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The paper examines superradiance in impurity crystals in the field of a coherent phonon wave 
excited by two ultrashort laser pulses via Raman scattering processes at the moment of 
preparation of the initial state of an ensemble of emitters. It is shown that by varying the power 
of the excitation pulses and their mutual direction of propagation, one can control the 
superradiance parameters and extract data on the electron-phonon coupling constant and its 
anisotropy. O 1996 American Institute of Physics. O 1996 American Institute of Physics. 
[S 1063-776 1 (96)01507-71 

1. INTRODUCTION the emitters (as in the case in which only thermal phonons 

The problem of spontaneous coherent emission (Dicke 
superradiance') in impurity crystals taking into account the 
interaction of emitters, impurity particles, and thermal 
phonons, has been studied by a number of 
Weak emitter-phonon coupling generally leads to a 
temperature-dependent decrease in the superradiance inten- 
sity.536 But with strong adiabatic electron-phonon coupling, 
for which the energy spectrum of the system acquires a set of 
electron-vibrational levels consisting of a zero-phonon line 
and vibrational repetitions, there is a finite probability of 
emission of superradiance pulses not only in the zero-phonon 
transition but also in the vibronic transitions, with the inten- 
sity of these pulses, their delay times, and durations strongly 
depending on the electron-phonon coupling parameter and 
the temperature of the sample (whose dimensions are smaller 
than the radiation ~avelength) .~,~ Similar results were ob- 
tained in Refs. 3 and 4 using the Thomson model? which 
describes Brillouin scattering of light in a resonant medium 
with the participation of a single absorbed (or emitted) pho- 
non. 

Experimentally, superradiance on electron-vibrational 
transitions of 0, molecules was realized in the polar dielec- 
trics KCI:O; (see Refs. 9 and 10). Naboikin et al.' and An- 
drianov et aL6 studied Dicke superradiance in mixed mo- 
lecular crystals of diphenyl with pyrene on pyrene centers, 
which typically display weak electron-phonon coupling. 

2. STATEMENT OF THE PROBLEM 

Obviously, the parameters of superradiance can be effec- 
tively controlled by exciting a coherent phonon wave, say by 
a time-dependent Raman process, instead of exciting thermal 
phonons, which because of their insignificant population are 
ineffective at low temperatures. In this case the experimental 
setup changes somewhat: to prepare the initial superradiance 
state at time t=O there must be, in addition to an ultrashort 
laser pulse of frequency wl, a second ultrashort pulse of 
frequency w2 propagating at an angle to the first. Then, in 
addition to optical excitation of impurity centers in the 
sample at frequencies wl and w2, a coherent phonon wave is 
excited at the difference frequency w, - w2= R, and this 
wave modulates the frequency of the quantum transitions of 

participate). Changing the direction of propagation of the 
excitation laser pulses and tuning the difference frequency 
o1 - w2 to resonance with different phonon modes, one can 
not only control the superradiance dynamics but also use the 
behavior of the characteristic superradiance parameters to 
determine the features of the electron-phonon coupling: the 
magnitude of the coupling of localized electron states with 
the excited phonon modes and the anisotropy of this cou- 
pling. Note that the role of a coherent phonon wave in the 
light echo phenomenon was studied by Wilson 
et al." (see also Ref. 12). 

We study an ensemble of optical emitters-impurity at- 
oms or molecules imbedded in a crystal lattice. A natural 
approach to describing the electron states of the impurity 
particles in resonant phenomena is to use the idealized 
scheme of a two-level quantum system.' We assume that 
each such two-level system interacts with the radiation field 
and the coherent phonon wave (excited in this case by ul- 
trashort laser pump radiation). The interaction of the quan- 
tum levels and thermal phonons can be ignored because the 
phonon modes of the lattice are "frozen" if low tempera- 
tures are used in the experimental setup. It is legitimate to 
study a selectively excited coherent phonon wave by classi- 
cal means, i.e., by assuming that the wave has an amplitude 
q, a frequency R,  and a phase 4. 

We write the Hamiltonian of the system of optical emit- 
ters interacting with the radiation field and the coherent pho- 
non wave as 

H=Hp+ Hp,+H,+ V(t), 

where 

~ , = w , z  Sf, H,,= z w(k)a'(k)a(k), 
i Ik) 

Here a(k) is the quantized amplitude of the radiation field 
for the mode (k,s) with frequency wk and polarization 
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e,, s,:'~ is the pseudospin variable, which obeys the com- d p r  
mutation relations for angular momentum and describes the - d t  + i[Hi"t(t),p1(o)1 

jth ( j  = 1,2, . . . ,N) two-level atom with energy splitting 
wo, and g,(k) and A are the electron-photon and electron- 
phonon coupling constants: 

= - j j ~ r )  . [ ~ ~ ( r ' ) , p  ( f r  ) l ldt l .  
gj(k)=g(k)exp(ik rj)= -iJ-(d.%)exp(ik.rj), 

(8) 

with d and rj the dipole moment and radius vector of the 
jth particle and V the quantization volume of the radiation Finding the trace in the photon-field variables of both sides 
field, and 4j the phase of the ~honon wave at the point of Eq. (8), we arrive at equations for the reduced density 
occupied by the jth particle- Throughout this Paper we take matrix a= Trph[pl(t)], which describes the evolution of the 
h=1.  quantum states of the impurity subsystem only: 

3. DERIVATION OF THE MASTER EQUATION 
- " 

The statistical operator of a system described by the 
Hamiltonian (1) satisfies the Liouville equation (the evolu- 
tion of the system is studied over time intervals shorter than Here we have used the fact that Trph([~in,(t),pr(o)])=O, 
the time of irreversible dephasing of the polarization of the which follows from the factorization of p1 at t=O: it is as- 
resonant medium) sumed that initially the system is prepared in a state with 

which the canonical transformation 

density matrix 

(2) 

p-+pr + U + p ~ ,  (3) 
where 10)(01 is the density matrix of the radiation field (we 

reduces to may assume that for frequencies in the optical range the ra- 

dpr  diation field is in the vacuum state 10) with zero tempera- 
i-=[HiAt).pr1, dt  (4) ture). 

Since in the case of superradiance the field has the short- 
where est correlation time (proportional to the reciprocal of the 

I 
optical-frequency bandwidth), in a certain sense the field can 

U = e ~ ~ { i ( ~ d t ' [ H , + H ~ h + V ( t ~ ) ]  , (5)  be interpreted as a reservoir for the atomic system. The in- 
teraction of this system with such a wide-band reservoir rap- 

h i I idly wipes out any memory of the system about its past, with 

Hint(t)= C gj(k)a(k) s;exp i wot+-sin(SZt+@j) [ i  the result that the temporal behavior of the optical emitters is 
j . Ik)  Markovian. This justifies replacing p r ( t  - 7) by pl( t )  in (9) 

and extending the upper limit of the T-interval to 03. More- 
exp[-io(k)t]+ H.c. (6) over, we assume that pl( t )  can be written as 

To identify the contributions of the harmonics whose fre- 
quencies are integral multiples of SZ, it is convenient to ex- pr(t)=a(t)lO)(O1 +Apt ,  
pand the exponential function in (6) in a Bessel-function 
series based on the formula 

where Apr is at least of order Hint. Then to second order in 

Then 

Hint we obtain a closed equation for the reduced matrix den- 
sity: 

X e ~ p ( i n 4 ~ )  + H.c.] + H.c. (7) After substituting the expression (7) for Hi,(r) into the right- 
Equation (4) can be transformed in a standard manner hand side of Eq. (1 l), expanding commutators, taking the 

into the integro-differential equation trace, and integrating with respect r we arrive at 
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In the discussion that follows we ignore the principal 
part (denoted by P), which yields only a small imaginary 
term, i.e., causes a small shift in the resonance frequency, 
and the nonresonant terms containing the factor 
S[wo+ w(k)+rnfl]. 

The characteristic time it takes the optical emitters to go 
into a coherent state is proportional to ((A((-'  (here ( 1 -  . . (1 
stands for the operator's value in frequency units) and is 
much longer than the period T =  27rlfl of the rapid harmonic 
"jitter" superimposed on the less rapid evolution process of 
spontaneous coherent emission. Hence it is natural to decom- 
pose the real motion, described by the density matrix a, into 
slow motion averaged over the period T and rapid "jit- 
ter." It is convenient to realize the decomposition procedure 
by employing the method of "temporal projection" opera- 
t o r ~ : ' ~  

where the projection operator P' performs the averaging of 
rapidly varying quantities over the period T. Next we intro- 
duce the operator Q1= 1 - P'. Then the decomposition of the 
density matrix into the slowly and rapidly varying parts can 
be written as 

Successively applying the operators P' and Q' to Eq. 
(12), we arrive at two differential equations instead of 
one: l3 

On the basis of Eq. (16) we can formally represent the solu- 
tion for the rapidly varying (oscillating) part of the density 
matrix in the form 

Using (17) in Eq. (15) for the slowly varying part of the 
density matrix, we see that the order of smallness in A of the 
term P'AQ'a is no less than two (or no less than four in 
Hi,,), so that the term can be ignored. As a result, averaging 
Eq. (12) over the "jitter" reduces, according to (15), to av- 
eraging the operator A(t) over the period 2 7rlCl: 

This expression constitutes the most general form of the 
master equation for superradiance in the presence of a coher- 
ent phonon wave. However, to use this equation to obtain 
results that can be compared with experimental data, we in- 
troduce a "coarsening" procedure. The point here is that real 
samples containing emitters are much larger than the radia- 
tion wavelength: koR%l (here ko=wlc and 
R = maxlrj- rll). Hence exp[ik . (rj- rl)] must be averaged 
over the ensemble of particles. We apply a similar procedure 
to the factor e~p[i(+~-+~)], assuming that the phase differ- 
ence +j -  is uniformly distributed over the interval 
0 to 27r with density 1 1 2 ~ .  The result of ensemble averag- 
ing, 

exp[ik(rj-rr)]=I'(lkl), 

depends on the shape of the sample, while averaging over the 
phase spread S+jl results in the exponential function 
e~p[inS+~~] being replaced by the Kronecker symbol: 

Allowing for (19) and passing in (18) from the sum over 
{k) to an integral with respect to the wave vectors k and a 
sum over the polarizations s of the photon field, 

we obtain 

where y= 21d12w3/3c3. 
Thus the dependence of n-phonon processes 

(n = 1,2, . . . ) on the randomly distributed phase shifts 
(with constant density 1127~) must lead to averaging 

their contributions to zero when superradiance is initiated in 
large samples. The entire modulation effect of a coherent 
phonon wave on optical centers in this case resides in the 
factor J ; ( A / ~ ) ,  which renormalizes the electron-photon 
coupling constant. This factor is similar to the Debye-Waller 
factor, which characterizes the reduction in the unshifted 
component (the zero-phonon line) of an optical transition 
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I-, rel. units 
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FIG. I. The intensity I of Dicke superradiance (normalized to ~o , , / 4 rSO) )  FIG. 2. The peak intensity I,, , the delay time t ,  , and the supemdiance 
as a function of T= t /  7:) for three values of the energy W of the excitation pulse duration TR as functions of the electron-phonon coupling constant 

laser pulses: I ) ,  W=O; 2), W= 1.25X IO-~J ;  and 3) .  W= 2.25x 10- '~  A / f l .  
(N= 10''). 

when elastic scattering of thermal phonons is taken into ac- 
count. However, in contrast to the case of thermal phonons, a 
coherent phonon wave does not lead to homogeneous 
dephasing of the polarization of the optical centers. 

4. RESULTS AND DISCUSSION 

The standard form14 of the operator part of Eq. (20) 
makes it possible to immediately write an (approximate) ex- 
pression for the intensity I of superradiance under conditions 
in which all emitters are initially completely inverted and the 
transverse macroscopic polarization is zero, i.e., 
Trp[S,4F(0)] = $and ~r,[Sf s;F(o)] = 0: 

where the renormalized delay time tD and duration r~ of the 
superradiance pulse are defined as 

(here rp) = [ y17(ko)N]- ' and tg) are the values of the pa- 
rameters in the absence of a coherent phonon wave). 

The renormalization factor J;(A~o), which enters into 
the expressions for rD , r~ , and I because of the modulation 
of the quantum states of the emitters by a coherent phonon 
wave, leads (since J;(XIR) < 1 for AIR # 0) to an increase 
in the time of formation of a superradiance pulse, the spread- 
ing of the pulse, and a decrease in the peak intensity. The 
advantage of using a coherent phonon wave is that not only 
does it ensure effective control over the superradiance pro- 
cess but it also allows extracting information about the 
strength of the coupling of the electron states of the emitters 
and the various phonon modes thanks to the possibility of 
selectively exciting these modes (and simultaneous "freez- 
ing" of the thermal phonons caused by low temperatures). 

These facts are illustrated by Fig. 1, which depicts the time 
dependence of the intensity I for different values of the total 
energy W of the excitation pulses. Here we have allowed for 
the fact that the dimensionless parameter X/R can be written 
as1' XlR =god=, where qo=AW is the phonon am- 
plitude, S is the Huang-Rees factor, m is the phonon-mode 
reduced mass, A is a constant (for the a l,-mode of naphtha- 
lene, R=1385cm-', S=0.01, ~ = 0 . 3 ~ 1 0 - ' ~ d ~ n - ' ,  and 
m= 1o3mP, with m, the proton mass). Figure 2 illustrates 
the dependence of a superradiance pulse on the electron- 
phonon coupling constant X/R (for a fixed value of W). 
Obviously, in the latter case it is possible to study the anisot- 
ropy of the electron-phonon coupling by varying the direc- 
tion of propagation of the phonon wave (i.e., by changing the 
directions in which the excitation laser pulses are applied). 
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