , = N / ~ -  N('). The func- 
tions @(t) and y,(w) are defined in the next section. If the 
field and the temperature are measured in teslas and Kelvins, 
respectively, and the times (7.1) are measured in microsec- 
onds, the constants appearing in (7.1) have the following 
values for the zeroth and first Landau level? ~ ~ 0 . 3 ;  
~ ~ 3 . 5 ~  

Thus, the relaxation of a spin condensate under the charac- 
teristic conditions of QHE should take several microseconds, 
and relaxation near the equilibrium value of S, is measured 
in tenths of a microsecond. 

The peculiar nonmonotonic dependence of the param- 
eters (7.1) on the magnetic field is due to the competition 
between two opposite tendencies. On the one hand, as B 
increases, the spin-orbit interaction effectively weakens 
(u2  1/B), and the exciton effective mass decreases, but, on 
the other hand, the increase in the Zeeman gap causes exci- 
ton annihilation to occur in the large phase volume of pos- 
sible wave vectors of the phonon being emitted. The depen- 
dences of the PA and DA interactions on k are different, and 
thus there are significantly different dependences of the first 
(PA) and second (DA) terms in the final response functions 
(7.1) on B. As can easily be seen, deformation scattering has 
an appreciable influence on relaxation in a condensate only 
at fields greater than 15 T and temperatures below 0.1 K. 

Let us compare our response functions with the results 
of the measurements in Ref. 3. If we formally substitute the 
values T =  1.5 K and B = 4.9 T for n = 0 and T= 1.5 K and 
B=2.6 T for n =  1 into (7.1), we obtain ~ ~ ~ ~ 5 . 6  and 10 
p s  and rq,=0.48 and 0.16 ps,  respectively, for the zeroth 
and first levels. Such fundamental deviations from the values 
of the characteristic relaxation times found experimentally in 
Ref. 3, viz., 10 ns (n=O) and 4 ns (n = 1 ), must be ex- 
plained. 

The first reason for this disparity lies in the fact that 
there was obviously no spin condensate in Ref. 3, since the 
condition (6.13) was not satisfied. In terms of spin-exciton 
excitations, the spin system in Ref. 3 was initially a cluster of 
strongly interacting nonzero-point excitons, so that relax- 
ation far from equilibrium took place, of course, according to 
a scenario differing from the one described here. When equi- 

librium is approached, agreement between the experimental 
data and the values of rqs might be expected, but here, too, 
as we see, the difference amounts to more than an order of 
magnitude. Nevertheless, this fact is not surprising. First of 
all, the parameter d in the definition of the spin-orbit energy 
(2.3) is quite vague. The effective thickness of the layer in 
this equation must correspond to the characteristic thickness 
of the heterojunction only in order of magnitude. On the 
other hand, a twofold decrease in d results in a 16-fold in- 
crease in the rate of the relaxation process, and then our 
values of rqs turn out to be close to the experimental values. 
It must also be taken into account that the first of the in- 
equalities in (2.1) was satisfied in Ref. 3 only by a small 
margin, and the second inequality actually even had the op- 
posite sign. In particular, this allows the effective mass, for 
example, to differ significantly (in the upward direction) 
from the values defined in (4.6'), which we used to obtain 
(7.1). As an example, we calculate Mo directly from Eq. 
(4.6) using the model size-quantized function 
f ( ~ ) = 2 d - ~ / ~ z e - ~ l ~ .  For d equal to 33 A and a field equal to 
4.9 T we find that the exciton mass increases in comparison 
to (4.6') by a factor of approximately 1.5. The violation of 
the second inequality in (2.1), which leads to alteration of the 
matrix element (5.4), can have an even more significant ef- 
fect on the result. 

To verify our theoretical results experiments must be set 
up at temperatures below 0.1 K in fields no weaker than 10 
T. In addition, to investigate relaxation under the conditions 
of a spin condensate it would be desirable to use a procedure 
under which a strong deviation of S, from its equilibrium 
value would not have an effect, as much as possible, on the 
thermal equilibrium of the electronic system with the lattice. 
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APPENDIX A 

We define the exciton annihilation operator as the Her- 
mitian conjugate of the operator (3.4), and then taking into 
account that a +, a ,  b + , and b are Fermi operators, we can 
easily find 

[ Q , , ~ ~ I = [ Q ~ , ~ ~ I = [ Q ~  ,ap1=[Q: ,bpfI=o; (Al) 

[Q: , a i l = ~ P - l ' ~  exd -  iq,(p +qy12)}b~+qy. 

[Q, ,ap]= --~l"-"~ exdiqX(p +qy12)}bp+qy. (A2) 

[Q, ,b;l =ML"' exdiq,(p -qy/2))ai-qy, 

[Q: .bpi =K 'I2 exp( - iq,(p - qy/2)}ap-qy. 

In addition, 

[Q; ~ Q ~ l = [ ~ , , ~ ~ , , l = o .  ('43) 
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It is useful to introduce the operators 

in terms of which we can express the commutator 

[ Q ~ , ~ Q ~ J = ~ ~ P ( ~ @ I ~ ) ~ ~ ~ - ~ ~ - ~ ~ P ( - ~ @ I ~ ~ ~ ~ - ~ ~ .  (AS) 

We used the notation 

@12= @(q1 .q2)=(91x92~-92~91~)/2. (A6) 

In a special case 

In (A7) it was taken into account that the operator identity 
A: + B: = 1 holds in our system under the condition (1.1). 

The following rules governing the action of the operators 
on the ground state are obvious: 

The commutation rules for the operators (A4) with the 
exciton operators Q: and Qq have the following forms: 

ei@12[A 91 ,Q 92 ]= - e - i * 1 2 [ ~ q l , ~ q 2 ] = K ' ~ q 2 + q 1 ,  

In a special case 

[ A ~ + B ~ , Q ~ I = [ A ~ + B ~ , Q o I = ~ .  (A97 

As a result, we can use (A3)-(A9) to calculate the con- 
volutions 

( ~ I Q ~ Q - ~ ( Q : ) ~ ~ O ) = ~ ~ ~ , ~ - ~ ~ ~ ,  ( ~ 1 0 )  

as well as to establish the following rules for the action of 
the excitonic operators on the states (3.5) 

Next, using (A12) and (A13) with q l  =0, we obtain the rules 
for the action of powers of Qo on the states (3.5): 

(N- l ) ! ( N - N + M -  I)! 
( ~ o ) " l N , q ) = ~ ~ ~ ( ~ -  -M)!(N-N- IN-MA), 

for M S N  (A15) 

and, at the same time, 

( Q ~ ) ~ - ' ~ N , ~ ) ~ ~ ~ ~ = ( Q ~ ) ~ ~ N , o ) = o  for M a N +  I. 

Hence the normalization rule of the states (3.5) is established 
in the special case in which M=N. Calculating 
( ~ , N / N , ~ ) = R ( N , ~ ) ,  we find 

) I N , Q ) ) = R - ~ ~ ~ ( N , ~ ) ~ N , ~ ) ,  ( ~ 1 7 )  

where 

I N ! J V ! [ ~ ( N - N ) ! ] - ' ,  if q=O and N S H ,  
= (N- 1 ) ! ( & ' - - 2 ) ! [ @ - ' ( ~ - ~ -  I)!]-', 

if q#O and l S N S N -  1. 

Using (A5)-(A13) and (A14)-(A18), we can show that 
the norm of a two-exciton state that is not an eigenstate of 
the symmetric model is 

9 1 9 2 ~  6419) 

This equation was obtained for the case in which N+ 1, 
-1, a n d N - N - N .  

APPENDIX 6 

The isotropic enables us to take into account the 
deformation and piezoelectric fields independently. In addi- 
tion, we are dealing with a cubic crystal, in which the band 
extremum is located at the point k=O. Then contributions 
from the D A  interaction are made only by longitudinal 
phonons; therefore the "deformation" part of the desired 
quantity (the left-hand side of (5.12)) contains only one term. 
As a result, this quantity can easily be found (see Refs. 26 
and 27): 

a2p:  
I u ~ ( ~ , ~ , ) ~ ~ = ( T I ~ ~ T ~ ) E ~ ~ ( ~ ) ,  where TG'= 2.rmpcg- 

The nominal time rD was introduced in accordance with Ref. 
27. It can be expressed in terms of the deformation potential 
a ,  the velocity of longitudinal sound c,  , the density p, and 
the nominal momentum po , whose symbolic and numerical 
values were presented in Ref. 27; in particular, 
po= 2.52X lo6 cm- ' for GaAs. 
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It is somewhat more difficult to obtain the corresponding 
"piezoelectric" contribution, since the longitudinal mode 
and both transverse modes must be taken into account: 

Here 

( e 1 4  is the piezoelectric constant of the cubic crystal, E,, is 
the dielectric constant, and e is the electron charge). The 
polarization unit vectors d(S) in the long-wavelength approxi- 
mation depend only on the direction of propagation of the 
phonon. Therefore, d(')= (ell k, k ,  1 k )  , and the transverse vec- 
tors d(') can be chosen arbitrarily in a plane perpendicular to 
k. After raising (B3) to the second power, the appropriate 
averaging must be performed in (B2). 

We introduce the coordinate system (x' ,y ' , z ' ) ,  in which 
the z' axis is directed along k, and the x' axis follows the 
straight line along which the ( x , y )  and ( x l , y ' )  planes inter- 
sect. Then the polarization vector for each transverse mode 
can be expressed in terms of the unit vector t  in the 
(x' , y  ') plane, for example 

Substituting this and the analogous expression for d('2) into 
(B3), and then everything - - into (B2), and averaging over the - - -  
t l  and t2  directions ( t :  = t; = 112, tx= t y  = t,ty = 0;  therefore, 
the interference terms vanish), we obtain an expression, 
which, when added to (Bl), gives Eq. (5.12). The nominal 
P A  scattering time is defined in the following manner: 

The coefficient 5 in (5.12) and, accordingly, the factor 115 in 
(B4) were introduced so that our expression for TP would 
correspond to the "three-dimensional" quantity. This coef- 
ficient appears because the formal averaging of the quantity 
in parentheses in (5.12) over all the directions of k in three- 
dimensional space gives k4/5,  which is consistent with the 
result of the averaging performed, for example, in Ref. 28. 

The values of the material constants appearing in the 
definitions (Bl) and (B4) can be found in reference texts (for 
example, Ref. 29). In particular, the data presented on the 
deformation potential in GaAs (in the case of A3B5 semicon- 
ductors, it is the quantity denoted by a(T,,) or a(r6,-) in the 
generally accepted terminology) suggest that 
I E 1 = 17.52 1.0 eV (with consideration of the small spread in 
the experimental values obtained by different methods). 
Therefore, the corresponding time r, equals 0.8 ps, which is 
five times smaller than the numerical value of this time in 
Table A5 in Ref. 27. To determine the numerical value of 
T P ,  the piezoelectric constant of the crystal must be known. 

The data presented in Refs. 27 and 29 were obtained from 
the experiment in Ref. 30 (e14=0.16 c / m 2 ) .  As a result, we 
find rp= 35 ns. 

')The possibility of such a transformation stems from the fact that the exci- 
ton creation and annihilation operators are neither Bose nor Fermi opera- 
tors and that, in particular, the "kinematic" identity 
(Q : )~=JT  ' z ~ Q ~  q ~ :  holds (the expression for Q: is presented in Sec. 

3). 
 atis is faction of the weaker inequality d2<kr, is sufficient for "uncou- 

pling" the coordinates ( x , y )  and z in the three-dimensional Schrodinger 
equation and neglecting the interaction when the size-quantization problem 
in a layer is solved, but for reasons that will become clear below we 
assume that d satisfies (2.1). The second inequality in (2.1) means that to 
determine the state of the interacting two-dimensional electrons we can 
consider the combinations of one-particle wave functions of only a single 
Landau level (the one which corresponds to the lowest unfilled magnetic 
band), taking into account, if necessary, the states of other levels only to 
leading order. 

3)These arguments are of course quite superficial. A detailed analysis, how- 
ever, confirms the validity of the statement made in regard to an equilib- 
rium system (with respect to the temperature, but not with respect to S,). 
At the same time, we can imagine a situation in which a highly nonequi- 
librium fluctuation of nonzero-point excitons with a large characteristic 
value of the momentum Iq l (Z  1 might appear in a system with a developed 
condensate. In this case, even if the number of such excitons is small 
compared with -4'" (i.e., if the rarefaction condition holds), their contribu- 
tion to annihilation can be greater than the "background" contribution of 
zero-point excitons in the condensate. Then the flux specified by the third 
case of annihilation can be dominant. 

')we recall that the Bose-Einstein distribution is valid in all cases in which 
an unlimited number of identical noninteracting particles can be found in 
the same state and that, generally speaking, the particles themselves need 
not be described by quantum-mechanical Bose creation and annihilation 
operators. Strictly speaking, in our case the Bose distribution is only ap- 
proximately valid, since the possible number of non-zero-point excitons in 
each assigned state is restricted to -4'"- No- 1. Naturally, we assume that 
./tr-N,% 1. 

first terms in Eqs. (7.1) are determined by the P A  interaction, for 
which the phonons of all three polarizations are significant. Since we are 
using an isotropic model, a certain mean value of the velocities of longi- 
tudinal and transverse sound should be employed as c, in the correspond- 
ing places (including for 7,) in (6.17), (6.19), (6.27), and (6.30). In our 
calculations we assume that it is equal to 0.7 times the velocity of longi- 
tudinal sound (see Ref. 27). Contributions to the DA interaction are made 
only by longitudinal phonons; therefore, X, A,, , and 9" are specified by 
the corresponding formulas, in which c, is equal to the velocity of longi- 
tudinal sound. 
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