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We calculate the contribution of the diagrams of screened self-energy to the ground-state energy 
of a two-electron ion within a broad range of nuclear-charge values: Z= 20- 100. The 
calculations are done for the case of a point nucleus. The entire contribution is represented as the 
sum of the irreducible, reducible, and vertex contributions. The irreducible contribution is 
written in the form of off-diagonal self-energy and is calculated via a partial-wave expansion of 
the mass operator. The vertex and reducible contributions are calculated together, which 
makes it possible to avoid explicit renormalization. The total contribution of the diagrams of the 
screened self-energy of the ground state of u9'+ amounts to - 9.54 eV. The results of the 
calculations for low-Z ions are found to be in good agreement with the contribution of the screened 
self-energy calculated in the lowest order in aZ. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

Considerable progress achieved in the experimental 
studies of multiply-charged ions"2 has placed the problem 
of a consistent quantum-mechanical calculation of the dia- 
grams representing the screened self-energy at the fore- 
ground of atomic physics. In our recent we calcu- 
lated these diagrams for the ground state of a two-electron 
multiply-charged ion in the following interval of nucleus- 
charge numbers: Z=  60-92. In the present paper we broaden 
this interval to Z= 20-1 10 and provide a detailed description 
of the calculation procedure. 

Figure 1 depicts the diagrams of screened self-energy 
under discussion. The first formal calculation expressions for 
these diagrams were derived in Refs. 4 and 5 by the Gell- 
Mann and Low m e t h ~ d . ~  Derivation of these expressions and 
the analysis of other second-order diagrams in a have shown 
that while being fairly simple formally, the Gell-Mann and 
Low method leads to serious difficulties. First, the presence 
of an adiabatic parameter A, which violates energy conser- 
vation at the diagram vertices, severely complicates the deri- 
vation of computational formulas for the contribution of re- 
ducible diagrams, i.e., diagrams for which the energy of an 
intermediate state coincides with that of the initial state. Sec- 
ond, in view of the fact that the adiabatic matrix 
SX(w, - w) used by this method contains a noncovariant pro- 
cedure for interaction turn-on (HIA)(t) = exp(- A(tl)H,(t)), ul- 
traviolet divergences remain even after renormalization. In 
the case of a single level, we can expect the expression for 
the shift in the level's energy to be finite. However, for de- 
generate states we must build a secular operator, which gen- 
erally may not be ultraviolet-finite. (We can only expect the 
eigenvalues of this operator to be finite.) This leads to a 
serious problem of renormalizing the secular operator in the 
Gell-Mann-Low method. It has been solved only to within 
second-order terms in aP9' 

The same difficulties emerge in the method of the opera- 
tor of evolution over a finite time interval?.' The solution 

was found within a variant of the method of quantum- 
electrodynamics Green's functions developed in Ref. 9 (the 
most simple and detailed description of this approach can be 
found in Refs. 10 and 11). The method is based on applying 
the formalism of Szokefalvi-Nagy and ~ a t o ' ~  to two-time 
Green's  function^.^"^"^ In Sec. 2 we use it to derive the 
calculation expressions for the diagrams of screened self- 
energy in a general covariant gauge. The details of the nu- 
merical calculations and the results are given in Sec. 3. 

Throughout the paper we use the relativistic system of 
units ( h = c = m =  1). 

2. DERIVATION OF THE FORMULAS 

The energy shift AEn= En- E?) of an isolated level due 
to the interaction with a quantized electromagnetic field is 
given by the following formu~a:~ 

FIG. 1 .  The diagrams of the screened self-energy. 
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where the contour r surrounds only the unperturbed level 
E = E ~ )  (the contour is assumed to be traversed counter- 
clockwise), and Agnn(E) = gn,(E) - g%)(E), with g,,(E) 
the Fourier transform of the two-time Green's function, 

@(x) the electron-positron field operator in the Heisenberg 
picture, u, the unperturbed atomic wave function, and g::) 
x(E)=(E-E?))-~. 

So as not to clutter the derivation of the formulas with 
minor details, we examine the case of a two-electron multi- 
ply charged ion (the general case of an N-electron ion can 
easily be reduced to this case). In addition, for the unper- 
turbed wave function we take the one-determinant wave 
function 

where P is the permutation operator. (The transition to cor- 
rect wave functions is straightforward.) 

To make further calculations more compact, we intro- 
duce the operator 

where a,= y,= (1,a) are the Dirac matrices, and 
D,,(w) is the photon propagator. In the general covariant 
gauge of Ref. 15, 

where ,u is the photon mass. In the Feynman gauge 
(A= l ) ,  

FIG. 2. The diagrams contributing to Ag(') in Eq. (10). 

The operator I(w) satisfies the following symmetry property: 

( ab l l (w ) l cd )= (ba l l ( - o ) l dc ) .  (8) 

We also introduce the self-energy operator Z ( E ) :  

According to (I), the second-order perturbation-theory 
correction to the energy is 

The diagrams contributing to A ~ ( ~ )  are depicted in Fig. 1, 
and those contributing to Ag(') in Fig. 2. 

It is convenient to divide the contribution of the dia- 
grams in Fig. l a  into two part, the reducible and the irreduc- 
ible. By reducible we mean the part in which the energy of 
an intermediate state (between the self-energy loop and the 
electron-electron interaction) coincides with the energy of 
the initial state. We call the remaining part irreducible. Note 
that the reducible part of the diagrams in Fig. l a  must be 
calculated together with the second term on the right-hand 
side of Eq. (10). 

Let us first find the contribution of the irreducible part of 
the diagrams in Fig. la. According to (2), (lo), and the rules 
of the diagrammatic technique, we have 
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Using the identity 

1 

Allowing for the fact that the expression within the braces is 
analytic in energy inside the contour r, we can reduce the 
integral with respect to E to the first-order residue at 
E = E,. By employing the relationship 

( P O - ~ a + i ~ ) ( ~ - p O - ~ b + i ~ )  
we calculate the integral with respect to p: and p i0  and 

1 
(12) 

arrive at the following expression for A E ~ = * :  + 
p O - & , + i ~  

we can write ( 1  1 )  as AE~,~=C ( -  1)' C ( P a P b l l ( A ) l n b )  

1 
P En#Ea 

AE. =- 
'Ed 27ri P 1 

x-(nlC.(&a)la)  + C (PaPbII (A) Ian)  
& , - - E n  

1 
~ n + ~ b  

1 
~ - ( n l z ( & b ) l b ) +  C (paI z (&Pa) ln )  

\ 
E b -  E n  

I 1  1 
En  pa 

where A = E ~ , - E , .  
Let us now find the contribution of the vertex part, 

which is represented by the diagrams in Fig. lb. Using the 
diagrammatic technique, we have 
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Calculating the integrals with respect to E, p;, and pi0 in the same way as we did for h E i m d ,  we get 

The initial expression for the contribution of the reducible part of the diagrams of Fig. la  can be written in the same way 
as we did for the irreducible fraction: 

Let us use the first term on the right-hand side of Eq. (18), The two expressions within the braces are analytic in energy 
which we denote by A E ~ ! ~ ~ ~ ~  , as an example of how to inside the contour T. Calculating the first- and second-order 
integrate with respect to energy. Using (12) and the identity residues at point E =  E ( O )  and taking identity (14) into ac- 

count, we find that 

- 1 
we can write the expression for A E I ! ; ~  in the form x ( a I C . ( ~ a ) I a )  

( E ~ , - - ~ ; O +  io)" (21) 

1 By allowing for the fact that 
AE") "red"- -- f d E  ((&)22 ( - 1 ) ' l m  dp:dp;' 

P - m 1 1 

x(papbll(p;O-p?)lab)(a\C(p?)la) I and integrating by parts we obtain 

x ( a ~ r ( P ? ! ~ a ) ] .  (20) where 

42 JETP 83 ( I ) ,  July 1996 V. A. Erokhin and V. M. Shabaev 42 



The other terms in (18) can be calculated in a similar way: 

Allowing for (22) ,  we find the sum of the contributions 
(23)-(26): 

+(blZ'(~~)(b))+(~a~blI'(A)lab) 

x( (aIX(&a)Ia )  

+(blz(~b)lb))l+(baIl'(~)la~)((alz(&a)I~) 

- (b lX(&b) lb ) ) .  (27) 

As noted earlier, the contribution of the reducible part of 
the diagrams in Fig. la must be calculated together with the 
second term on the right-hand side of Eq. (10). We denote 
their sum by AEKd : 

We denote the contributions to Ag( ' )  of the diagrams of 
Figs. 2a and 2b by AgL1) and g r ) ,  respectively. Simple cal- 
culations yield 

Combining (27)  and (28)-(31), we arrive at the final expres- 
sion for A Ered : 

P 

-(blrn(. , ) lb)] .  (32) 

In the ground state (I' ( 0 )  = O) ,  Eq. (32) assumes the form 

+ ( b l x l ( & b ) l b ) l .  (33) 
Equations (15),  (17),  and (32) are formal expressions 

and need to be renormalized. The procedure in a stationary 
external field is well kt~own.~, '~- '~.  If covariant regulariza- 
tion is employed, the self-energy operator in (15) and (32) 
must be replaced by the operator Z R ( & ) :  

x ( E ) - + z ~ ( E ) = % ( E ) - P ~ ~ - ( z ~ -  I ) ( & - H ) ,  

where H = ap+ prn + V , ( r )  is the Dirac Hamiltonian, % ( E )  

is the self-energy operator regularized in the same way as the 
counterterms, and 6m and Z2  are renormalization constants. 
To renormalize the vertex contribution we must add to the 
expression (17) regularized in an appropriate manner the fol- 
lowing counterterm: 

A E : ~ ~ , , = ~ ( z ~ -  I)'(- ~ ) ~ ( ~ a ~ b ( l ( A ) ( a b ) ,  (34) 
P 

where Z 1  is a renormalization constant. 
If we substitute the expression for X R  into Eq. (15),  we 

see that the contribution of the second counterterm to Z R  
vanishes. This means that the irreducible part can be calcu- 
lated by the method used for calculating the first-order self- 
energy contribution, the only difference being that instead of 
the diagonal matrix element we must calculate the off- 
diagonal matrix elements. A detailed calculation for lithium- 
like uranium was done in Ref. 19. 

Substitution of X R ( & )  into (32) and allowance for the 
Ward identity (2, = Z 2 )  show4 that the counterterm in the 
vertex part is cancelled by the counterterm for the first term 
in the expression for the reducible part. Hence, when calcu- 
lating the sum of the vertex contribution and the first term in 
the reducible contribution, with both regularized in the same 
way, the counterterms can be dropped. 
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Note that both (17) and (32)  contain infrared diver- 
gences, which cancel when the two terms are added. In the 
vertex part (17) the term corresponding to E , ~ = E ~ ,  and 
E , ~ = E ,  in the first term and that corresponding to 

e n l  = c p b  and enZ = E~ in the second term are divergent. In 
the reducible part (32)  the term that contains an infrared 
divergence is the one emerging when the energy of the in- 
termediate state, e n ,  in the operator Z ' ( E )  coincides with 
the energy E ,  in the first term and the energy sb in the 
second. A simple calculation of these two terms yields 

- ( ~ a ~ b l I ( ~ ) l a b ) [ & ~ & ~  ( a n )  (a:a2, 

Note that in the ground state of a two-electron atom this 
contribution is independent of A. Thus, 

where A E ~ & =  hEve,,,- AE;;:"" and A E ~ ~  = AERd 
- AEi-i;fr" In the expressions for A E ~  and AE;~:;;~ we 

can pass to the limit as p4O. 
Below we restrict our discussion to the ground state 

( E , =  cb=  E of a two- electron state and the Feynman 
gauge ( A =  1). It has proved convenient to identify in the 
sum (36) the finite part of the vertex contribution, A E p l e ,  
corresponding to .snl=&, and cn2 Z E , ,  or # E ,  and 
E n Z =  E , :  

The integral with respect to energy can be transformed in the 
following manner: 

where An= &,- E ,  . This yields 

where 

The expression for AE,, can be written in terms of the 
Green's function as follows: 

AE,,= 2 a 2 C  ( - 1)'- 
P 

277 Irn -, d o /  d x d y d z  

x G(E,- w , z , ~ ) ~ ~ $ ~ ( ~ ) -  ( P a P b  11-c'ff21ab) 

(41) 

where 

with G ( E , x , z )  the Coulomb Green's function of the Dirac 
equation, and $,(x) and rClb(x) are the 1s-state wave func- 
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tions with +; and- a projections of angular momentum. In 
going over from (17) and (33) to (41) we joined the coincid- 
ing integrations in the reducible and vertex contributions and 
allowed for the fact that 

Bearing in mind the forthcoming numerical calculations, we 
rotate the contour of integration with respect to w in (41) in 
the complex w plane so that it coincides with the imaginary 
axis. Since in the process of contour deformation the contour 
crosses no singularities of the integrand, we get 

2 a2 e - o l x - ~ l  

AE,= - -I: (- I ) ~ ( ~ d w /  dxdydz -  
P 0 Ix-YI 

3. NUMERICAL CALCULATIONS 

3.1. The irreducible contribution 

It is convenient to write the irreducible contribution of 
the diagrams of Fig. l a  as 

A~im&=2[(~1zR(&a)I~)+(~lzR(&a)l~)]? (44) 

where 

Is>= C In)[(nbll(O)lab)-(nbl~(O)lba)l 

E ~ + E O  &,-En 
. (45) 

The numerical calculation of AEimd, just as that of all other 
contributions, is performed for a point nucleus. The function 
15) was calculated by the method of B-splines for the Dirac 
equation.20 Zero boundary conditions and the grid 
r i =  p4 y l ~ ,  where y= Jw, were used in the calcula- 
t i o n ~ . ~ ' , ~ ~  TO calculate the off-diagonal matrix elements of 
the selfenergy operator in (44) we used a generalization of 
the numerical renormalization method based on an expansion 
of the mass ope rat^?^ in partial According to 
this method, the divergent integrals for the unrenormalized 
contribution and the mass renormalization counterterm are 
replaced by divergent series of finite partial contributions. 
Term-by-term integration yields a series that converges to 
the correct value of self-energy in the first order. According 
to our analysis, to generalize the expression for the mass 
counterterm in Refs. 24-26 to the off-diagonal matrix ele- 
ments considered here, the mass operator must be taken in 
the form 

where, as in Ref. 26, the quantum numbers p i ,  K ~ ,  m i ,  and 
a i  characterize the spherical waves of a free Dirac equation, 
with pi the radial momentum, 

ji and li  the electron's total and orbital angular momenta, 
mi  the projection of the total angular momentum, and 
a i  = sgn(epi), E~~ = a ,  Jv-, jl are spherical Bessel func- 
tions, 

and ~ f ,  are spherical harmonics. It is assumed that a scalar 
product is taken between spherical tensors. Summation with 
respect to pi means integration over the continuum of radial 
momenta. The integrals of three Bessel functions in (46) 
were calculated recursively by an algorithm discussed in Ref. 
27. To shorten the computation time, the overlap integrals 
(alpiKimiai)  and ,miai )  were first calculated on a 
fixed grid in p and were then interpolated with allowance for 
their behavior at infinity. While one can easily obtain an 
analytic expression for the overlap integral ( a  1 pi Kimiai), 
calculating the integral ( ( l p i ~ , m i a i )  requires a numerical 
procedure that may require some enhancement at large val- 
ues of p .  For fixed momenta k and p2 ,  integration with re- 
spect to p l  and p3 is done only on the interval 
( 1  k-p21 , k + p 2 ) .  In calculating the integrals one must bear 
in mind that because of the energy denominator the integrand 
has singularities, which lie outside the integration range but 
for large momenta are close to the limits of that range. The 
behavior of the integrand was accounted for by using a grid 
tending to the limits of integration in a power-like manner. 
All calculations of integrals in the present work were done 
by Gaussian quadrature formulas. Since integrations with re- 
spect to p ,  and p3 are independent, both integrals were cal- 
culated simultaneously. The entire range of integration with 
respect to p2 was divided into two parts, (0 ,k)  and ( k , ~ ) ,  
since the derivative of the integrand has a discontinuity at the 
point p2=  k.  Integration was then done by replacing the in- 
finitely large interval with a finite interval by an appropriate 
change of variables. 

The calculation of the terms in the partial-wave expan- 
sion of the matrix element of the unrenormalized self-energy 
operator (9) is done by employing the relativistic Coulomb 
Green's function. For convenience of calculation we rotated 
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TABLE I. The first-order self-energy contribution for the 1 s-state expressed 
in terms of the function F(aZ) (here EsE= ( a l ~ ) ( a ~ ) ~ ~ ( a ~ ) r n c ~ ) .  

Present work Mohr's data3' 

the contour of integration with respect to w in the complex 
w plane so that the contour coincided with the imaginary 
axis. As a result the oscillatory behavior of the integrand was 
replaced by exponential decay. The calculation of the rela- 
tivistic Coulomb Green's function was done by employing 
Whittaker functions, with the calculation algorithms taken 
from Ref. 28. By using the algorithm discussed in Ref. 29 in 
the range of variation of I K I  of interest ((KI E (1,22)), we 
avoided applying quadrupole accuracy in calculating the 
Whittaker function Wmp(x), which considerably reduced the 
calculation time in comparison to the scheme suggested in 
Ref. 28. Radial integration was done by an approach similar 
to the one suggested by ~ o h r . ' ~  In each partial wave, inte- 
gration with respect to energy was done for the difference of - - 
the unrenormalized contribution and the counterterm by re- 
placing the infinitely large interval with a finite interval via 
an appropriate change of variables. 

As a result, after term-by-term subtraction of two diver- 
gent series, one for the unrenormalized contribution and the 
other for the counterterm, we arrive at a convergent alternat- 
ing series in powers of I K I  . Applying the lowest-order Euler 
transformation to this series, as done in Ref. 26, improves its 
convergence. In practice the calculation was done up to 
/ K /  = 22. Table I compares the results of first-order calcula- 
tions of the self-energy with the most exact data of Ref. 30. 
The numerical values for the irreducible contribution defined 
by Eqs. (44) and (45) are listed in the second column of 
Table 11. 

3.2. The pole term 

After integration with respect to the angular variables the 
expression (40) for AE,,,, assumes the form 

XRLl(O,anaa) . 1 (47) 

Here we have introduced the following notation: 

r, = min(r1 ,r2), r, = max(rl ,r2); Z,(r) and Kn(:r) are modi- 
fied Bessel functions, and 

where g(r) and f(r)  are, respectively, the large and small 
radial components of the Dirac wave function: 

The calculation of the pole term, as well as the wave 
function 16) in the irreducible contribution, was done by the 
method of B-splines for the Dirac equation. In the final cal- 
culations we used 55 splines of the 10th order on the interval 
(O,r,,). The radius r,, of the box bounding the system was 
chosen large enough that a further increase had no effect on 
the final result. In our case the value r,,=0.3 a.u. for 
Z =  80 proved sufficient. For specific calculations we re- 
placed the B-spline representation of the wave functions with 
a representation in which the wave functions are a single 
polynomial in each interval (r i  ,ri+,).  The results of calcu- 
lations of AEpole are listed in the third column of Table 11. 

3.3. The contribution AE,, 

After integration with respect to the angular variables the 
expression (43) for AE,  assumes the form 
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TABLE 11. Contribution of the diagrams of screened self-energy for the ground state of helium-like ions 
( A E m d ,  AE,,, , AE,, ,  and A E ~ : ; ,  are defined in Eqs. (15), (40). (42), and (35). respectively; AE is the 
total contribution, BELo is the contribution, determined via Eq. (59). of the diagrams of the screened self- 
energy in the lowest order in a Z ) .  The atomic system of units is used. 

where the angular momenta j , l ,  and j' ,l' correspond to the 
quantum numbers K and K ' ,  respectively, and 

{A) '=( l  + y ) ~ " -  ~ z A ' ~ - ~ z A ~ ~ + ( ~  - y ) ~ 2 2 ,  

{ ~ I : ~ t , ~ , = ( l -  Y ) A ~ ~ s J L ( ~ . K ) s J L ( ~  , K ' )  

+ ~ z A ' ~ s ~ ~ ( I , K ) s ~ , - ( -  1 , - K ' )  

+ ~ z A " s ~ ~ ( -  1,- K ) S ~ ~ ( ~ , K ' )  

+ ( I +  y)A2'sJL(- 1 , -  K)SJL(- 1 , -  K ' ) ,  

1 1 -  - 1 1  D K  - G K  ( w , r u , z ) 6 : ( w , z , u )  

+ G y ( w , r u , z ) e ( o , z , u ) ,  

~ ~ ~ = ~ ~ ' ( w , r u , z ) ~ ~ ~ ( w , z , u )  

+ G ~ 2 ( w , r ~ , z ) e ( w , z , ~ ) ,  

21- -21 D K  - G K  ( w , r u , z ) ~ ~ ' ( w , z , u )  

-22 + G K  ( w , r u , z ) q ( w , z , u ) ,  

2 2 -  -21 D K  - G K  ( o , r u , z ) 6 i 2 ( w , z , u )  

+ e ( w , r u , z ) e ( w , z , u ) ,  

Here the functions ? : ( w , ~ , ~ )  are the radial components of - 
G ( w , x , y )  defined by Eq. (42),  u = y / 2 a Z ,  y=  Jw, 

( IL(x )  and KL(x)  are modified Bessel functions), and 

where AE(')  is the one-photon correction to the energy of 
the ground state of a two-electron ion. A simple analytic 
calculation of this correction yields3' 
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A E ( ~ ) = A E ( ' )  COUI + A E ~ ; ,  

The angular coefficients S J L ( ~ ,  , K ~ )  are nonzero only at 
L = J  - 1 ,  J ,  J+  1 and have the following form: 

where II stands for the even triangle rule. 
We calculated the function & ( E , X , ~ )  in (50) by sub- 

tracting 

from the Green's function G , ( ~ , x , y )  at K =  - 1 .  Certain nu- 
merical cancellations emerge in the process, and these may 
be considerable for low energies. This requires that the 
Green's function be calculated to high accuracy. 

To reduce the computation time, we calculated the func- 
tions R , ( z )  and R 2 ( z )  beforehand on a fixed grid, and then 
in the computation process found specific values by interpo- 
lation with allowance for the behavior at infinity. Next, for 
each value of w and I K I  we also used a fixed grid in the 
radial variable to calculate the four Whittaker functions 
needed for finding the Green's function, and then by inter- 
polation could calculate these functions at any point. Here 
we allowed for the asymptotic behavior of the Whittaker 
functions for r-+O and r + w .  Numerical integration was 
performed via Gauss-Legendre quadratures. First integration 
with respect to z  was done. Here the integrand has disconti- 
nuities at the points where the radial arguments of the 
Green's functions coincide. The entire interval was parti- 
tioned into three intervals: (O,ru), ( r u , ~ ) ,  and ( u , ~ ) .  
Within each interval integration was done separately by an 
appropriate change of variables. Then integration with re- 
spect to the variables r  and y  was carried out. The correct- 
ness of integration with respect to z ,  r ,  and y was verified via 
the identity 

The last step was integration with respect to energy. 
As a result of these calculations we obtained an altemat- 

ing convergent series in powers of the parameter I KI. For 
large values of Z (here Z is the charge of the nucleus) the 
terms in the series decrease as l l l ~ l ~ ,  and the convergence 
gradually weakens as Z  decreases. Summation was done up 
to the value I K I  = 12. The remainder of the series was esti- 
mated on the assumption that the terms in the series decrease 
according to the following law: 

The results of calculations of AE, are listed in the fourth 
column in Table 11. 

3.4. The "infrared" term dfz;;, 

After calculating the angular integrals and performing 
the necessary transformations for the ground state, we arrive 
at the following expression for (35): 

X Vaa(rl)Vaa(r2). (54) 

Here V a a ( r ) = 2 g a ( r ) f a ( r ) ,  with ga(r )  and f a ( r )  the large 
and small radial components of the wave functions of the 
1 s-state, respectively; 

with P 1 ( 5 ) = 5  the first-order Legendre polynomial; and 
AE;;) is the correction to the ground-state energy due to the 
exchange of a single Breit photon and specified by Eq. (53). 
The integrals in (54) were calculated analytically. The result 
is 

"infr" 4 a  
A E ~ ~ ~ + , = ~ ( ~ z ) ~ A E " '  Br r2(2 r ( 4 ~ + 2 )  y+ 1 ) ( ' 1 1 2 )  9 (55) 

where 
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TABLE 111. Verifying calculations of the correction caused by the interac- 
tion with an additional extemal field A V =  - a l r  in the first-order self- 
energy diagram. (The results are compared with dEsEldZ.)  The atomic 
system of units is employed. 

Z AEM AEPle AEvr AE dEsE IdZ 

20 0.02003 0.01320 - 0.02219 0.01 104 0.01 102 
30 0.03969 0.01837 - 0.029 17 0.02888 0.02885 
40 0.06795 0.02274 - 0.03359 0.05710 0.057 13 
50 0.10722 0.02645 - 0.03537 0.09830 0.09832 
60 0.16148 0.02973 -0.03458 0.15662 0.15663 
70 0.23749 0.03292 -0.03095 0.23946 0.23946 
80 0.34748 0.03666 - 0.02386 0.36027 0.36027 
92 0.55983 0.04364 - 0.00891 0.59456 0.59456 
100 0.79500 0.05 193 - 0.00727 0.85420 0.85426 
110 1.3307 0.07241 -0.04120 1.4443 1.44427 

where C  is Euler's constant, and @ ( x )  is the logarithmic 
derivative of the gamma function. In the lowest order in 
aZ  this expression has the simple form 

The values of the "infrared" term are listed in the fifth col- 
umn of Table 11. 

The values of the total contribution of the diagrams of 
screened self-energy are listed in the sixth column of 
Table 11. 

4. DISCUSSION 

We have calculated the contribution of the diagrams of 
screened self-energy for the ground state of helium-like ions. 
For u90+ it amounts to - 9.54 eV. 

To check the results of numerical calculations we com- 
puted the correction to the first-order self-energy diagram 
produced by an extemal field A V =  - alr. In this case the 
total contribution of all terms, AEirred, AEred, and AEVe,,, 

"infr" (AEver+red=O), must be equal to dEsEldZ, where ESE is the 
first-order self-energy contribution. In Table I11 the results of 
our calculations are compared with the values of dEsEldZ 
found by interpolation of the most precise values of EsE 
from Ref. 30. 

Let us compare the results of our calculations with those 
done in the lowest order in aZ. Using the results of Refs. 
32-34, we found that the contribution of the diagrams of 
screened self-energy in the lowest order in aZ amounted to 

The values of AELo are listed in the last column of Table 11. 
For detailed comparison we wrote AE for small values of 
Z as 

and found the coefficients C ,  and C 2  from our numerical 
values of AE at Z=20, 25, and 30. The result was 
C ,  = 1.36 and C2= - 5.32. 
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