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We study the nonlinear dynamics of short wave trains (two to three wavelengths long) in 
dispersive media in the higher-order approximations of dispersion theory. New classes of 
"soliton" phase-modulated solutions of the equations of the theory are found. For time- 
dependent wave packets we observe effects not present in the parabolic approximation, such as 
the dependence of the packet's velocity on its intensity (nonlinear dispersion) and length 
(linear aberration). We also study the dynamics of short high-intensity wave trains and the 
modulation instability of plane electromagnetic and Langmuir waves in an isotropic 
plasma. Finally, we show that when the wave's amplitude exceeds a certain critical value, which 
depends on the nonlinear dispersion, the instability disappears. O 1996 American Institute 
of Physics. [S 1063-7761 (96)01107-91 

1. INTRODUCTION that the increments diminish and the ranges of parameters 

The propagation of high-frequency wave packets 
corresponding to the instability are narrower than those in 
the parabolic approximation. 

- - 

9 = $(x,t)exp(iwot- ikox) In the present paper we analyze the general properties of 

in nonlinear dispersive media is usually analyzed in the 
quasi-optical approximation of nonlinear dispersion theory,' 
which corresponds to using the "parabolic" approximation 
of the dispersion law, w= w(k,l @I2), near the point 
wo= w(ko,O) and to allowing for the local part of the non- 
linearity in an additive manner. The envelope @(x,t) in this 
approximation in the first order in intensity is described by 
the well-known nonlinear Schrodinger equation 

where ~ = x - ~ ; t ,  with ~ ~ = ( d w / d k ) l ~ = ~ , , l $ l = ~  the group 
velocity of linear waves, w;,= d2w/dk2Ik= ko,l*l=o, and 

a= (dwldl @I2) 1 k =  is a nonlinear parameter. This equation 
provides a correct description of the evolution of extended 
wave packets whose temporal and spatial spectra are narrow 
enough, i.e., 

and has been thoroughly ~ tud ied .~ -~  For wave packets sev- 
eral wavelengths long (A - (2 -3) X ) , the spectrum is not 
narrow, which requires allowing for higher-order terms in 
Eq. (1) and, as a result, dropping the quasi-optical approxi- 
mation. Up to now this procedure has basically been limited 
to allowing for nonlinear dispersion terms that lead to the 
formation of envelope shock waves. 0strovskii6 was the first 
to discuss the possibility of formation of such waves. In op- 
tics this effect has been studied both experimentally7 and 
theoretically8 in nonlinear geometrical optics and has be- 
come known as the self-steepening effect. For deep-water 
gravitational waves,  sthe he^ derived an equation for the 
packet's envelope in higher-order approximations of nonlin- 
ear dispersion theory, which was used to study the modula- 
tion instability of a plane wave. In particular, it was found 

the solutions of the equations for the envelope of a one- 
dimensional wave packet in higher-order approximations of 
nonlinear dispersion theory. New classes of steady-state non- 
linear localized waves (solitons) of the given equations are 
discovered. We study the dynamics of time-dependent wave 
packets. We observe effects that are not present in the quasi- 
optical approximation, such as the dependence of the pack- 
et's velocity on its intensity (nonlinear dispersion) and length 
(linear aberration) and the acceleration of packets in the ab- 
sence of an inhomogeneous potential. We study the evolu- 
tion of packets of electromagnetic and Langmuir wave in an 
isotropic plasma. We also obtain equations for the packet's 
envelope in the higher-order approximations of nonlinear 
dispersion theory. Within these approximations we establish 
the presence of solitons of the electromagnetic and Langmuir 
waves. Finally, we study the modulation instability of plane 
waves. The instability is shown to disappear when the wave 
amplitude exceeds a certain critical value determined by 
nonlinear dispersion. 

2. THE GENERAL PROPERTIES OF HIGHER-ORDER 
APPROXIMATIONS 

Allowing for the possible combinations of higher-order 
terms, the equation for fl in a reference frame moving with a 
velocity equal to the group velocity of the linear waves can 
be written as 

The left-hand side of Eq (2) contains terms and the func- 
tional U of second order in the small quantity 
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FIG. 1 .  The dependence of (a) the enve- 
lope B of a soliton and (b) its phase (p on 
the coordinate p for different values of 
r: I), r =  - 2990116000; 2 ) ,  r=O; 3) ,  

-1  r = 2 .  

We examine the role of higher-order terms on the right-handl- 
side of Eq. (2) by using examples of solutions of this equa- 
tion in the form of steady-state localized nonlinear waves 
(solitons) and the dynamics of time-dependent wave packets. 

2.1. "Soliton" solutions 

Allowing for higher-order terms in the equation for the 
packet's envelope leads to a modification of the well-known 
"soliton" solutions and to the emergence of new "soliton'" 
solutions. We illustrate this with a modified nonlinear Schrti- 
dinger equation containing nonlinear dispersion terms: 

Equation (3) is a special case of a more general nonlineiu 
equation: 

For p = y= p = 0 Eq. (4) becomes the well-known nonlinear 
Schrijdinger for a = q = 0 and a real function 
fi Eq. (4) becomes the modified Korteweg-de Vries equa- 
tion studied in Refs. 10-13. Equation (4) with p = O  and 
2qp=3  ya was studied by ~ i r o t a . ' ~  All these cases (the 
nonlinear Schrijdinger equation, the modified Korteweg-die 
Vries equation, and the Hirota equation) have been analyzed 
by the inverse scattering method? and exact N-soliton solu- 
tions have been found. In Eq. (3) we have 2 q p  # 3 ya and 
p # 0, i.e., Eq. (3) cannot be reduced to any of the above- 
mentioned equations. At the same time, Eq. (3) has a solu- 
tion in the form of steady-state localized waves (solitons) 
moving with a velocity that is generally not equal to the 
group velocity of linear waves. To demonstrate this fact, we 
write the solution of (3) in the form of a steady-state wave: 

$( t , t )=A(t-  Vt)exp(iilt+ icp(5- Vt)). ( 5 )  

As a result we arrive at a system of two equations for the 
amplitude A and phase cp of the packet: 

where l= 5 - Vt, and @ = p+ 2 p .  Integrating (6), we obtain 
the following relationship for the packet's phase cp: 

Substituting (8) into (7) yields an equation for the packet's 
envelope A: 

By introducing the variables 

we can reduce Eq. (9) to 

with the single parameter 

which allows for nonlinear dispersion. The "soliton" solu- 
tion of (1 1) has the form 

As (12) implies, solitons exist if r> - 3/16. Note that in the 
presence of nonlinear dispersion, which tends to shift the 
peak to the leading or trailing edge of the pulse, the soliton 
retains its symmetric shape: the nonlinear shift in the peak is 
balanced by the corresponding phase modulation (8) of the 
packet. The dependence of the envelope B of a soliton and 
the soliton's phase cp on the coordinate p for different values 
of r is depicted in Fig. 1: (a) corresponds to the B vs r 
dependence, and (b) to the cp vs r dependence. Curves 1, 2, 
and 3 correspond to r =  - 2990116000, r=O, and r = 2 .  
The soliton's amplitude Bo= B(0) and length A increase 
with r.  In the limiting case r=O, which corresponds to the 
absence of nonlinear dispersion and V= 0 ,  the relationships 
for the amplitude and phase correspond to the well-known 
solitons of the nonlinear Schrodinger equation. 
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The general nonlinear equation (4) also has a solution in 
the form of steady-state nonlinear waves whose velocity dif- 
fers from that of linear waves. To demonstrate this feature, in 
Eq. (4) we go to a reference frame moving with velocity 
V, i.e., s = 5 - V t  and t' = t ,  and write the solution of the new 
equation in the following form (we drop the prime in what 
follows): 

For the amplitude A(s) and phase q(s )  we obtain 

Here we are interested in steady-state waves with linear 
phase modulation d plds = k = const. In this case, integrating 
Eq. (14) with respect to s with vanishing boundary condi- 
tions at infinity, A(s-+ + m ) - + O  and A"(s-+ + a ) - + O ,  we 
arrive at 

Equations (16) and (17) form a consistent system of equa- 
tions if 

and have a solution in the form of a single soliton with linear 
phase modulation dplds  = k= const, whose parameter k can 
be found from Eq. (18): 

This implies that by proper selection of the phase modulation 
parameter k we can make Eq. (4) have a solution in the form 
of a soliton for arbitrary values of the parameters in this 
equation. For fixed phase modulation Eq. (19) determines 
the solition velocity: 

The equation for the amplitude A can then be written as 
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which has the soliton solution 

2(q- 3 yk)[2Rl(q- 2 yk)- k2] 
A2(s)= 

( a -  2Pk)cosh2[s J2a / (q  - 2 yk) - k2] ' 

This solution exists if 

This "soliton" solution can be reduced in special cases to 
solitons of the nonlinear Schrodinger equation and Hirota 
solitons. In particular, in the absence of modulation (k = 0), 
the relationships (20) and (21) assume a simpler form: 

2q(/3+2p)=3ay,  V =  yRlq (22) 

(here the velocity V depends on the linear aberration, 
V a  y), and at p = O  they are simply the existence condition 
for solitons in the Hirota equation (4). 

2.2. Time-dependent wave packets 

Allowing for higher-order terms modifies the dynamics 
of time-dependent wave packets in comparison to the para- 
bolic approximation. For instance, the first two terms in Eq. 
(2) correspond to the dependence of the group velocity of the 
waves on their intensity I $ I 2  (nonlinear dispersion). To illus- 
trate, we put q = a = y =  U = 0 and reduce the remaining 
equation to the form 

Clearly, the sections of the packet with different intensities 
move with different group velocities: 

For /3+2p>0 the sections of the packet with higher inten- 
sities have higher velocities. This leads to an increase in the 
steepness of the leading edge of an initially symmetric 
packet. In the opposite case, p + 2 p < O ,  the sections of the 
packet with higher intensities have lower velocities, which 
leads to an increase in the steepness of the trailing edge of an 
initially symmetric packet. 

For subsequent analysis of the role that higher-order ap- 
proximations play in Eq. (2), we find the velocity of the 
"center of gravity" of the packet in a reference frame that 
moves at the velocity of linear waves v;: 

where 

is the energy of the wave field in the packet. We multiply 
both sides of Eq. (2) by 5$*, where +* is the complex 
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conjugate of the field $, and add it to the complex conjugate 
product. Integrating this sum with respect to 5 from - to1 
5, for spatially localized wave packets and a real functional 
U (U = U*) we find that 

where the bullet denotes dldt, and cp is the packet's phase! 
($= I $lexp(icp). - If - we compare the variation of the packet's 
velocity, AV= t( t ) ,  with that given by the standard non-. 
linear ~chri jdin~ei  equation (the last t e A  on the right-hand 
side of Eq. (25)), we see that it is described by two terms: - -  
AV= A V ~ ~ + ~ V ~ .  The first, E N L ,  depends on the field in- 
tensity, and is due to the nonlinear dispersion mentioned 
above: 

The second, EL on the right-hand side of Eq. (25), does nott 
depend on the field intensity and corresponds to the term 
with the third derivative in Eq. (2) (y#O): 

The aberration correction to the velocity is negative 
(bVL<O) for y>O and positive ( E L > 0 )  for y<O. The 
absolute value of this correction, ( E L I ,  increases as the: 
packet gets shorter, i.e., as the packet's spectrum broadens. 

Allowing for higher-order approximations not only alters 
the velocity of packet motion in comparison to the parabolic; 
approximation but also introduces additional acceleration. 
For instance, the acceleration of the "center of gravity" olF 
the packet of Eq. (2) is 

The packet's acceleration Aa = &(t) contains two terms: - -  - 
Aa = Aah+Aainh. The first, zh, on the right-hand side of 
Eq. (28) depends on the field intensity and is not related to 
the inhomogeneous functional U. It emerges in the event of 
phase modulation with allowance for nonlinear dispersion 
and linear aberration. The second, Gin,, , is due to the pres- 
ence of the nonlinear functional U and contains two terms: 

The first corresponds to the classical acceleration of packets 
when the motion is described by the Schrodinger equation in 
an inhomogeneous medium with the potential U: 

The second corresponds to the acceleration of phase- 
modulated packets in the presence of an inhomogeneous 
functional U and aberration (yfO). Note that in the event of 
linear phase modulation, dcpld5= ql3 y, the acceleration of 
the wave packets is zero even in the presence of an inhomo- 
geneous potential, i.e., phase-modulated packets can move in 
an inhomogeneous medium at constant velocity. 

To examine the behavior of short trains of high-intensity 
waves we examine the evolution of one-dimensional packets 
of a strong high-frequency field of linearly polarized electro- 
magnetic or Langmuir plasma waves in a homogeneous 
plasma with ponderomotive nonlinearity. 

3. HIGHER-ORDER APPROXIMATIONS IN THE DESCRIPTION 
OF SHORT INTENSE TRAINS OF HIGH-FREQUENCY 
WAVES IN AN ISOTROPIC PLASMA 

3.1. The basic equations 

We start with the following system of equations:4 

where E is the electric field strength, Sn is the deviation of 
the plasma concentration from the equilibrium value N,  c, is 
the velocity of ion-acoustic waves, o ; = 4 1 r e ~ ~ l r n , ,  the pa- 
rameter V in Eq. (31) corresponds to the speed of light for 
electromagnetic waves and the thermal electron velocity 
VTe for Langmuir waves. The wavy line on the right-hand 
side of Eq. (32) stands for time-averaging of the high- 
frequency field. Next we introduce dimensionless variables: 

where 

In terms of these variables the systems of equations (31) and 
(32) assumes the form 

where a= V/c,% 1. Let us write the solution of Eqs. (34) and 
(35) in the form of a quasi-monochromatic wave packet: 

$ ( v , ~ ) =  c p ( v . ~ ) e x p ( - i w ~ ~ + i k ~ v ) .  (36) 

where oo and ko are related through the linear dispersion 
relation oi= 1 + ki. In the above relationships we go to the 
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reference frame moving with the group velocity of the linear 
high-frequency waves v= v:= d o o  /dko= ko / wo: 

In this case we arrive at the following equations for cp(5,~) 
and n(C.7): 

According to (23), the nonlinear correction to the group 
velocity amounts to 

For a v <  1, which corresponds to subsonic motion of the 
packet, A V ~ > O .  In this case the regions in the packet with 
larger amplitudes move faster and the leading edge of the 
packet becomes steeper. For a v >  1 (supersonic motion), 
AV?<O, and the trailing edge becomes steeper. The char- 
acteristic "steepness" time t*, defined as the time it takes 
the packet's peak to shift by the packet's halfwidth A/2, is 
given by the following formula: 

The left-hand sides of Eqs. (37) and (38) correspond to the 
approximation in dispersion theory that leads to the nonlin- 
ear Schrodinger equation for the envelope cp of the high- 
frequency field packet: 

where 

The distance L* at which a shock wave is formed from the 
initially symmetric pulse is 

is the variation of the plasma concentration of the field of a 
steady-state wave. To obtain the next approximation, we 
substitute the derivative dcpldr from (39) and n from (40) 
into the right-hand sides of Eqs. (37) and (38) and identify 
the leading terms. We then have The above relationships show that the correction of the third 

approximation are important near the group synchronism of 
high- and low-frequency waves, a v  - 1. 

3.2. Solitons of high-frequency waves 

To illustrate the manifestation of third-order effects, we 
take solitons of intense high-frequency plane waves in the 
subsonic mode, a v  < 1. If in (43) we go to the dimensionless 
variables 

where 
where now the variation of concentration n has a correction 
to the steady-state value. The terms on the right-hand side of 
Eq. (41) and the correction to the steady-state value of con- 
centration variation in (42) are of the third order in we have 

Combining (41) and (42), we arrive at an equation for the 
third approximation to cp: 

where 

We write the solution of Eq. (50) in the form of a nonlinear 
steady-state wave with linear phase modulation, propagating 
at velocity V: 

where on the right-hand side we have written the terms of the 
third approximation with the parameters 
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where p= s - VO, and k  is the phase modulation parameter. 
The relationships (20) and (21) determining the conditions 
for the existence of localized nonlinear waves (solitons) as- 
sume the following form for Eq. (50): 

In this case the corresponding "soliton" solution has the 
form 

In contrast to the case of the well-known"parabolic approxi- 
mation" solitons, the velocity of solitons of higher-order ap- 
proximations differs from that of linear high-frequency 
waves and depends on the soliton amplitude: 

3.3. Instability of plane waves 

For further analysis of the role of the third approxima- 
tion we examine the instability of an intensive plane wave. 
Let us write the solution of Eq. (50) in the form of a plane 
wave with a weak perturbation: 

where / 4 4 4,. Retaining in this relationship only terms lin- 
ear in 6, we have 

By introducing the variables p=s-(/I, + ,) 4: 6  and 
O f  = O  we can transform Eq. (56) (we drop the prime on 6  in 
what follows) to 

Writing the spatial perturbations in the form 

and employing standard methods, we obtain 

According to (59), the growth factor for modulation instabil- 
ity is 

Comparing this with the well-known expression for the 
modulation-instability factor that follows from the nonlinear 
Schrodinger equation, 

we can easily see that in third order there is stabilization of 
the instability due to nonlinear dispersion (the term with 
p: in (60)) and due to the cubic linear aberration of the 
dispersion dependence w ( k )  (the last term under the radical 
sign). At large amplitude, 

modulation instability disappears and stabilization ensues. In 
the initial variables for the amplitude of the electric field E ,  
the relationship assumes the form 

In particular, for Langmuir waves, when V = V T e  and 
1 = VTe/ w,= D ,  for the value of the critical field we have 

For low group velocities of Langmuir waves, V g 6 V T e ,  
we have oo= w,  , and 

This implies that modulation instability may be stabliz- 
ied at low values of the electric field amplitude: 
E c < J m .  A similar stabilization effect is known to 
exist for gravitational waves on the surface of a homoge- 
neous deep liquid, where it emerges if one takes into account 
approximations that lie outside the scope of the standard 
nonlinear Schrodinger equation.'' 

Thus, the propagation of short trains of intense waves in 
highly dispersive nonlinear media can be described if one 
takes into account the approximations that follow the para- 
bolic approximation in the theory of linear and nonlinear 
dispersion of waves. 
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