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The fragmentation of a cluster with the liberation of an atom is investigated within the 
framework of two models: in the first case the cluster is modeled by a system of harmonic 
oscillators; in the second model its surface is considered to be macroscopic, and the evaporation 
time of an atom is expressed in terms of the saturated vapor parameters. The resulting 
expressions are compared with each other and with the results of numerical calculations. O 1996 
American lnstitute of Physics. [ S  1063-7761 (96)00407-61 

1. INTRODUCTION motion of surface atoms of the cluster in the direction of the 
outward normal to the surface. 

A large cluster, comprising a system of many bound We propose to apply the statistical approach to the frag- 
atoms, exists in a metastable state even at fairly low tempera- mentation of an energized atomic cluster in the harmonic 
tures9 where the lcinetiC energy of the is greater than oscillator approximation as one of the models of cluster frag- 
the binding energy of a surface atom. However, the probabil- mentation. We have in mind clusters involving the pairwise 
ity of fragmentation of a cluster with the liberation of an interaction of atoms, so that an atom is a structural element 
atom in this case is low, because the event require an of the cluster, and a certain cluster degree of freedom asso- 
energy greatly exceeding the average to be in ciated with the motion of the atom is responsible for the 
the of freedom. In the given situation* liberation of this atom. Consequently, treating the cluster as a 
therefore, the cluster lifetime against fragmentation with the set of harmonic oscillators, we assume that the given atom is 
liberation of an atom is long 0' the time scale of energy liberated once the energy in the corresponding degree of 
transfer between individual degrees of freedom of the clus- freedom of the cluster exceeds the binding energy of the 
ter. This parameter of an energized cluster will be calculated atom. Accordingly, our objective below will be to calculate 
in simple models below. the probability of the energy in a given degree of freedom 

2. STATISTICAL MODEL OF CLUSTER FRAGMENTATION 

Since a large cluster of the kind discussed here has many 
degrees of freedom, statistical methods are well suited to its 
description. Based on the statistical approach, the probability 
of fragmentation of a cluster is proportional to the ratio of 
the density of states in the initial and final channels of the 
process. In the literature this approach is known as the Rice- 
Ramsperger-Kassel (RRK) method.lW3 When it is used, the 
stated problem of fragmentation of an energized atomic clus- 
ter essentially coincides with the fragmentation problem for 
an energized molecular cluster, which has been studied in 
considerable detail. In this case the problem is formulated 
andytically for the case in which the motion of the atoms is 
modeled by a set of harmonic oscillators, which leads to 
simple expressions for the density of states of the  stern.^-^ 
The problem then reduces to finding paths of the system in 
phase space that lead to transition from the initial to the final 
channel of the process. 

The main conflict encountered in the given approach is 
that the harmonic oscillator approximation is not valid in the 
transition region, where the excitation of the system cannot 
be regarded as small. Consequently, the statistical treatment 
of the fragmentation of an energized molecular cluster in the 
harmonic oscillator approximation is a model approach. This 
assertion also applies to the atomic cluster discussed here, 
but now the fragmentation paths of the system are easily 
identified, because in ordinary space they correspond to the 

exceeding a specified value. 
The model of an atomic cluster as a system of harmonic 

oscillators is suitable for a solid cluster, where the atoms are 
localized at certain sites and execute harmonic oscillations 
about their equilibrium positions. In this case the cluster ex- 
citation energy ("excess" energy) E,, bears a simple rela- 
tion to the cluster temperature T: 

where s is the number of degrees of freedom of the cluster 
(for an n-atom cluster we have s = 3n - 6), and the cluster 
temperature T is expressed in energy units. Introducing the 
binding energy E of the atom to be liberated, we have 
E%T in the given situation, so that the temperature depen- 
dence of the cluster lifetime T according to the Boltzmann 
law has the form 

Since this equation is also valid for the liberation of mol- 
ecules of various sizes, and since the fragmentation of a mol- 
ecule requires greater energy expenditures than an atom, it 
follows that the lifetime of the energized cluster with pair- 
wise interaction between atoms is determined entirely by the 
liberation of atoms7 In particular, the successive evaporation 
(one-at-a-time ejection) of k atoms for a cluster with pairwise 
interaction of atoms is far more favorable than the fragmen- 
tation of a cluster with the formation of a k-atom fragment.') 
For this reason we choose to consider only cluster fragmen- 
tations associated with the evaporation of single atoms. 
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We assume that the thermal energy of an atom in the 
cluster is much greater than the characteristic oscillatory 
quantum energy (i.e., the quantity ho, ,  where o, is the 
Debye frequency of the cluster) but much smaller than the 
binding energy of atoms in the cluster. The cluster then com- 
prises a system of bound classical atoms, and the fragmen- 
tation of the cluster is determined by the motion of atoms 
along classical trajectories. It is therefore reasonable to ex- 
pect the cluster fragmentation rate to be independent of the 
nature of the frequency distribution of the system oscilla- 
tions. This assertion leads to major simplification of the 
problem, which can now be addressed on the assumption that 
the frequencies of all oscillations of the cluster are identical 
and equal to h o .  Setting the cluster excitation energy to 
Eex , we obtain p = Eex 1 f i  o for the number of excitations 
distributed among s = 3n - 6 harmonic oscillators (n is the 
number of atoms in the cluster). In our subsequent determi- 
nation of the unknown probabilities we invoke methods of 
statistical mechanics as represented in Kompaneets' 
books?*'0 

In the given situation we have s oscillators and p exci- 
tations. We construct a sequence of s + p  elements, including 
both oscillators and excitations. We then interpret the num- 
ber of excitations for a given oscillator as the number of 
excitations occupying the given sequence after that oscillator 
and before the next one. On this basis we find the total num- 
ber of alternative model distributions of p excitations among 
s oscillators, which is equal to 

(p+s -  l ) !  
W ~ ' =  p!(S- I ) !  . 

In generating each sequence of elements, we fill the first 
position with an oscillator, i.e., in reality we are working 
with a sequence of p + s - 1 elements. 

The number of model distributions for which the energy 
associated with a given degree of freedom exceeds the level 
E = kh w is equal to 

(p-k+s- l ) !  
wis=(p-k)!(s- l ) !  ' 

so that the probability of such a situation is 

Assuming that k e p  and sS  1, we obtain 

Introducing the average transition time TO between 
states, i.e., the characteristic time of variation of the distri- 
bution of excitations among the oscillators, we obtain the 
following equation for the cluster lifetime against the libera- 
tion of an atom: 

Here n,,, is the number of atoms with binding energy E ,  i.e., 
the number of surface atoms in identical states capable of 

TABLE I. Parameters of condensed inert gases in the vicinity of the melting 
point. 

Parameter Ne Ar Kr Xe 

a, A 
A 
T , ,  K 
Q. K 
po , lo4 atm 
N o ,  loz4 cm- 
~ , a '  
fi w, , meV 
71 172 

Nore. a  denotes the equilibrium distance between atoms in a diatomic mol- 
ecule, A is the atomic weight, T ,  is the melting point, the saturated vapor 
pressure is approximated by the equation p = p o  exp(-QIT), N o = p o l T m ,  
fiw, is the Debye temperature for an inert gas crystal at zero temperature, 
and 7, /r2 is given by Eq. (20). 

being liberated with equal probability. Introducing the clus- 
ter temperature T according to Eq. (I), from (7) we obtain 

Passing to the stated limit ~ B h o  in Eq. (8), we obtain 

In Eq. (9) we have changed the symbol E to E ,  to reflect the 
fact that the association of this parameter with an n-atom 
cluster. Clearly, the cluster lifetime does not depend on the 
frequency of the harmonic oscillators. This justifies the as- 
sumption of different oscillators having equal frequencies, 
which enormously simplifies the derivation of the expression 
for the lifetime of an energized cluster. 

A certain leeway in the choice of parameters of Eq. (9) 
exists within the framework of the statistical approach used 
here. As the characteristic transition time between cluster 
states we adopt the quantity TO= 1 / ~ ~ ,  where oD is the 
average Debye frequency for a macroscopic system of at- 
oms, defined as wD = ( o  o;)'l3; w and w2 are the longitu- 
dinal and transverse Debye frequencies. The values of this 
quantity1' are given in Table I. 

We introduce the number of surface atoms in such a way 
as to make the binding energy of atoms in the cluster equal 
to 

where E ,  is the binding energy per atom in the macroscopic 
system, and n is the number of atoms in the cluster, so that 
the variation of the specific cluster energy relative to the 
macroscopic system is attributable to the developed surface 
of the cluster. For a large cluster with pairwise interaction 
between atoms and the symmetry of a cubic fcc structure, the 
binding energy of atoms in the cluster 

so that the effective number of surface atoms is 
nSur= 1.26n2I3. Accordingly, based on the given model, the 
cluster lifetime is obtained in the form 

25 JETP 83 (I), July 1996 6. M. Smirnov 25 



3. EVAPORATION OF ATOMS FROM THE SURFACE OF A 
MACROSCOPIC CLUSTER 

We now consider a second cluster model, according to 
which the evaporation of bound atoms from the surface of a 
cluster and attachment of atoms to it take place as in the case 
of a macroscopic surface. We assume that the cluster has a 
surface of area .rrr2 (r is the radius of the cluster) and that 
equilibrium between the evaporation and attachment of at- 
oms 

has the same character as in the case of a macroscopic sur- 
face. 

Let a cluster be situated in a gas with temperature T and 
density of atoms N. The flux of atoms attaching to its mac- 
roscopic surface is then 

where m is the mass of the atom, and 5 is the probability of 
an atom attaching to the cluster in collision with its surface. 
According to Eq. (2), the flux of evaporating atoms is given 
by 

jev=C exp(-&,,IT), (14) 

where E, is the energy to detach a surface atom from an 
n-atom cluster, and the parameter C depends weakly on the 
temperature and is determined by the properties of the sur- 
face. The same equations for the attachment and evaporation 
fluxes apply to the macroscopic surface, the two fluxes 
equalizing when the gas pressure corresponds to the satu- 
rated vapor pressure, i.e., 

Here N,,  is the density of gas atoms at the saturated vapor 
pressure, which is characterized by the temperature depen- 
dence 

where E, is the atom-to-surface binding energy. Invoking 
the analogy of the cluster surface with a macroscopic sur- 
face, we obtain the equation (14) for the flux of atoms evapo- 
rating from the cluster surface in the form 

From this relation we obtain an expression for the cluster 
lifetime against evaporation of an atom: 

[ ( n E m ) ] ' .  (18) r= 4nr2  %NSat(T)S exp - -- 

We determine the cluster radius in this equation from the 
relation 

in which the distance a between nearest neighbors is as- 
sumed identical for the cluster and the macroscopic system, 
and the cluster is endowed with the symmetry of a cubic fcc 
structure. Making use of this relation, along with the tem- 
perature dependence of the saturated vapor pressure of the 
atoms (16), we reduce Eq. (18) to the form 

4. LIFETIME OF AN ENERGIZED CLUSTER 

We now analyze the results. The ratio between the clus- 
ter lifetimes against evaporation of an atom for the statistical 
model ( r l )  and for the macroscopic surface model ( r2 )  has 
the form 

We set the parameter 5 equal to unity from now on. Clearly, 
the ratio of the lifetimes for the given models does not de- 
pend on the size of the cluster, but does depend on its tem- 
perature. 

These models have different domains of validity. The 
statistical model of evaporation of an atom from the surface 
of a cluster in the harmonic oscillator approximation is cal- 
culated for low-temperature solid clusters, whereas the 
model of a cluster with a macroscopic surface is geared more 
to large liquid clusters, since the saturated vapor pressure 
above liquid surfaces has been accurately measured. Conse- 
quently, it is more practical to compare Eqs. (1 1) and (19) at 
the melting point of the macroscopic system. Table I gives 
the corresponding parameters of the clusters, including rela- 
tion (20) for inert gas clusters at the melting point of the 
macroscopic system. The data on the saturated vapor pres- 
sure above a liquid surface are taken from Ref. 14. 

The stated comparison provides a useful tool for refining 
equations (9) and (1 1) obtained for the statistical model of 
cluster evaporation, which only allowed us to estimate the 
characteristic transition time between cluster states. Now, us- 
ing data on the saturated vapor pressure, which give the 
evaporation rate of atoms from the macroscopic surface, we 
can normalize Eq. (9). For real inert gas clusters it assumes 
the form 

We note that molecular-dynamics methods are ideally 
suited to the analysis of the behavior of the investigated clus- 
ters in that the motion of the atoms obeys classical laws. This 
method provides a means for surmounting the above- 
mentioned difficulty of applying the statistical model to the 
analysis of cluster fragmentation, i.e., the invalidity of per- 
turbation theory on the fragmentation channels of atoms in 
phase space. Molecular-dynamics methods have therefore 
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been used on many occasions not only for the analysis of 
fragmentation of an energized cluster, as in the pairwise in- 
teraction of atoms in a cluster consistent with the Lennard- 
Jones potential,16-20 but also for a more complex interaction 
potentialg modeling transition metals. 

However, despite the capabilities of molecular-dynamics 
methods, the analytic methods discussed here hold their own 
in the analysis of the fragmentation of energized clusters. In 
fact, the molecular-dynamics solution of the given problem 
has complications of its own insofar as this process is rare 
and therefore requires long computation times. For this rea- 
son, as a rule, the calculations are carried out for highly 
energized clusters and not for clusters of real inert gases. 
Below, we compare the derived equations with calculations 
for the model cluster A ,3, whose atoms have the mass of the 
argon atom and in which pairwise interaction between atoms 
corresponds to the Lennard-Jones potential. 

Next we discuss the general properties of the investi- 
gated clusters and the laws governing their fragmentation. 
The Lennard-Jones cluster A ,, has icosahedral structure, 
with one central and n,,,= 12 surface atoms. The energy to 
detach one atom at zero temperature E ,  is approximately21~22 
6.360, where D is the energy to break the bond in a diatomic 
molecule. The energy to excite a cluster with the transfer of 
an atom to its surface is approximately 2.90 (Ref. 22). Such 
excitation takes the cluster into the liquid state, where the 
excitation energy of the liquid state at the cluster melting 
point is approximately 2.50 (Refs. 23 and 24), which is 
slightly lower than the previously indicated excitation energy 
at zero temperature. Moreover, the statistical weight of the 
liquid state at the cluster melting point is approximately an 
order of magnitude greater than the value corresponding to 
the cluster model with pinned sites. All this attests to the 
differences in the parameters of the cluster in the solid and 
liquid states. 

Unfortunately, data are not available on the saturated 
vapor pressure above the macroscopic surface of a con- 
densed system of atoms with a Lennard-Jones interatomic 
interaction potential. Without this input, Eq. (21) is a crude 
estimate. Indeed, a comparison with molecular-dynamics 
calculations for clusters having a Lennard-Jones interatomic 
interaction potential, illustrated in Fig. 1, shows that calcu- 
lations using Eq. (21) normalized to the saturated vapor pres- 
sure of real inert gases yield considerably shorter cluster life- 
times. 

5. CONCLUSION 

The final result of the foregoing analysis based on the 
dynamics of atoms moving in a heated cluster and the char- 
acter of evaporation from the macroscopic surface is an ex- 
pression for the cluster lifetime. The accuracy of this expres- 
sion depends on the parameters of the cluster and the 
accuracy of the information used in the expression. The 
method set forth in this paper can be used to estimate the 
lifetimes of different types of clusters within certain error 
limits. 

FIG. 1. Lifetime of an A ,, cluster with a Lennard-Jones interatomic inter- 
action potential. Molecular-dynamics calculations from: Ref. 15 (+), Ref. 
16 (m), and Ref. 17 (A); calculations according to Eq. (21) (0). 

"1n this case the pairwise interaction potential does not depend on the in- 
teraction of either atom in the pair with other atoms. Accordingly, the 
detachment of a molecule from the cluster requires higher energy than does 
an atom. This is not necessarily true for a different type of interaction 
between atoms in the cluster (see, e.g., Ref. 8). 
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