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The isothermal motion of a binary gas mixture in capillaries under the action of a concentration 
gradient is studied theoretically. The diffusion fluxes of the mixture components and the 
diffusion slipping velocity of the mixture as a whole are calculated for arbitrary Knudsen number 
on the basis of a solution of the gas-transport equation. The theory is compared with 
experimental data. O 1996 American Institute of Physics. [S 1063-776 1 (96)O 1207-31 

1. INTRODUCTION 

We study a binary gas mixture in which a concentration 
gradient is present, the pressure and temperature are spatially 
uniform, and there are no external forces. Then the fluxes 
Ji  and Ni of the molecules of the i-th component relative to 
the number-average velocity U of the entire mixture in a 
stationary coordinate system are correspondingly determined 
according to Fick's first law by the following expressions: 

where 

D is the interdiffusion coefficient, ni and n are the partial 
and total number of molecules per unit volume, xi is the 
fraction of molecules of the ith kind per unit volume, Ui  is 
the macroscopic velocity of the ith component in a stationary 
coordinate system, and a12 is the diffusion slipping coeffi- 
cient. 

It is known that the expressions (I), which were obtained 
on the basis of linear transport theory for an unbounded gas, 
can be used to describe the diffusion of gases in capillaries 
only under certain conditions. The flow must be averaged 
over the transverse cross section of the capillary. The Knud- 
sen number (Kn is the ratio of the average mean-free path 
length 1 of the molecules to the radius Ro of the capillary) 
must be small (Kn4 1). The reflection of molecules from the 
capillary surface should not be completely specular. 

It is convenient to extend Fick's law to arbitrary Kn as 
follows: 

where the correction factor Si (diffusion factor) depends on 
Kn, the accommodation coefficients E , and c 2  of molecules 
of each component and the concentration xl  (x2  = 1 - x 
Moreover, Si depends on the mass ratio m I lm2 and the ratio 
d l  Id2 of the effective diameters of the molecules. 

The form of the expression (1) for the number-average 
velocity U of the mixture remains unchanged. The extension 
to arbitrary Kn refers only to the diffusion slipping coeffi- 
cient a 1 2 .  

The calculation of Si and uI2 is a problem in the kinetic 
theory of gases. There are a large number of works which are 
devoted to solving this problem. The main works are briefly 
discussed in Refs. 1-3. In Ref. 1, the motion of a binary gas 
mixture in a capillary with intermediate values of Kn is de- 
scribed on the basis of a solution of the transport equation 
with an approximate collision integral. The scattering of the 
molecules by the capillary surface is assumed to be com- 
pletely diffuse. In Ref. 2, the model of specular-diffuse scat- 
tering is used for the boundary conditions, but the results are 
valid only for small Kn (Kn s0.25). 

In the present paper, we describe the isothermal isobaric 
motion of a binary gas mixture in a capillary for arbitrary 
values of Kn in the approximation of specular-diffuse gas- 
surface interaction. Our interest in this problem arose in con- 
nection with the need to compare the theory of light-induced 
drift of gas mixtures in capillaries4 with the experimental 
data.' The experimental methods are based on the action of 
resonance laser radiation on one component of a gas mixture 
followed by measurement of the difference of the concentra- 
tions of the absorbing gas established along the capillary. In 
Ref. 5 a theoretical model relating the displacement of the 
concentration to the velocity of light-induced drift in the cap- 
illary is proposed. This model assumes that the diffusion flux 
of the absorbing gas is known. Since in the experiment of 
Ref. 5 the pressure of the buffer gas and mixture as a whole 
varied over quite a wide range, the generalized Fick's law (2) 
should be used for the diffusion flux. 

The diffusion factor Si should not be calculated on the 
basis of the theory of Ref. 1 for two reasons. First, in the 
theory of Ref. 1 the concentration x is a variable parameter, 
while in experiments on light-induced separation of mixtures 
the concentration of the absorbing gas is low. The assump- 
tion that the concentration is low in the formulation of the 
problem greatly simplifies the mathematical operations and 
decreases the volume of computational work, since for 
x 1 4  1 the quantity Si does not depend on x i .  Second, and 
this is the main point, the theory of Ref. 1, which presup- 
poses diffuse scattering of molecules by the capillary sur- 
face, does not permit reconstructing the values of the accom- 
modation coefficients of the excited particles by comparing 
theory with experiment. The calculation of Si on the basis of 
the results of Ref. 2 makes sense only for KnS0.25. Only a 
small number of experimental points falls within this range 
of ~ n . ~  
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The calculation of Si and u12 as a function of Kn and the 
accommodation coefficients E ,  and c2  on the basis of the 
solution of the gas-transport equation under the condition 
that the concentration of one component of a binary mixture 
is low is the main objective of the present paper. 

2. FORMULATION OF THE PROBLEM 

We study steady-state mass-transfer processes in a bi- 
nary gas mixture in a capillary with radius Ro. The state of 
the gas is perturbed by a longitudinal concentration gradient. 
The total pressure p  and the temperature T of the mixture are 
uniform and no external forces are present. We choose a 
cylindrical coordinate system (6 q , z )  with origin at the cen- 
ter of the capillary so that the z  axis is oriented along the 
concentration gradient. As always in linear transport theory, 
we assume that the relative concentrations xi=  n  ; In of the 
components change very little over distances of the order of 
the molecular mean free path. The weakly nonequilibrium 
state of the gas is described by distribution functions which 
can be represented in the form of perturbed Maxwellian dis- 
tributions, i.e., 

f i (y ,~,z ,v;)=fio[  1 + p j ~ +  hj(F,vi)l, (3) 

where 

nio is the equilibrium number density of the i-th component, 
mi is the mass of a molecule of the i-th kind, kB is Boltz- 
mann's constant, and 5 is the radius vector in a plane per- 
pendicular to the z  axis. The expression ( 3 )  takes account of 
the fact that the length of the capillary is much greater than 
its radius, so that the end distortions in the flow profiles can 
be neglected. For this reason, the disturbances hi do not de- 
pend on the longitudinal coordinate z .  

The hi satisfy the linearized transport equations 

dh; 
v i L .  - + v i z p i = L i i + L i j ,  ( i , j )=  1,2, 

dF 
( 4 )  

where Lii and L i j  are the linearized collision integrals of type 
i- i and i - j, respectively, and v ,  is the component of the 
molecular velocity vector v ;  in a plane perpendicular to the 
z  axis. 

As boundary conditions, we choose the model of 
specular-diffuse reflection. The fraction E ; of particles of the 
i-th kind is scattered diffusely at each point of the capillary 
surface with a Maxwellian velocity distribution correspond- 
ing to the local number density, and the fraction (1  - E ; )  is 
reflected specularly. Then the perturbations hi satisfy the fol- 
lowing boundary conditions: 

h i ( v i ) = ( l  - ~ ; ) h ~ ( v ~ - 2 ( v ~ . n ) n ) ,  (v i -n)>O,  F= R o ,  
( 5 )  

where n  is the inner normal to the surface of the capillary. 

For the linearized collision integrals, we employ their 
second-order approximations,6 for which the first ten mo- 
ments of the total and approximate collision integrals are 
equal, and which make it possible to obtain accurate results 
in describing isothermal mass transfer. Isothermal heat trans- 
fer, which is a subtle effect, will be neglected. 

We confine our attention to the case in which the con- 
centration of one component of the mixture is low 
( n ,  4 n 2 ) .  Then, after being rendered dimensionless and lin- 
earized with respect to the small parameter n l  In2, retaining 
only terms of leading order in this ratio, the transport equa- 
tions ( 4 )  assume the form 

where 

Here Pi, ,  and pi are, respectively, the partial tensor of tan- 
gential stresses and the pressure of the i-th component and 
y j j  is the effective collision frequency between molecules of 
the i- and j-th kinds. The expressions for the frequencies 
v$) in terms of the masses, the concentrations, and the 
Chapman-Cowling R-integrals are presented in Ref. 6;  Ri  is 
the rarefaction parameter for the i-th component of the gas 
mixture and is inversely proportional to Kn [see Eq. (18)l .  

We note that on account of the assumption that the con- 
centration of the first component is low, the transport equa- 
tion for this component is not coupled to the equation for the 
second component and can be solved independently. In turn, 
the equation for the second component includes macroscopic 
quantities of both components of the mixture. 

Equations ( 6 )  and (7) ,  together with the boundary con- 
ditions ( 5 ) ,  uniquely determine the distribution function (3) .  

Ultimately, the quantities S; and u12 are of interest. In 
the first Chapman-Enskog approximation for the diffusion 
coefficient7 [ D l  = 17;/2v$i) these quantities have the follow- 
ing form in the case n14n2:  
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FIG. 1 .  Scheme of integration along the dimion c,. 

where the angular brackets denote averaging over the tran:s- 
verse cross section of the capillary 

We note that the diffusion factor Si is completely determined 
by the macroscopic velocity of the first component, while the 
diffusion slipping coefficient a12 includes the velocity of 
both components of the gas mixture. 

3. SOLUTION OF THE TRANSPORT EQUATIONS 

We employ the integral-moment method, based on the 
transformation of the integrodifferential transport equation 
for the distribution function into a system of integral equa- 
tions for its moments. 

We assume temporarily that the quantities ui(r) and 
.rrir,(r) on the right-hand side of Eqs. (6) are known. Them 
the transport Eqs. (6), taking account of the boundary condi- 
tions (9, can be integrated along an arbitrarily chosen direc- 
tion of molecular velocity ci, (Fig. I ) . ~  Using the integral 
form of the kinetic equations and the definitions (7) of the 
macroscopic quantities, we obtain two systems of integral 
equations for the dimensionless velocities ui and stress ten- 
sors mi,, of the components of the gas mixture (i  = 1,2): 

1) for the first component ( i= 1 ) 

2) for the second component ( i  = 2) 

where 

The integration extends over the transverse cross-sectional 
area Z of the capillary. The argument t of the functions Tm is 
t=R1lr-rrl in Eqs. (11) and (12) and t = ~ , l r - r ' l  in Eqs. 
(13) and (14). 

The Eqs. (1 1)-(14) are Fredholm integral equations of 
the second kind. We employ the Bubnov-Galerkin method 
to solve them? The advantage of this method is that it makes 
it possible to determine with the required degree of accuracy 
the quantities (ui) and (.rrir,), averaged over the cross sec- 
tion of the channel, without calculating their profiles ui(r) 
and .rrirz(r). The rate of convergence of the Bubnov- 
Galerkin method depends on the choice of approximating 
expressions for the macroscopic parameters. It has been 
established8 that approximations of the form 

give satisfactory accuracy (the error does not exceed 
-3%) with arbitrary Kn for the average quantities (ui). 
Here ak are unknown constants, which depend on Kn, the 
accommodation coefficients ei, and the molecular param- 
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eters. In addition, from the conservation of momentum for 
the mixture as a whole n17rlrz+n27r2rz=0 it follows that 
a5=a6. 

In the Bubnov-Galerkin method the coefficients ak are 
determined by requiring that the expressions obtained by 
substituting the approximations (15) for ui (r )  and r i r Z ( r )  
into the integral equations (1 1) and (13) be orthogonal to the 
functions 1 and r 2 ,  and that the expressions obtained by 
substituting the approximations (15) into Eqs. (12) and (14) 
be orthogonal to the function r. Here the condition of or- 
thogonality of any two functions f ( r )  and g ( r )  has the form 

that in the approximation n <n2,  S 1  does not depend on the 
nature of the interaction between molecules of the second 
component and the wall. 

Analytic expressions for slk) and o;:) can be obtained 
only for large and small values of Kn. 

1. Almost free-molecular regime (Kn S- 1 or R e  1 ): 
Up to terms of order R2 the kinetic coefficients have the 

form 

In this manner we obtain the following system of linear al- 
gebraic equations: 

The expressions for akl and ak are complicated and are not 
presented here. 

We choose the effective collision frequency y12 in the 
form y12= ~(1:) and the frequency yz2 in the form 
y2,= v:i)- vb;). This choice relates the frequency of colli- 
sions between different kinds of molecules to the diffusion 
coefficient, and the frequency of collisions between mol- 
ecules of the same kind to the viscosity coefficient of the 
second component, which for n e n 2  determines the viscos- 
ity of the mixture as whole. 

We model the gas particles as hard elastic spheres with 
diameters di ( i  = l ,2) .  Then the rarefaction parameter R I is 
related to Kn by the following relation: where 

2. Hydrodynamic regime with slipping (Kn<l or 
R& 1 ) :  

Up to terms of zeroth order the kinetic coefficients have 
the form Here 1 is the mean free path of particles of the first compo- 

nent. 
To reduce the number of free parameters and to simplify 

the numerical calculations, we assume that the scattering of 
particles at the surface of the capillary is almost diffuse: 

Linearizing the problem with respect to the small param- 
eters 1 - E gives 

The quantities ~ ( 1 ' )  and a($) characterize the diffusion factor 
and the diffusion slipping coefficient with total accommoda- 
tion of the molecules at the surface of the capillary. We note 

The numerical results for intermediate values of Kn for 
He-Ar and Na-He mixtures displayed in Figs. 2-4. 
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FIG. 2. s!') and components of the diffusion factor (a) and a:?, 
(,(I) ,, , and a\:) components of the diffusion slipping coefficient (b) as a 

function of the rarefaction parameter R for an Ar-He gas mixture: a) I--Eq. 
(21), 2-Eq. (22); b) 1-Eq. (23). 2-Eq. (24), 3-Eq. (25). 

4. DISCUSSION OF RESULTS AND COMPARISON WITH 
EXPERIMENT 

The results of the model calculation of the quantities 
sSk) and a(:: for a mixture of gases, in which the effective 
diameters of the molecules are equal ( d l  = d 2 )  but the 
masses can be different, are presented in Tables I and 11. One 
can see that for a fixed value of the rarefaction parameter 
R the diffusion factor SIO) is essentially independent of' the 
ratio of the molecular masses m l  lm,. When the ratio 
m l  lm2 is varied, the maximum change in SIO) is - 4%. This 
dependence is incorporated in the parameter R itself [see Eq. 
(IS)]. 

The diffusion slipping coefficient a12 in the limit of 
small Kn (27)-(29) is of interest in its own right. In this limit 
a 1 2  does not depend on the geometry of the surface bound- 
ing the flow and can be calculated independently by solving 
the Knudsen layer problem. A detailed review of these works 
is given in Ref. 10. 

It is convenient to compare the results (27)-(29) of the 
present work with other theories for a gas mixture with simi- 

- - 
log R 

FIG. 3. Comparison of theory (solid lines) and experiment:' Curve 1 corre- 
sponds to e,,=eHe= I,  and curve 2 to ~,,=0.98, eHe=0.92. 

lar masses and effective diameters of the molecules. We also 
assume that the partial accommodation coefficients differ by 
a small amount. In this case the expression for u12 can be 
written in the form 

log R 

4 2  

FIG. 4. s(P) and s\" components of the diffusion factor (a) and us), 
a\:), and us' components of the diffusion slipping coefficient (b) as a 
function of the rarefaction parameter R for a Na-He gas mixture. 
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TABLE I. s?' and sI" components of the diffusion factor as a function of m ,  Im,. 

From the expressions (27)-(29) we have a =  1.063, 
b=0.750, and c= 1.0. According to the data of Ref. 10, the 
different methods for solving the Boltzmann equation in the 
case of an equimolar mixture (xl = x2 = 0.5) give the follow- 
ing values: 

According to experiments1' on diffusiophoresis of oil drops 
in binary gas mixtures a = 0.95 and b = 1.05. 

Table I11 gives the computational results for a12 in iso- 
topic mixtures of molecules with identical masses and differ- 
ent effective diameters. In this case, for intermediate values 
of Kn, according to the theory, the direction of the diffusion 
slipping velocity is reversed. If ml = m2, E = c 2 ,  and 
dl<d2,  then the number-average flux of the gas mixture is 
directed opposite the concentration gradient of the first com- 
ponent for large Kn and along the concentration gradient for 
small Kn. If d1>d2, the opposite is true. We note that rever- 
sal of the diffusion slipping velocity for intermediate Kn in 
the case of equimolar mixtures ( x ,  = x z )  has been recorded 
experimentally in measurements of the diffusion baroeffect 
and barodiffusion separation of mixtures for the gases 
A ~ - - C O ~ , ' ~  C ~ H ~ - N ~ , ' ~  and H ~ - D ~ . ' ~  

In the case of physically indistinguishable molecules 
(m, =m2, d l  =d2 ,  = c2), a relative fraction xi  of which 
is tagged, there exist diffusion fluxes of the components 
(self-diffusion) and a molar flux of the mixture as a whole. 
The functional dependence of the fluxes on Kn changes. In 

the almost free-molecular regime (Knsl )  Sj--R and 
and in an almost continuous medium (Kn 

G 1) Sj- 1 and a12- IIR. Obviously, the latter results for 
Kn< 1 cannot be obtained on the basis of the standard Knud- 
sen layer theory, where the motion of a gas along a flat wall 
in the half-space is studied. 

The quantities s:'), s:'), a!:), a\:), and a!;) are dis- 
played in Figs. 2(a) and (b) as functions of the rarefaction 
parameter R for the Ar-He mixture. One can see that in the 
hydrodynamic regime with slipping ( R a  lo), the contribu- 
tion of the accommodation component s!') to the diffusion 
factor S1 is negligible. This means that for R 2 1 0  and 
( 1 - e i )  < 1 the diffusion fluxes are essentially independent 
of the character of the interaction between the molecules and 
the capillary surface. The accommodation components a\:) 
and a!;) of diffusion slipping coefficient a12 are important 
for any regime of motion of the gas. 

The diffusion factors sIO) calculated for the Ar-He and 
Na-He mixhires differ from one another by at most 0.2% for 
any values of the rarefaction parameter R. In the experiment 
of Ref. 5 on light-induced separation of a Na-He mixture, 
the pressure of the buffer gas (He) in the capillary varied 
over the range p = 0.02 1 - 12.5 kPa, which corresponds to 
rarefaction parameters R =0.4- 240. In Ref. 5, in the analy- 
sis of the experiment for the purpose of determining the val- 
ues of the light-induced drift velocity of Na vapor, it was 
assumed that Si= 1 for arbitrary R .  The error made in so 
doing can be estimated from Fig. 4(a). We note that when 
isothermal diffusion and light-induced drift problems are 
solved simultaneously, the transport equations include terms 

TABLE 11. u17, a::), and ui;) components of the diffusion slipping TABLE 111. (TI;), u(,i) , and u1;) components of the diffusion slipping coef- 

coefficient as a function of m ,  / m z  for d l  Id,= 1. ficient as a function of d l  Id ,  for m ,  lm2= 1. 
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that take account of induced intramolecular transitions in a 
resonance interaction of the radiation with the gas as well as 
the radiative decay of the excited leveL4 This results in a 
renormalization of the diffusion transport coefficients. As a 
result, the expressions for the diffusion coefficient D, the 
diffusion factor Si , and diffusion slipping coefficient a12 
will include corrections due to the drift motion of the gas. 
However, it can be shown (as done for D in Ref. 5) that these 
corrections are of order Adld-the relative difference of the 
effective diameters of the excited and unexcited particles. 
Then the corresponding corrections for the diffusion fluxes 
Ji and the number-average velocity U of the mixture will be 
of the same order RopAdld. Since R o p 4  1 and Adld4  1, 
these corrections can be neglected. 

In Fig. 3 the theory is compared with an experiment14 on 
the diffusion slipping of a Ar-He mixture. The quantity 
uTz represents the ratio of u12 to the free-molecular value 
o(P: [the first term in the expression (23)]. In Ref. 14 the 
experimental values of uf2 were found from measurements 
of the magnitude of the barodiffusion separation of the 
Ar-He mixture. The measurements were performed over a 
wide range of values with concentration ratios 
nA,lnHe=0.08. One can see from Fig. 3 that the discrepancy 
between the theory with E A , = E H ~ =  1 (curve 1 )  and the ex- 
perimental data is greatest in the free-molecular regime and 
is -20%. The theoretical curve (2), corresponding to the 
accommodation coefficients E A,= 0.98 and E He= 0.92, satis- 
factorily describes the experiment for R S  1. We note that the 
accommodation coefficients &A,= 0.975 and EH,= 0.935 

were extracted from the experiments of Ref. 8 on Poiseuille 
flow in glass capillaries. The small discrepancy between 
theory and experiment in the intermediate regime could be 
due to two factors. First, the approximation n 4 n 2  adopted 
in the theory does not completely meet the conditions of the 
experiment. Second, the calculations were performed for a 
model of hard spherical molecules. It can be expected that 
better agreement between theory and experiment can be ob- 
tained by using the Lennard-Jones potential. 
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