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The adiabatic approximation is used to study the effect of the linear and quadratic contributions 
of the thermal lattice fluctuations to the magnetic resonance frequency on the resonance 
lineshape in the incommensurate phase of a crystal. An analysis of the temperature behavior of 
the peaks in the quasicontinuous resonance-frequency distribution characteristic of this 
phase is carried out. The decay of fluctuations in the lattice-wave amplitude that accompanies a 
drop in temperature usually makes these peaks taller, although the increase in the height 
of the peaks with temperature-independent frequencies is limited by the quadratic contribution of 
the fluctuations in the phase of the lattice wave. But for atoms occupying particular 
positions in the crystal cell in the high-temperature phase the linear contribution of fluctuations 
increases as the temperature is lowered, which makes the peaks with temperature- 
dependent frequencies shorter. The height of these peaks increases as the order parameter 
becomes saturated or as the region of a peak with a temperature-independent frequency is 
approached. O 1996 American Institute of Physics. O 1996 American Institute of 
Physics. [S 1063-7761 (96)01707-61 

1. INTRODUCTION 

Crystals with an incommensurate phase are currently an 
object of widespread study.' In such a phase, the displace- 
ments of the atoms from the positions in a high-temperature 
translationally symmetric phase form a spatial wave with a 
wave vector not coinciding with any of the highly symmetric 
(singular) points of the Brillouin zone. 

In the translationally symmetric phase, the magnetic and 
electric fields in atoms occupying the same positions in the 
unit cells of the crystals have the same time averages. Hence 
the magnetic resonance spectrum in such a phase is discrete 
(the number of lines is determined by the number of non- 
equivalent positions in the cell occupied by the resonating 
atoms and the magnitude of the atomic spin), which makes it 
possible to determine the local symmetry from the angular 
dependence of the resonance frequency and therefore to lo- 
calize the atom in a ce1L2 The shape of an individual peak in 
the spectrum can be used to determine the type of atomic 
mobility.3 

In an incommensurate phase the translational degeneracy 
of resonance frequencies is lifted, and each individual peak 
becomes a quasicontinuous distribution of resonance fre- 
quencies in an interval that depends on the amplitude of the 
lattice modulation wave.4 The distribution has singularities at 
least at the end of the interval. For a long time the experi- 
mentally observed resonance lines were interpreted by a 
static model: the lattice displacement wave v(r,t) was as- 
sumed "frozen," i.e., q(r,t) = ~ ( r ) .  Within this model, the 
magnetic resonance line below the phase transition tempera- 
ture Ti is the convolution of this resonance frequency distri- 
bution and the line shape in the high-temperature phase; just 
below Ti the line consists of two peaks that bound the con- 
tinuously distributed resonance frequencies (i.e., the tem- 
perature range below T i ,  in which the fluctuations of the 

magnetic and electric fields exceed the effect of the varia- 
tions of local static electric fields on the resonance frequen- 
cies and are the only source of a resonance line above T i ,  is 
fairly narrow). This line splitting in the transition to the in- 
commensurate phase was observed in many NMR studies 
involving quadrupole nuclei, in NQR studies, and in EPR 
studies (see the review by ~ummins'). In interpreting the 
experimental data, however, emphasis was placed both on 
the form of q (r) (the wave or soliton approximation) and on 
the type of dependence of the resonance frequency R on 7 
(the number of terms taken into account in the expansion of 
R in powers of 7, and the local or nonlocal 
approximation).576 

For a long time the effect of the lattice mobility of spins 
on the resonance lineshape in the incommensurate phase of a 
crystal was ignored. The first papers to consider this effect 
dealt with slippage of the lattice modulation wave along the 
crystal7 and thermal fluctuations of the phase of the wave 
with a given Gaussian di~tribution.~ Only fairly recently have 
rigorous studies of the effect of thermal fluctuations on the 
resonance line emerged?-" Fajdiga et aLg and Doliniek 
et al." examined the effect of the linear contribution of fluc- 
tuations, SR = (dfild?,~) Sq,  for, respectively, a linear rela- 
tionship between R and q ,  or R =a,+ R 7 ,  and a qua- 
dratic relationship, R = R o  + R, 72/2. The result was an 
explanation of the lack of splitting of the resonance line over 
a certain temperature range below T i ,  a phenomenon ob- 
served by NMR on 8 7 ~ b  in Rb2ZnCb and on 3 9 ~  in 
K2Se04. 

Studying the NQR spectrum of ' 2 7 ~  in Cs2Zn14, Aleksan- 
drova et a1.12 found that as the temperature is lowered below 
Ti  the resonance line becomes asymmetric instead of split- 
ting in the ordinary way, and only after that a second peak 
emerges above the noise level. In Ref. 10 a generalization to 
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the case of an arbitrary relationship between R and q sug- 
gested a way of explaining the unusual behavior of the reso- 
nance line by the effect of the linear contribution of thermal 
lattice fluctuations to the resonance frequency. 

The present paper develops the approach suggested in 
Ref. 10 and generalizes it to the case of a quadratic contri- 
bution of thermal lattice fluctuations to the resonance fre- 
quency, SR= (dRldv) Sq+  ( d 2 ~ / d q 2 ) ( ~ v ) 2 / 2 .  

2. THE LINEAR CONTRIBUTION OF FLUCTUATIONS 

In the adiabatic approximation2.3 and with the inhomo- 
geneity of the crystal in the incommensurate phase taken into 
account, the resonance line can be represented by the func- 
tion 

V is the volume occupied by the sample, and the angle 
brackets stand for averaging over the random process tested 
by the resonance frequency. 

Except for a narrow neighborhood of the transition 
temperature,13 the behavior of the lattice subsystem is suc- 
cessfully described by Landau's thermodynamic theory, 
which makes it possible to consider atomic motion as being 
a Gaussian process. Without loss of generality, we restrict 
our problem to the case of a crystal with an incomplete ther- 
modynamic potential depending on a two-component order 
parameter q,= ( q l r ,  qZr) (see Ref. 14): 

where B and D are strictly positive, and V is the nabla op- 
erator. By applying the transformation 

E2r= ?Ilrsin(qz)+ ?12rcos(qz) 

with q = D1lD to (2), we can cancel out the Lifshitz invari- 
ant. Equation (2) becomes 

with A' =A-D~' ,  and the following correlation functions 
correspond to the solution (tl ,) = ~e J-= to (here 
(t2.)=0 follows from the conditions of equilibrium 
6@[5,]/ St,= 0 below the temperature Ti = To+ D ~ ~ /  a, 

with A = a(T- To) and a>O, of the transition from the dis- 
ordered phase to the incommensurate phase with relaxation- 
type crystal dynamics): 

where 

t l = s - ( t > ,  

r is the coefficient in the dissipation function 

+= d q/dt,  Ao=A1 + 3~5:, and the Boltzmann constant is 
set to unity. 

Suppose that an external magnetic field (or the gradient 
of an electric field in NQR) identifies qlr(t).  The effect of 
the linear contribution of the lattice fluctuations is reduced to 

where Ro,= R(tocos(qz)), and R l r=  R1(tocos(qz)), with 
R1(q )  =dR(q) ldv .  Since, as noted earlier, the motion of 
the lattice atoms is described by a Gaussian process, we can 
write the function (1) representing the resonance line as233 

where 

L= 27~19, integration over the wave vectors k is done inside 
the first Brillouin zone, and v is the unit cell volume in the 
high-temperature phase. 

In view of the unwieldy nature of the above expression 
we restrict our discussion to an estimate of the integral. The 
principal contribution to the integral is provided by low- 
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frequency phonons, and the edge of the Brillouin zone in (4) 
can be ignored, with the result that integration is extended to 
infinity. This yields 

For T<Ti  the gap in the spectrum of ti, is finite. If the 
relaxation contribution is ignored in comparison to the gap, 
the estimate of the integral can be simplified: 

where the relaxation rate 

is determined by the thermal fluctuations &,(t) of the lattice 
wave amplitude ("amplitudons"), 

is determined by the phase fluctuations &(t) ("phasons"), 
and r,= (D/Ao)'i2 is the correlation radius. 

If we ignore the lattice fluctuations, ylrW yzr-0, Eq. (6) 
becomes the relationship well known from the static 
m0de1"~: 

where the sum is over all solutions of the equation 
o = fi([ocos(qz)). The quasicontinuous distribution of reso- 
nance frequencies exhibits peaks corresponding to the ex- 
trema of this function: 

FIG. 1 .  Intensity-normalized line- 
shape of a magnetic resonance in the 
incommensurate phase of a crystal 
on atoms occupying particular posi- 
tions, caused by the linear contribu- 
tion of fluctuations with a saturated 
order parameter. Notation: (a) 
r= i ,  and (b) r=io; curve I, 
[:=o; curve 2, 5;=0.2; curve 3, 
ti= 0.4; curve 4, t i =  0.6; curve 5, 
ti= 0.8; and curve 6, (:= 1. 

The frequencies of these peaks corresponding to sin(qz)=O 
vary with temperature according to R ( ? to) ,  while those 
corresponding to R'(tOcos(qz))=O do not vary. 

Phasons have essentially no effect on any of the above 
peaks, since at these frequencies y2,= 0. Amplitudons, how- 
ever, act selectively: yl,=O for peaks with temperature- 
independent frequencies, while yl,#O for peaks with 
temperature-dependent frequencies. As a result the latter may 
be weakened or may even be completely suppressed. 

While for T>Ti the resonant atoms occupy general po- 
sitions in the crystal cell and a ' ( 0 )  dominates in the expan- 
sion of (R1(tO) in powers of to ,  as the temperature is low- 
ered below Ti the relaxation rate y,, decreases in proportion 
to the correlation radius r, and peaks with temperature- 
dependent frequencies may be restored as we move away 
from the neighborhood of the transition. In the event of a 
particular position, / C! ' ( to)  1 grows with decreasing tempera- 
ture no slower than to-r,' which leads to a decrease in 
yl, and marked suppression of the peak with the frequency 
fi(t0). 

There are two reasons why this peak grows as the tem- 
perature falls. First, in the region where to is saturated the 
coefficient f i l ( tO)  becomes a constant and the temperature 
behavior of yl, is again dominated by the decrease in r,. 
This situation is numerically modeled in Fig. 1 by the con- 
volution of (6) and the Gaussian exp(-~~/2$}/(2,rr$)~/~. At 
(n(v)= 77'12 the temperature T was determined from the 
relationship to= tanh(to/T) known from the molecular ap- 
proximation, and the coefficients were set at B = D = v = 1 
and y, = 1/20. Second, the increase in 1 f i  ' ( to)  1 was replaced 
by a decrease as we move closer to the region of a peak with 
a temperature-independent frequency. This situation is mod- 
eled in Fig. 2 at a ( v ) =  v2/2- T4/4. The relaxation rates 
were calculated by the formulas 
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and the coefficients were set at the same values. 
As lo increases, the initial decrease in the height of the 

peak at the frequency f l ( lO)  changes in both cases to an 
increase in the peak height as we move closer to the region 
where the above conditions are met. But while for small 
values of r this behavior is observed over the entire tem- 
perature range, for large values of r the decrease in peak 
height is accompanied by a change in peak shape (the peak 
becomes asymmetric and moves to the frequency fl(O)), 
while the increase leads to the emergence of a new peak with 
a slowly varying frequency, growing from under the wing of 
the asymmetric peak. 

Such behavior of the resonance line was observed, as 
noted in the Introduction, in Cs2Zn14 below T i .  The follow- 
ing estimates can be made on the basis of the data of Ref. 12 
for this crystal: va1.3X m3, the average frequency of 
"soft" optical phonons wph= kBTi 1.6X 1013 S- ', 
D=mw~, ,1~~-4 .1  x 10-l8 J (here rn is the mass of an io- 
dine atom, and Q is the Debye wave vector), and 
r = m  yph=mwPh~=3.3X K kg s-I (here yph is the 
phonon relaxation rate, and K= lo0; see Ref. 11). If 
with the observed splitting of resonance frequencies 
Ailo=5.6X lo6 s- ' we associate bt ;  with to= 10-l2 m and 
r,= m, the estimate of the relaxation rate y,, amounts 
to lo6 K s- I ,  which is comparable to Afl,. Hence the effect 
of thermal lattice fluctuations on the resonance frequency 
may be responsible for the anomalous behavior of the reso- 
nance lineshape in the incommensurate phase of Cs2ZnI,. 

3. THE QUADRATIC CONTRIBUTION 
OF FLUCTUATIONS 

FIG. 2. Intensity-normalized line- 
shape of a magnetic resonance in the 
incommensurate phase of a crystal 
on atoms occupying particular posi- 
tions, caused by the linear contribu- 
tion of fluctuations with a tempera- 
ture intersection of the peaks in the 
quasicontinuous distribution of the 
resonance frequencies. Notation is 
the same as in Fig. 1 .  

atoms undergo allows for the following approach. We trans- 
form G,(t), the Fourier transform of a sample-nonaveraged 
resonance line, to the following form: 

( t )  = ( - i /:dtlfl(~,tl)]) 

As is known,I5 the average of an arbitrary product of lattice 
variables in a Gaussian process can be represented in the 
form of the sum of products of painvise correlation functions 
obtained by all possible pairings. In the graphic representa- 
tion of the result of averaging for the nth term in the series 
(7), the connected diagrams are chains and loops,'6 

where 

c,,= n:rfl,";2 

is the nth-order chain, and 

is the nth-order loop, with ~ : ~ = v ; ~ ( t ~ ) .  The name of each 
diagram depends on whether or not the initial and final mo- 
ments of time in the sequence of the multiplied correlation 

ne effect of lattice fluctuations in this case reduces to functions coincide. While loops are generated exclusively by 
the quadratic contribution of fluctuations, chains (starting at 

f l ( r , t ) = f l ~ r +  0 ~r?l;,(t) +fl2r771,2(t)/2, n = 3) are generated by both linear and quadratic contribu- 
tions of fluctuations. The chain with n = 2  is generated ex- 

where a,,= fl"((ocos(qz)), with f l l ' ( ~ )  = d2il(  ~ ) l d  v2. clusively by the linear contribution of fluctuations and is 
The Gaussian nature of the random process that the lattice represented in (3). 
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FIG. 3. Intensity-normalized lme- 
shape of a magnetic resonance in the 
incommensurate phase of a crystal 
on atoms occupying particular posi- 
tions, caused by the quadratic contri- 
bution of fluctuations. Notation: (a) 
r= 1, and (I,) r = 10; curve I, 
8:=0; curve 2, 5;=0.5; curve 3, 
ti= 1 ; curve 4, ti= 1.5; curve 5, 
&=2; and curve 6, ti= 2.5. 

According to Mayer's theorem,17 the sum of all con- As Eqs. (4)  and (8) imply, essentially only amplitudons 
nected and disconnected diagrams (7) can be written as affect peaks with temperature-dependent frequencies. The 

decrease in the amplitudon contribution to ( v , L ) ,  as the tem- 
uerature is reduced leads, correspondingly, to a growth of 

where these peaks [the peak at the frequency Cf(&,) in Fig. 31. But 
m Co on atoms in particular positions of the crystal cell the in- 

( - i>"Cnr ( - iInOnr 
Fcr(t)= Z 9 For(')= Z crease in the contribution of chains balances the lowering of 

n=2 n = l  2  . these peaks obtained for the linear contribution of fluctua- 
tions. 

A general approach to finding Fcr(t)  and For(t)  for an 
On the other hand, only the loop contribution affects 

arbitrary ( v i r ( t )  vir) is developed in Ref. 16 and involves 
peaks with temperature-independent frequencies. Hence 

solving an integral equation for an auxiliary series. A direct 
these peaks also grow as the temperature is lowered, but the 

estimate for large times yields 
growth is limited by the phason contribution to ( $ ) &  [Eq. - 

1 - c o s ( ~  t )  (4)] ,  which is essentially temperature-independent. 
~ d t ) - - - a : ~ \ : ~ d & (  7 : ) ~  2 p E 2  1 1  + i a ~ r (  V : ) E I ,  I am grateful to I. P. Aleksandrova, V. B. Zobov, and 

(8) 
S. V. Primak for useful discussions. This work was sup- 
ported financially by the Russian Committee of Institutions 

F o r ( t ) ~  -t\:mdeln[l + ia2r (T: ) , ]14a .  of Higher Learning (Project No. 94-3 1.3- 14). 

In contrast to (6),  for a quadratic contribution of fluctuations 
to the resonance frequency it is impossible to explicitly sepa- 
rate the contributions of amplitudons and phasons to Fcr( t )  
and For(t) .  The contribution of the chains Fcr(t)  shifts the 
resonance line of the rth spin in the direction opposite the 
sign of 02, and narrows it in comparison to (3).  At the same 
time the contribution of the loops For(t)  shifts the resonance 
line in the direction of the sign of Q 2 ,  and broadens it. 

Figure 3 illustrates the case of numerically modeling the 
variation of the magnetic resonance lineshape with the tem- 
perature reduced below Ti with Q ( g ) =  ~ , 7 ~ / 2 .  The coeffi- 
cients were set to B = D = v = 1 and y, = 0. The differences 
from the case of the linear contribution of fluctuations are 
listed below. 

The contribution of loops causes a shift and broadening 
of the resonance line already at temperatures above Ti. Be- 
cause of this broadening and the broadening caused by the 
linear contribution of fluctuations on atoms in general posi- 
tions of the crystal cell? the quasicontinuous distribution of 
the resonance frequencies in the incommensurate phase of 
the crystal remains unobservable over a certain temperature 
range below T i .  
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