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A general principle is formulated, stating that nonequilibrium physical systems, irrespective of 
their degree of complexity, will tend to relax as rapidly as possible to the best equilibrated 
of all possible states. The acceleration of relaxation of vertical velocity shear in plane-parallel fluid 
flows with statically stable density stratification by the development of wave-turbulence 
instability is investigated as an example. O 1996 American Institute of Physics. 
[SlO63-7761(96)01307-81 

1. INTRODUCTION 

One of the most timely problems in modem physics is 
how to describe the evolution of complex physical systems 
with a source of nonequilibrium and, in particular, to find 
criteria suitable for the development of methods to achieve 
such a description in systems of diverse physical nature. A 
general principle can be formulated on the basis of thermo- 
dynamic considerations: regardless of the complexity of a 
particular physical system, it tends to evolve in such a way 
as to achieve the fastest possible relaxation to the state of 
maximum equilibrium in the set of all states possible under 
the given conditions. 

This principle applies to systems of extremely diverse 
nature. The following phenomena can be considered as ex- 
amples of this principle: the relaxation of multiparameter 
nonequilibrium in a magnetized inhomogeneous plasma with 
an electron beam through the development of secondary in- 
stability when the primary instability in the relaxation of one 
source of nonequilibrium (the electron beam) accelerates the 
relaxation of the other source-the inhomogeneity of the 
plasma across the magnetic field;' the acceleration of relax- 
ation of inhomogeneity of a plasma in the ionosphere 
through spontaneous breaking of the initial one-dimensional 
symmetry of the the acceleration of relaxation of 
shear inhomogeneity of the velocity of plane-parallel flow of 
a stably stratified fluid in a gravity field through the devel- 
opment of wave-turbulence instability."" The last in this 
list of accelerated relaxation mechanisms can appear not only 
in hydrodynamic flows, but also in plasma-beam 

In the present article we give the results of an 
analysis of its occurrence in the hydrodynamics of a fluid 
situated in a homogeneous gravity field. 

The presence of such a field in many cases causes the 
properties of the fluid in the direction of the field (vertical) to 
change far more rapidly than in directions perpendicular to it 
(horizontal). This, in turn, creates conditions for the motions 
of the fluid to be separated into large-scale and small-scale 
components relative to one of the characteristic vertical 
scales. Here the large-scale and small-scale motions can be 
distinguished by type: the former can appear as regular 
waves, and the latter as fully developed small-scale turbu- 
lence. Such physical systems can therefore be analyzed by 

means of a model comprising three components: 1) average 
plane-parallel fluid flow with statically stable stratification of 
the density po(z) and a vertically nonuniform distribution of 
one (the horizontal) component of the velocity U(z) (z is the 
upward-directed vertical coordinate); 2) large-scale, regular 
wave motions; 3) small-scale turbulence. 

The presence of stable density stratification, which oc- 
curs for real values of the Brunt-Vaisala frequency N deter- 
mined from the expression'4 

where g is the acceleration of gravity, and cs is the sound 
velocity, enables the flow to remain laminar at indefinitely 
high Reynolds numbers if the vertical velocity shear 
U1=dUldz is not sufficient to overcome the stabilizing in- 
fluence of stratification and if horizontal velocity shear and 
external forces capable of maintaining turbulence are nonex- 
istent. The vertical velocity shear required for the develop- 
ment of turbulence is expressed in terms of the dimension- 
less parameter known as the dynamic Richardson number: 
~ i =  N'IU l 2  (Ref. 15). If Ri> 114, infinitesimally small dis- 
turbances in the flow cannot grow exponentially; otherwise 
this restriction is lifted.16 

Turbulent fluctuations as disturbances of small but finite 
amplitude can have a threshold Richardson number Ri,, close 
to 114, imposing an upper bound on the range of values for 
which the fluctuations can grow. The deviation of Ri,, from 
114 can be of either sign, depending on the nature of the 
nonlinearity. If the Richardson number exceeds this critical 
value throughout the entire flow, relaxation of the nonuni- 
form velocity distribution is suppressed. One way to accel- 
erate such relaxation was proposed ear~ier .~ It ties in with the 
fact that the corresponding relaxation process can involve 
regular large-scale (relative to the characteristic space and 
time scales of the turbulence) disturbances, or internal 
waves. In the course of its propagation such a wave modu- 
lates the initial distribution Ri(z), and if the stability reserve 
is small in a certain layer zo-h12<z<zo+h/2, i.e., if 
Ri(z) = Ria+ sRi and m i 4  1, it can become smaller than Ri 
,, in the part of the wave period where Ri(zo) decreases, and 
turbulence can grow in this layer. 
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In the simplest model, which enables us to avoid issues 
such as the nature of the transition from the laminar to the 
turbulent state, we can assume that the system is subjected to 
a small external force capable of maintaining a certain mini- 
mum possible level of turbulence in the given layer in the 
part of the wave period where it causes Ri(zo) to increase 
and thus further stabilizes the flow. If the other, flow- 
destabilizing part of the wave period is long enough for the 
turbulence energy to rise well above this minimum possible 
level, the feedback effect of turbulence on the wave is deter- 
mined mainly by its parameters in the destabilizing phase of 
the wave. In this case the turbulence represents a periodic 
sequence of patches traveling along the diminished-stability 
layer together with the destabilizing parts of each wave pe- 
riod. The influence of such turbulence on the wave can differ 
significantly from the influence of spatially homogeneous 
turbulence, which causes the wave to be damped by turbu- 
lent viscosity. 

Several authors4-' have investigated analytically and nu- 
merically the conditions under which such influence can re- 
sult in growth of the wave amplitude and, with it, the level of 
the turbulence induced by it (wave-turbulence instability). 
However, present-day models of turbulence in a stratified 
fluid afford the possibility of describing more accurately the 
influence of stratification on the development of turbulence 
than the model used in the cited In particular, a 
numerical model proposed in Ref. 19 can be adapted to the 
analytic investigation of the conditions underlying the devel- 
opment of wave-turbulence instability. The results of such 
an adaptation are briefly summarized below in Sec. 2. They 
are described in greater detail in Refs. 10 and 11. In Sec. 3 
we use the adapted model to refine the conditions for the 
development of wave-turbulence instability. 

2. DYNAMICS OF HOMOGENEOUS TURBULENCE IN 
PLANE-PARALLEL, STRATIFIED, SHEAR FLOW 
AND CHARACTERISTICS OF THE RELAXATION OF 
VERTICAL INHOMOGENEITY IN THE NEAR-THRESHOLD 
REGIME 

The simplest interaction of a wave with the turbulence 
induced by it can be described when the turbulence dynamics 
is determined by local wave fields, and the influence of the 
resulting vertical inhomogeneity of its parameters can be dis- 
regarded. To determine the conditions of validity of this ap- 
proximation, we begin by investigating the turbulence dy- 
namics in the spatially homogeneous case (when the flow 
parameters N, U' and hence Ri do not depend on the coor- 
dinates) and then follow up with the specific characteristics 
of the relaxation of vertical inhomogeneity of the turbulence 
and flow parameters in the near-threshold case, when the 
Richardson number throughout the entire flow differs very 
little from its critical value (Ri= Ri,,+ sRi(z), where 
( m i l e  1 ) on the basis of the above-selected model of the 
description of turbulence," in which turbulence is character- 
ized by two independent parameters: the turbulent energy 
density b and its dissipation rate E. The basic turbulence 
equations in the given situation can be written in the fornl 

FIG. I. Graphs of ( ( B )  for various values of the Richardson number Ri. 

Here a, , c, and cE2 are empirical constants of the model, 
v, is the turbulent viscosity, is the ratio of the turbulent 
viscosity and thermal conductivity conditions (the analog of 
the Prandtl number), and Rf= Rita, is the dynamic Richard- 
son number. ~ r e v i o u s l ~ ' ~  the best match of the results of 
numerical calculations with experimental data has been at- 
tained for the following choice of constants: 

In the model v, and a, are determined by means of 
algebraic relations, which in their original form19 can be used 
to close the system of equations (2)-(5) in each step of the 
numerical calculations. We can use them for the analytic 
derivation of an algebraic equation, which closes the system 
(2)-(5), interrelates the parameters Ri, (= vTuf2(1 - R ~ / E ,  
and B = N ~ ~ ~ / E ~  (Ref. lo), and involves empirical constants 
of the model as parameters. Graphs of ((B) determined from 
this equation for several values of Ri are shown in Fig. 1. 

In the spatially homogeneous case, when N, U', b, and 
E do not depend on z, the system (2)-(5) reduces to a system 
of two autonomous ordinary differential equations in b and 
E ,  since N and U' remain constant and influence of the be- 
havior of b and E only parametrically, where the form of the 
phase trajectories in the be plane is determined by the value 
of one parameter-the gradient Richardson number-and the 
dimensioned values of N and U' determine the time scale of 
motion along these phase trajectories. 

For any nonnegative value of Ri the evolution of turbu- 
lence can be divided into two stages: a transition stage and a 
self-similar stage. The second stage characterizes the behav- 
ior of turbulence in the limit t-+m. For small values of Ri in 
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FIG. 2. Phase trajectories in the b~ 
plane (a) and turbulence energy vs. time 
b(t) (b) for Ri=O.I<Ri,. The arrows 
indicate the direction of motion of the 
system along the phase trajectory. 

the second stage, once a self-similar relation between b and 
E has been established, the turbulence energy increases ex- 
ponentially, although it can decay in the first stage if the 
initial value of E is specified too high, corresponding exactly 
to the limiting case of an unstratified fluid (R~=o) .~ '  Typical 
examples of phase trajectories and time variations of the tur- 
bulence energy for this case are shown in Fig. 2. 

As Ri increases, the growth rate of turbulence in the 
second stage decreases, reaching zero upon attainment of the 
critical value Ri= Ri,, , which depends on the choice of em- 
pirical constants of the model. If the constants are chosen 
according to the recommendations of Ref. 19, we have 
Ri,,-0.225, i.e., the threshold value is slightly lower than 
114. In the case Ri= Ri,, , b and E tend monotonically in the 
self-similar stage to certain limits, which depend on the ini- 
tial conditions. If the ratio of the initial values of b and E is 
equal to the self-similar value, both parameters remain equal 
to their initial values. Corresponding examples of the phase 
trajectories and b(t) curves are shown in Fig. 3. 

When Ri becomes greater than Ri,, , the turbulence en- 
ergy tends to zero in the self-similar stage, where three tur- 
bulence decay regimes can be discerned, one superseding the 

other in succession as Ri increases. These regimes are further 
separated by two special values of the Richardson number 
Ri, and Ri2, which are also dictated by the choice of con- 
stants of the model. For the above-indicated choice we have 
Ri, -0.745 and Ri2= 1 .a. If Ri,,<Ri<Ril, the turbulence 
energy can increase in the transition stage for sufficiently 
low initial values of E and can enter into self-similar decay 
after attaining a maximum value far in excess of the initial 
value. Examples of phase trajectories and b(t) curves for this 
case are shown in Fig. 4. For Ri>Ri, the decay becomes 
monotonic for any initial values of b and E (see Fig. 5); in 
this event, when Ri>Ri2, the exponential decay in the self- 
similar stage is superseded by power-law decay: b(t) 

t-n(Ri), where the power exponent a varies nonmonotoni- 
cally with the Richardson number and reaches a minimum 
value amin- 17 at Ri-5. 

For values of Ri such that the turbulence energy in the 
self-similar stage increases or decreases exponentially, its 
dissipation rate varies in direct proportion to its value, with a 
proportionality coefficient that depends on Ri. Here the tur- 
bulence macroscale, which is specified by the expression 

FIG. 3. The same as Fig. 2, for 
Ri= Rip0.225. The large + symbol in- 
dicates the steady state to which the sys- 
tem tends in motion along the plotted 
phase trajectories. 
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L= and characterizes the size of the largest vortices, 
also increases or decreases exponentially together with the 
turbulence energy and its dissipation rate in proportion to the 
square root of the turbulence energy. For small deviations of 
Ri from Ri,, the characteristic time constant of such growth 
or decay is much longer than the duration of the transition 
stage T*--11N. If Ri varies with a characteristic time 
TST* in this case, the evolution of turbulence corresponds 
to the self-similar regime for the instantaneous value of Ri 
and is described by the single equation 

where ( is determined by the values of the model constants 
and is close to unity for the above-indicated choice of con- 
stants. 

Assuming that the variations 6 Ri= Ri- Ri,, are induced 
by a wave disturbance with a local frequency f l<<N, with a 
period T= 2 v l f l S  T*, it is readily inferred from Eq. (7) that 
even for a small but finite amplitude of this disturbance 
r*/T<< I 6 ~ i l 4  1 it can lead to appreciable variation of the 
turbulence energy: b,, lbmi,,-exp(l6Ril TI T*) S 1. 

FIG. 4. The same as Fig. 2, for 
Ri= 0.3> Ri,, . 

We now consider the relaxation dynamics of vertical in- 
homogeneity in the ciistribution of b and sRi with a view 
toward determining the conditions under which such relax- 
ation does not lead to appreciable deviations from the above- 
described local turbulence dynamics in the field of wave- 
induced disturbances 6 Ri. 

According to Eqs. (4) and (5) ,  vertically inhomogeneous 
perturbations of the Richardson number, i.e., at least one of 
the two parameters N and U ' ,  disrupt the steady state of 
these parameters under the influence of the resulting diver- 
gence of the turbulent mass or momentum fluxes. These 
fluxes are caused to diverge both by vertical inhomogeneity 
of the flow parameters and by the vertical inhomogeneity 
induced by them in the turbulent transport coefficients. 

We compare the relative influence of these two factors in 
the example of the momentum flux: 

In the self-similar regime the algebraic relations of the 
model for the determination of v, can be reduced to the form 

FIG. 5. The same as Fig. 2, for 
Ri= 1 >Ri,,. 
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where the form of the function c,(Ri) is determined by the 
choice of constants of the model. For the above-indicated 
choice of these constants we have c,~c,(Ri,,)-0. 15. Tak- 
ing Eq. (7) into account, we deduce the following estimate 
from (9) (Ref. 10): 

In the given situation NT*1 we have 
SV, I vT% 6U '1 U I .  This means that the perturbations of the 
turbulent fluxes are determined mainly by the inhomogeneity 
of the turbulent transport coefficients and not by the wave 
field, hence one should not expect the feedback effect of 
such fluxes to be reducible to ordinary dissipation. 

Keeping only the first of the above-mentioned compo- 
nents of the turbulent fluxes in Eqs. (4) and (5) and replacing 
Eqs. (2) and (3) by the self-similar equation (7), for the case 
of small deviations from the homogeneous steady state, i.e., 
for Ri(z,t)=Ri,+ 6 Ri(z,t), b(z,t)=bo+ 6b(z,t) [from 
which it follows that vT(z)=v0+SvT(z,t)], and 
IS ~ i l l ~ i , ,  ,I SbIlbo ,I Gvll vo4  1 we can obtain a closed sys- 
tem of equations describing the relaxation of perturbations of 
the homogeneous vertical distribution of the Richardson 
number and the turbulent viscosity coefficient: 

Equations (11) and (12) are reducible to the single equation 

It follows from this equation that under the given conditions 
large-scale perturbations of the homogeneous turbulence 
field do not spread out diffusively but propagate in the form 
of waves traveling vertically upward or downward with the 
phase velocity 

which does not depend on the scale of the disturbance, i.e., is 
free of dispersion distortions. This is true when the turbulent 
transport of turbulence energy and its dissipation rate can be 
disregarded in comparison with its generation or decay by 
variation of the Richardson number. Comparing the charac- 
teristic time constants of these processes for a periodic dis- 
turbance with wave number K, i.e., T ~ ~ , =  (voK2)-' for the 
first and T ~ ~ , , =  (cpK)-' for the second, we can obtain the 
condition for the wave propagation of disturbances to prevail 
over diffusion propagation: 

Consequently, wave propagation occurs for disturbances 
with a characteristic scale much greater than the turbulence 

macroscale. Since the latter, as mentioned, is proportional to 
6 in the self-similar regime, condition (15) can be expected 
to hold for small values of b. 

The wave relaxation of inhomogeneity can also take 
place when the unperturbed turbulence distribution is ener- 
gized by an external driving force that offsets its decay for a 
slight excess of the uniformly distributed Richardson number 
over Ri,,: Ri= Ric,+ S Rio, O <  S Rio4Ric,. Now, however, 
not only is the range of wave numbers limited above by 
condition (15), but also below by the condition 

whose satisfaction ensures a small oscillation period in com- 
parison with the relaxation time of homogeneous turbulence 
to the unperturbed level determined by the balance of gen- 
eration and decay. Adding the generation rate Po to Eq. (7) 
and characterizing the unperturbed turbulence level by the 
corresponding value of the turbulent viscosity uO, which is 
related to the turbulence energy level by Eq. (9), we obtain 

Equation (17) can be used to estimate the minimum 
value of Po  needed to maintain turbulence: it must be suffi- 
cient for vo to remain much larger than the molecular vis- 
cosity v. In this case the same value of Po  can be sufficient 
to maintain turbulence in the diminished-stability layer, 
where 6 Rio is small, and insufficient in other layers, where 
6 RiolRic,=O(l). We assume that the thickness of the 
diminished-stability layer (h),  which governs the characteris- 
tic scale of vertical inhomogeneity of the distribution of un- 
perturbed values of S Ri, and uo, is much greater than the 
turbulence macroscale corresponding to the lowest possible 
turbulence energy Ievel. Relaxation of the inhomogeneity of 
the wave-induced disturbances can then take place predomi- 
nantly as a result of variation of the average flow by turbu- 
lent transport, and the self-diffusion of turbulence plays a 
secondary role. Consequently, the condition for locality of 
the development of turbulence in the wave field can be ob- 
tained from Eq. (11). In order for the average flow not to 
vary appreciably in one wave period, it is necessary that the 
buildup of turbulent viscosity in the destabilizing phase of 
the wave be limited by the condition 

3. INFLUENCE OF A WAVE ON THE TURBULENCE 
DYNAMICS AND FEEDBACK EFFECT OF TURBULENCE ON 
THE WAVE 

When condition (18) is satisfied, the evolution of turbu- 
lence in a wave field with a spatial period much greater than 
the thickness of the diminished-stability layer can be de- 
scribed by the following equation in a reference system 
where U(zo) = 0: 
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db 
- = - lbN(Ri- Ri,,) +Po ,  
dt  

where the rate of generation of turbulence energy by the 
external force Po is assumed to be sufficient for maintaining 
turbulence in the stabilizing phase of the wave and, at the 
same time, low enough not to significantly influence the evo- 
lution of turbulence in the destabilizing phase. These con- 
straints can be satisfied simultaneously under the condition 

which, in turn, is consistent with the assumption of smallness 
of S Rio if the thickness of the diminished-stability layer and 
the wave period are related in such a way as to ensure a 
sufficiently large value of the corresponding effective Rey- 
nolds number Reeff= h2/ vT. 

Under these conditions it can be assumed that the wave 
field perturbations induced by turbulent transport are small 
and that the wave-induced deviation S Ri,  of the Richardson 
number is determined by the spatial structure of the wave, 
undistorted by the influence of turbulence. We assume, in 
addition, that the wave amplitude is sufficiently small that it 
does not have time to develop nonlinear self-action during 
interaction with the turbulence induced by it, the unperturbed 
wave structure is determined by the solution of the linear 
boundary-value problem, and the influence of turbulence can 
be represented by a small correction. In this case the internal 
wave can be described by the distribution of vertical fluid 
displacements induced by it in the form 

~ ( x , ~ , t ) = [ A ( t ) F ( z ) +  p~(t,z)]exp[i(wt- kx)] +c.c., 
(20) 

where F(z) describes the vertical mode structure of the un- 
perturbed wave, 771 (t,z) is a small correction associated with 
the influence of turbulence, A(t)= [A I exp(icp) is the com- 
plex wave amplitude, which can vary under the influence of 
turbulence with a characteristic time constant much greater 
than the wave period T=2m- /~ ,  and x is the horizontal co- 
ordinate in the direction parallel to the vector U(z), whose 
sign is chosen to satisfy the condition U1(zo)>O. In addition 
to the foregoing restrictions on the frequency and the wave 
number, we also assume that the local frequency 
R(z) = w - kU(z) neither changes sign nor vanishes any- 
where along the entire thickness of the flow. 

The wave-induced deviation of the Richardson number 
from the unperturbed value in the diminished-stability layer 
for such a wave can be written in the form 

S Ri,= - 2 l ~ I ~ ( z ) c o s ( o t -  kx+ (o), (21) 

where 

For a constant amplitude A the turbulence energy equa- 
tion (19) has a periodic solution: 

+ S Ri,]dt" dt', I 
which can be used to evaluate all the turbulence parameters, 
including the turbulent viscosity v,, for the instantaneous 
value of the complex wave amplitude A(t) when it varies 
slowly under the influence of turbulence. 

This influence can be assessed by a standard asymptotic 
"slow" perturbation procedure (see Refs. 7 and 9 for the 
details). This procedure makes it possible to obtain an equa- 
tion for the modulus of the complex wave amplitude from 
the boundedness condition on the correction 771: 

where 

z l  and z2 are the lower and upper boundaries of the flow, 
respectively, 

is the wave-resonance component of the perturbation of the 
turbulent viscosity, and 

1 U'F 
~ ( z )  = g [ R i c I (  1 + -) CTT - C-u - ( 2  - 2) F' 1. (27) 

Consequently, the condition for growth of the wave am- 
plitude is a positive value of the integral on the right-hand 
side of Eq. (24). It follows from (21), (23), and (26) that the 
sign of the quantity ~ e { e x ~ ( - i ( o ) d ~ ~ ) )  is determined by the 
sin of the function S(z). If the thickness of the diminished- 
stability layer is small in comparison with the characteristic 
space scale of the vertical structure of the wave, the sign of 
the integral is determined by the sign of the integrand at 
z = zo. Assuming for definiteness that R > 0 (in this case the 
direction of wave propagation is specified by the sign of the 
wave number k and the phase velocity c),  we can write the 
condition of wave growth by interaction with the turbulence 
induced by it, i.e., the wave-turbulence instability condition, 
in the form 

where all functions are evaluated at z =  zo. 
This condition is readily established if the function 

F(z) has at least two extrema of opposite signs and crosses 
zero between them. Between the extremum points the ratio 
F ' IF  then runs through all values from - WJ to + WJ, includ- 
ing those which satisfy condition (28). If the diminished- 
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FIG. 6. Normalized values of the average-flow velocity U and the vertical 
wave displacements F vs. the normalized vertical coordinate z at a constant 
Brunt-Vaisala frequency N. The normalization scales of the velocity U,  and 
the coordinate Hare related by the equation U,=NH. 

stability layer is located in a level where F'IF runs through 
the interval of values defined by condition (28), the wave 
amplitude will grow. 

Figures 6 and 7 show two different pairs of U ( z )  and 
N ( z )  profiles for which the development of wave-turbulence 
instability is possible. In the first case the necessary internal 

FIG. 7. Normalized values of the average-flow velocity U, the Brunt- 
Vi isa i  frequency N, and the vertical wave displacements F vs. the normal- 
ized vertical coordinate z .  ?he normalization scales of the velocity Uo, the 
Brunt-Viisali frequency No, and the coordinate H are related by the equa- 
tion Uo=Nd. 

wave structure is provided by a jet-type average-velocity 
profile at a constant Brunt-Vaisala frequency. Such plane- 
parallel jet flows are encountered in the atmosphere, specifi- 
cally in the upper troposphere during the formation of ty- 
phoons. The second case represents the modeling of oceanic 
conditions, when the necessary internal wave structure is cre- 
ated by a stepped profile of the Brunt-Vaisala frequency, 
and the presence of a diminished-stability layer is provided 
by shear flow. 

Comparing Eqs. (1 1) and (24), we infer that the breakup 
of the diminished-stability layer by wave-induced turbulence 
is a much faster process than the growth of the wave ampli- 
tude. However, if the wave motions are localized in a wave 
packet spatially bounded along the x axis, this packet can 
advance along the diminished-stability layer until it enters 
the intact part of the layer and be further amplified. This 
process can be most efficient when the quantity 6 Rio in- 
creases in the direction of wave propagation, establishing the 
most favorable relation between the growth rate of the wave 
and the decay rate of the diminished-stability layer. 

4. CONCLUSION 

In summary, the foregoing analysis shows that the appli- 
cation of a more rigorous turbulence model confirms the pos- 
sibility of the onset of wave-turbulence instability and pro- 
vides a means for refining the conditions of its development 
in stratified shear flows. In cases where such conditions oc- 
cur, internal waves can accelerate the relaxation of vertical 
velocity shear in a stably stratified fluid and, in so doing, be 
amplified themselves, confirming the principle stated in the 
Introduction, that physical systems of any degree of com- 
plexity evolve toward minimizing the relaxation time to the 
best equilibrated of all possible states. 
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