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1. INTRODUCTION 

The interaction of electrons and photons with a strong 
laser field has been under intensive study since the mid- 
1960s. As a rule, the laser field is modeled by a monochro- 
matic electromagnetic plane wave. A detailed review of the 
most important results in this field can be found in Ref. 1. 

The probabilities of quantum processes induced by one 
particle in the field of a plane wave are regulated by two 
invariant parameters whose orders of magnitude are deter- 
mined by the relations 

where F is the amplitude of the wave field, o is the fre- 
quency of the wave, and E is the particle energy.') The range 
of these parameters of greatest interest is that in which they 
are both at least of order unity. The processes occurring in 
the field of a wave are then of a multiphoton character and 
their probabilities become strongly nonlinear functions of the 
intensity of the field. The parameter 77 does not depend on 
the Planck constant and is a classical parameter of nonlinear- 
ity, while ,y is responsible for the nonlinear quantum effects. 

The development of compact optical-frequency lasers 
with pulse power W- loL8- 1019 w/cm2 has made it pos- 
sible, comparatively recently, to check the equations of 
strong-field nonlinear quantum electrodynamics experimen- 
tally. This power level corresponds to a field intensity at the 
focal point F- 10" Vlcm or p- 1. The parameter ,y is also 
of the order of unity for electrons with energy E - 50 GeV. A 
series of experiments checking quantum electrodynamics in 
strong fields is now underway in McDonald's group at 
SLAC.~,~ The feasibility of such experiments has also been 
discussed in Ref. 4. 

The use of ultrashort (pico- or even femtosecond) and 
sharply focused (the spot size at the focus is of the order of 
several wavelengths) pulses has made it possible to achieve 
laser intensities corresponding to p- 1. The amplitude of the 
field in such a pulse varies strongly in both space and time, 
and for this reason the justification for using a monochro- 
matic plane wave model to describe a laser pulse in experi- 
ments in which the pulse collides with electrons or photons 
becomes somewhat dubious. 

For a classical electron, the spatial and temporal nonuni- 
formity of the amplitude of the laser field result, correspond- 
ingly, in ponderomotive scattering and surfing effects (see, 

for example, Ref. 5). In the former effect, the trajectory of an 
electron averaged over rapid oscillations is curved or the 
electron is even reflected from the pulse. In the second effect, 
the energy of an electron passing through the pulse changes. 
Both effects have now found direct experimental 
confirmati~n.~ Moreover, the spectrum radiated by a classical 
electron is substantially different from that of a monochro- 
matic plane ~ a v e . ~ . ~  

In the present paper, we present a quantum electrody- 
namic calculation of the angular and spectral distributions of 
the radiation from an electron in a collision with a laser pulse 
under conditions close to those of McDonald's experiment. 

It is assumed that before the collision the laser and elec- 
tron beams propagate toward one another. It is also assumed 
that the electrons are ultrarelativistic and the pulse is so short 
that during the interaction there is not enough time for the 
electron to be deflected appreciably from the initial direction 
of motion as a result of the ponderomotive effect. In this 
case, the spatial nonuniformity of the beam in the transverse 
direction can be neglected and hence the laser field can be 
modeled by a plane but, of course, not monochromatic wave. 

As is well known, the Dirac equation possesses exact 
solutions for a plane wave field of arbitrary spectral 
composition-the so-called Volkov solutions, which we 
shall employ to describe the initial and final states of the 
electron. This makes it possible to advance far in the 
analytic calculations. 

Admittedly, this formulation of the problem presupposes 
that the transverse size of the electron beam is small com- 
pared to the laser spot diameter, which is quite difficult to 
achieve experimentally. However, the results obtained in our 
approach can be interpreted as formulas for electrons collid- 
ing with a laser pulse with a definite value of the impqct 
parameter. For this, the transverse size of the wave packet 
corresponding to the incident electron must be assumed to be 
large or at least of the order of the formation length of the 
radiation process on the one hand, and much smaller than the 
size of the laser focus on the other. Then, to describe a real- 
istic situation, for which the transverse size of the electron 
beam is greater than the size of the focus, in our formulas the 
intensity of the field must be regarded as a given function of 
the impact parameter and averaging over the impact param- 
eter must be performed. 

As shown in the present work, in order that the condition 
formulated above be valid for p? 1,  the size R of the focal 
spot must be much greater than the characteristic wavelength 
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X of the laser radiation. We shall assume that the condition 

(where k =  w= 2 r l h  is the characteristic wave number) is 
satisfied. Moreover, the pulse must be sufficiently short so as 
to be able to neglect the spreading of the packet. As will be 
evident from what follows, this condition and the condition 
for neglecting ponderornotive scattering are quite mild and 
they make it possible, specifically, to assume that for pulse 
duration T we have 

which we shall assume to be the case in our calculations. 

2. PROBABILITY OF PHOTON EMISSION BY AN ELECTRON 
IN A NONMONOCHROMATIC PLANE WAVE 

We shall describe the field of a plane-wave laser pulse 
with the aid of the 4-potential 

~ p = g  - {a? cos cp+ag sin r), ( :A 
where cp= kx,  k,= ( w ,  k )  is the 4-vector of the wave, a,, 
and a are the amplitudes of the potential, which satisfy the 

2.r" 
conditions 

and g(cp1w.r) is the envelope of the potential, which we re- 
quire to equal 1 at the center of the pulse, g(0)= 1, and to 
decrease exponentially for 1 q1 % 07. Then the quantity T can 
be regarded as the pulse duration. 

In the present work, we shall assume for simplicity that 
the laser pulse is circularly polarized, meaning that a:=ai. 

The Volkov solution in the field of a circularly polarized 
wave with the potential (4) has the form 

where 

- y I : , d p g ( & )  sin rp 

is the classical action of an electron in the field with the 
potential (4), pr" is the 4-momentum of an electron outside 
the pulse, up,  is the free Dirac bispinor, normalized by the 
condition &up, = 2m, and 

e2a: e2ai  e 2 ~ 2  
772= - -= - 

m  m Z = m  (7) 

( F  is the amplitude of the field intensity at the center of the 
pulse). The solutions of Eqs. (5) form a complete orthonor- 
ma1 set.' 

For laser pulses of optical frequency and duration of 
several picoseconds (or even tens of femtoseconds), the con- 
dition (3) holds conservatively. Then, neglecting terms 
- 1/07, the expression (6) can be rewritten in the form 

where we have introduced the notation 

Therefore the classical action of an electron in the field (4) in 
the approximation w r B  1 is identical to the corresponding 
expression for a monochromatic wave"9 with the difference 
that the 4-vector qr" and the amplitudes of the potential in 
our case depend slowly on the variable rp. This structure of 
the classical action corresponds to separation of the motion 
of a classical electron for W T B  1 into a systematic motion 
along a continuous trajectory and rapid oscillations with fre- 
quency w  around this trajectory (compare Sec. 30 in Ref. 
10). 

The dependence of q, on the variable cp is the so-called 
"ponderomotive" scattering effect.' As a result of this de- 
pendence, the Cvector q, , in contrast to the case of a mono- 
chromatic wave, can no longer be regarded as the quasimo- 
mentum of the particle. However, once again, we shall call 
the quantity m ,  , whose square equals the squared average 
kinetic momentum q, , the cp-dependent effective mass of an 
electron in the field (4): 

The element of the S matrix for a transition of an elec- 
tron from the state qpr into the state q p f r t  with the emission 
of a photon with momentum 1 and polarization e' has the 
form 

where 'Ppr and qptr, are the wave functions (5) with S p  in 
the form (8). 

The integrand in Eq. (1 1) is a linear combination of the 
quantities 

where 

and equals, to within a slow dependence of the quantities 
ai on 9, the corresponding expression in the field of a mono- 
chromatic wave.9 
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Strictly speaking, expressions of the type (12) are not 
periodic functions of cp, and in contrast to the case of a 1 d4xzZPtrt0, 
monochromatic wave they cannot be expanded in a Fourier 
series over the entire range of values of cp. However, any 
continuously differentiable function h(cp, g(cp,wr)) can be X exp[i(l- sk)x+ i 1 dxp(qlp- qp)],  (17) 
expanded in a Fourier series over the interval [ q , ~  + 2 n]: 

Under the condition 271-/or4 1 the function g varies very 
slowly over the interval [cp,cp+ 2n], so that taking account 
of the property 

we obtain for the coefficients 

We carry out subsequent calculations in a special coor- 
dinate system, in which the 3 axis is oriented along the wave 
vector k and the 1 and 2 axes are oriented along the corre- 
sponding polarization vectors a l  and a2. Therefore in the 
special coordinate system 

. , ,  

Since in our formulation of the problem the initial electron 

d4J1(cp1- cp) 
moves toward the laser pulse, we have in this system +- 

P p = ( ~ , ~ , ~ , -  J-). (20) 

X- pr ,g  - exp(iscpr). Switching in Eq. (17) to integration over the variables 
dg "( (:A) x + = x0 -t x3, which are the natural variables for a plane-wave 

Therefore, in the zeroth approximation in the parameter field, we obtain 

l/wr, the Fourier coefficients h, depend on the initial point - i e ( 2 ~ ) ~ r  
of the interval [cp,cp+ 271-1 only via the slowly varying func- s!l) = 6(11 +p11)6 (~2+pr2 )  
tion g(cp1w.r). This dependence is universal for the entire 

t-f 6G'z 
range of the variable rp, and therefore the formula co 

(1, cos cp, sin cp)exp(-ial sin cp+icu2 cos cp) xS(1-+pL-p-) S=-W M,, (21) 

holds up to terms - l /wr and, just as in the field of a mono- 
chromatic wave, the coefficients Bos, B,, , and BZs can be -s 5+- - 
expressed in terms of Bessel functions 

) m y ( p f k  

1 
B1,=~{Js+~(z)ex~[ i ( s+  l ) ~ o l  Here the indices -+ indicate the corresponding combination 

of the components of the momentum, for example, 

+ J , - I ( Z ) ~ X P [ ~ ( ~ -  1 )PO]). (15) 1, = lo? 13, and the integration variable 5 equals 

For wr+ 1, the partial amplitude M, can be calculated 
-J,-l(Z>ex~[i(s- 1 )'Pol), 

by the stationary-phase method. The equation for the points 
whose argument is now a slow function of cp 5, of stationary phase is 

ff 1 ff2 1++p:-p+ ,.. .m2v2 1 1 
a ,  cos c p 0 = y ,  sincp0=_. GI(&,)= - 

For an element of the S matrix (11) we have, therefore, or 
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The equation (25) (or (26)) possesses real solutions only 
for positive values of s .  Indeed, it follows from Eqs. (21) and 
(26) that at the points of stationary phase the law of conser- 
vation holds for all four components of the average kinetic 
momentum q, : 

Hence 

For nonpositive values of s ,  Eq. (25) possesses only complex 
solutions. Then the partial amplitudes M ,  can be calculated 
by the saddle-point method and are exponentially small. 

For simplicity, we shall assume that g(5)  is an even 
function of its argument. Then Eq. (25) for s 2  1 has two 
solutions which are located symmetrically relative to the 
center of the pulse: 

and if these points are sufficiently far from one another, then 
the integral for M, (22) can be represented as a sum of two 
terms, each of which corresponds to the contribution of one 
of the stationary-phase points 

In the next section we make more precise the meaning of 
the expression "sufficiently far from one another," but it is 
obvious at the outset that this condition will be violated if the 
points of stationary phase lie near 5 = 0 ,  where the envelope 
g(5)  possesses a maximum and G:(5)  is close to zero. In 
this situation, the stationary-phase method for the integral 
(22) no longer works, in its pure form, and in order to cal- 
culate the integral the phase G s ( 5 )  must be expanded near 
( = O  up to the term with the third derivative. As a result, 
M s  assumes the form 

where 

is the Airy function with argument 

We note that for s S O  the argument of the Airy function 
is large and positive, i.e., the partial amplitudes with sGO 
are exponentially small. Therefore, taking into consideration 
the remark immediately following Eq. (28), we claim that 
only terms with s  3 1 need be taken into account in the ma- 
trix element (21). 

If now the normalization volume V, which we previ- 
ously set equal to 1, is restored in our formulas and the 
relation1' 

is used, then we obtain for the probability of emission over 
the entire observation time 

Only terms with s = s f  need be retained in the double 
sum in Eq. (33). The point is that for 0 7 %  1 the matrix 
element M s  is a rapidly oscillating function of the frequency. 
For matrix elements with different values of s ,  these oscilla- 
tions are incoherent. Since any spectrometer is characterized 
by a finite resolution, the differential probability measured 
experimentally must be obtained from the expression (33) by 
averaging over a frequency interval determined by the reso- 
lution of the detector. Under such averaging, on account of 
the incoherent oscillations, terms with s  # s' in the double 
sum in Eq. (33) make a small contribution compared to terms 
in the sum with the same values of s ,  and they can therefore 
be dropped. 

Switching next in the formula (33) from the variable 
pi to p l  and integrating over the momenta of the recoil 
electron with the aid of a 8-function, we obtain 

where 

? ; l (~k )  kl 
x= y 7 - 9  

u=- 
kp-kl' 

and w r  = lo is the frequency of the emitted photon. 
This expression is the probability of emission of a polar- 

ized photon by a polarized electron. If the polarizations are 
not of interest, then this expression must be summed over the 
polarizations of the photon and recoil electron and averaged 
over the polarizations of the initial electron. The result is 
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where the integrals F$ are defined as 

with 

and, depending on the distance between the two solutions, 
the Eqs. (25) must be calculated either by the standard or a 
modified stationary-phase method. 

3. FORMATION REGION OF THE PROCESS 

We shall now study the radiation formation region or the 
coherence interval. By coherence interval we mean the re- 
gion of space-time where the functions determining the ma- 
trix element (21), i.e., the functions B,, (15), the &integral in 
Eq. (22), and the 6-function in Eq. (21), are formed. 

The functions B ,  are determined by the integrals over 
the phase cp from 0 to 27r, where the amplitude of the field 
can be regarded as a constant since 0 7 %  1. Therefore their 
formation region is the same as in the case of the field of a 
monochromatic plane wave,' with the stipulation that in a 
pulsed field the coherence interval Acp is generally position- 
dependent: A cp- 2 7r for vg(cpl w r )  s 1 and 
Acp-[vg(cplwr)]-' for v g ( q I w r ) % l .  Since we are inter- 
ested in the case 17- 1, we assume that 

Acp-27r (38) 

over the entire range of the phase. 
In the stationary-phase method, every term in Eq. (30) is 

formed near the corresponding stationary-phase point in the 
interval 

In the special coordinate system, IG:(~;) lhas the form 

where 8 is the angle of emergence of the radiated photon 
with respect to the direction of the momentum of the initial 
electron, and frequency or of the photon is determined from 
the formula (25), which can be rewritten in the form 

In the formulas (39) and (40), we employed the fact that for 
an ultrarelativistic particle p - -- 2m y ,  p = m y ,  and 
y= elm. 

Since we are interested in the range of parameters 
71- 1 ,  w y-m,  the first few harmonics, i.e., s- 1 ,  will make 
a large contribution to the emission probability, just as in the 
case of a monochromatic wave. Then for photons emitted in 
a narrow cone with angle 8- l l y  characteristic of the ul- 
trarelativistic case, w r  is of the order of w y2. The points of 
stationary phase are located, by assumption, far from the 
maximum of the envelope g. Therefore it can be assumed 
that g(( ; ) lg1( ( ; ) l -  1. As a result, we obtain the estimate 

~ c p -  J0.r. (41) 

It follows immediately from this result that the represen- 
tation (30) will be valid only when the distance between the 
points of stationary phase, equal to 25S,, is greater than 
( 0 7 ) -  'I2. In the opposite case, the coherence intervals over- 
lap and the interference of radiation formed at the points 
?(; must be taken into account. This is achieved by using 
the representation (31) for Ms. 

It the radiation is produced near the center of the pulse, 
the coherence interval is determined by the phase interval in 
which the Airy function in Eq. (31) is produced: 
~ c p -  [ 2 ( o ~ ) ~ / ( G " ' ( 0 ) l ]  'I3. Using arguments similar to 
those leading to the estimate (41), it is easily shown that for 
7- 1, wy-m,  and 8- l l y  

~ c p - ( w r ) ~ ' ~ .  (42) 

This result determines more accurately the region of appli- 
cability of the representation (30). It follows from Eq. (42) 
that the representation (30) is valid if the distance 2<: be- 
tween the stationary-phase points is greater than ( w ~ ) - " ~ .  

Therefore we can see that the process is characterized by 
two coherence intervals. The first one (38) characterizes the 
size of the region where the functions determining the non- 
linear dependence of the emission probability on the inten- 
sity of the field are formed. The second one (41) (or (42)) 
characterizes the size of the region that dominates the prob- 
ability of emission of a photon with given frequency and in a 
given direction is formed. 

The same situation also occurs in the case of the field of 
a monochromatic wave.' For 7 -  1, as we have already 
noted, the first coherence interval is determined by the rela- 
tion (38) and the second corresponds to the region of forma- 
tion of the 6-function determining the law of conservation 
for the "+" component of the Cvector qp, i.e. it equals 
infinity. In practice, it is sufficient to take N periods of the 
wave as the second coherence interval; this will ensure that 
the conservation law holds to within - w l N .  This means that 
if the spectrometer is turned on for N periods of the wave, 
the angular distribution will transform from a 6-function dis- 
tribution into a set of narrow lines of width - W I N .  There- 
fore the second coherence interval in the field of the mono- 
chromatic wave is determined by the measurement accuracy 
required in a specific experiment. It is important, however, 
that this accuracy can in principle be arbitrary, since no mat- 
ter how far away they are from one another, the first coher- 
ence intervals make the same contribution to the probability. 
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For the formulas for the emission probability in the field 
of a monochromatic wave to be applicable in our case of a 
pulsed field, the spectrometer must be turned on for a time 
A t 5  6 at the time when the electron is located at the 
periphery of the pulse. The width of the sth spectral line or 
harmonic is then determined not by the accuracy of the in- 
struments employed in the experiment but by the duration of 
the pulse, and in principle cannot be less than - m. Ob- 
viously, a necessary condition for the applicability of the 
monochromatic-wave formulas is Gk 2 T. 

This formulation of the experiment is hardly possible, 
however, in the case of a collision of a short laser pulse with 
an electron beam from an accelerator. In a real experiment, 
spectrometers record photons for time intervals 2 r. Then 
the measured probability will be a sum of contributions from 
various second coherence intervals. These intervals are the 
maximum phase intervals where the amplitude of the field 
intensity can be assumed to be constant. Therefore the fre- 
quencies of the photons emitted in a given direction from 
neighboring coherence intervals differ by a quantity at least 
of order fi. As a result, the sth harmonic acquires a width 
that no longer depends on the pulse duration but is deter- 
mined only by the maximum intensity of the field in the 
pulse, i.e., by the parameter g. For this reason, our formulas 
for the emission probability (35) do not turn into the corre- 
sponding formulas for the case of a monochromatic wave for 
any values of 0 7 .  

Another fundamental difference of a pulsed field from 
the field of a monochromatic wave is that a situation in 
which the distance between the centers of the two second 
coherence intervals, located on different sides of the center 
of the pulse, is at most of order ( 0 ~ ) ' ~  is possible. In this 
case, interference of the radiation produced near these points 
occurs, and this produces fine structure in the spectral lines. 

All arguments in this section pertain to photon emission 
at angles 0 s  l l y .  Although this angular interval is of greatest 
interest, we note that for angles y8> 1 the second coherence 
interval is substantially different from the values (41) or (42) 
found above. It is easy to see from Eqs. (39) and (40) that if 
a coherence interval is centered at the periphery of the pulse, 
then it is of order bq-\jw.rl tan(612)l. It can also be 
shown that for coherence intervals centered near the center 
of the pulse A ~ - ( w T ) ' ~ \  y  tan(0/2)1~'~. In both cases the 
coherence interval increases with 0. This in turn means that 
as 0 increases, the width of the harmonic decreases and the 
form of the angular distribution approaches the form charac- 
teristic of a monochromatic wave. The intensity of the lines, 
of course, decreases rapidly. 

In closing this section, we determine the transverse co- 
herence interval, i.e., the size of the region where the 
8-functions in Eq. (21), which determine the conservation 
law for the transverse components of the momentum, are 
formed. The transverse momentum of a photon emitted at an 
angle 0- 11 y  is of order 

Therefore it is completely sufficient for the conservation law 

to hold with accuracy 5 o .  The formation length 2 A corre- 
sponds to this accuracy, and we shall adopt it for the trans- 
verse coherence interval. 

4. SPECTRAL-ANGULAR DISTRIBUTION AND THE 
EMISSION SPECTRUM 

In this section, we shall present computational results for 
the spectral-angular distribution (35) and the emission spec- 
trum of an electron. An envelope of the form 

where the laser frequency 0 = 1.17 eV, was used in the cal- 
culations. 

As already noted, the spectral-angular distribution of the 
radiation in a pulsed field consists of a superposition of 
broadened lines or harmonics, each of which corresponds to 
a definite value of s in Eq. (35). The right-hand limit of the 
sth harmonic wS, is determined from Eq. (40) with g = O :  

This frequency corresponds to radiation produced at the pe- 
riphery of the pulse and is identical to the frequency of a 
Compton photon emitted by an electron which has absorbed 
s photons of the wave. The left-hand limit of the harmonic 
w; corresponds to the frequency at which the argument of 
the Airy function (32) vanishes. It is determined from Eq. 
(40) with g = 1 and is identical to the frequency of the sth 
harmonic emitted by an electron in the field of a monochro- 
matic wave of intensity g 

(45) 

The width of the sth harmonic is thus determined by the 
formula 

For g e l ,  A W ' - ~ ~ ,  for g- y o l m - 1 ,  6-lly, and 
A w ' - w ' and for 1 A o '  does not depend on g at all. 
The last remark is, admittedly, purely formal, since for 
7% 1 in Eq. (35), just as in the case of a monochromatic 
wave,' s- g3 are effective and the concept of a harmonic 
becomes meaningless. 

Figures l a  and b display the first two harmonics for a 
fixed angle of emission 0= lo-' and various values of g. As 
one can see from the figures, the spectral lines possess fine 
structure, which results from interference of the radiation 
produced at two close points symmetrically disposed about 
the center of the pulse. This fine structure is described by 
oscillations of the Airy function in Eq. (31). Strictly speak- 
ing, the oscillations occur over the entire width of the line. 
However, their frequency increases as the right-hand limit of 
the harmonic is approached, and on averaging over a small 
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FIG. 1 .  First and second harmonics in the spectral-angular distribution of 
the probability, y= lo5 ,  wr=50, O= ~ = 1  (a), 1.5 (b). 

range of frequencies corresponding to the resolution of the 
spectrometer, the contribution of the oscillating terms be- 
comes vanishingly small. The magnitude of the frequency 
range over which the harmonics shown in Fig. 1 are aver- 
aged was set equal to 5% of the frequency w', which corre- 
sponds to the resolution of spectrometers operating over an 
energy range of order 50 GeV. 

As the parameter W T  increases, the frequency of the os- 
cillations increases, and at some value of W T  the fine struc- 
ture of the lines becomes indistinguishable for a spectrom- 
eter with fixed resolution (Fig. 2). 

As 7 increases, the harmonics start to overlap at the 
same time that the line widths increase. The spectrum be- 
comes continuous with a characteristic spiked structure, 
which is clearly seen in Figs. l a  and b and especially in Fig. 
3, where three overlapping harmonics are presented. The po- 
sition of the spikes is determined by the frequencies w;. 

The condition for overlap of the sth and (s+ 1)-th har- 
monics has the form 

FIG. 2. First harmonic in the spectral-angular distribution of the probabil- 
ity, y= lo5 ,  wr=200, O= lo-'; V= 1. 

Plots of the first harmonic with different values of the 
angle of emergence 8 of the emitted photon are displayed in 
Fig. 4. It is clearly seen that the width of the harmonic de- 
creases rapidly as 8 increases, in complete agreement with 
the arguments presented in the preceding section. 

The radiative spectrum is obtained by integrating the ex- 
pression (35) over angles. In contrast to the case of a mono- 
chromatic wave, the integration can only be done numeri- 
cally. The results are displayed in Fig. 6. The spectrum in the 
field of a monochromatic wave is presented for comparison 
in Fig. 5. 

The spectrum in a monochromatic wave corresponding 
to the sth harmonic has a sharp limit at the frequency 
oS,(O), i.e., the frequency of radiation in the direction of the 
momentum of the initial electron (Fig. 5).2) 

The spectrum corresponding to the first harmonic in a 
pulsed field is displayed in Fig. 6a. In contrast to the spec- 
trum in a monochromatic wave, it possesses an asymmetric 
peak at the point wk(0) and its right-hand limit is shifted to 
wL(0). We note that the distance between the maximum and 

FIG. 3. First three harmonics in the spectral-angular distribution of the 
probability, y= lo5, wr=50, 7 = 2 .  
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FIG. 4. First harmonic in the spectral-angular distribution of the probability 
for different values of 8: y= 10'. q= I ,  u r = 5 0 ,  8 = 0  ( I ) ,  1. (2), 
2. 10-5 (3), 3.10-5 (4). 5 .  (5). 

its right-hand limit equals, as it should, the width of the 
spectral line emitted in the forward direction: 

The spectrum with the contribution of the second har- 
monic taken into account is displayed in Fig. 6b. It is clear 
that the criterion for the observation of the second harmonic 
is the detection of photons with frequency greater than 
w : ( 0 )  and not o ; ( 0 ) ,  as would be the case in the field of a 
monochromatic wave. 

We now discuss the applicability of our model of the 
field (4) to a focused laser pulse actually used in an experi- 
ment. Clearly, the nonuniformity of the field transverse to the 
direction of propagation can be neglected if the transverse 
size b of the packet describing the electron incident on the 
pulse and the deflection of the trajectory of the center of the 
packet on account of the ponderomotive effect are small 
compared to the size R of the laser focus. Moreover, in order 
for our results to be correct, the size b must be at least of the 
order of the transverse coherence interval, which in our prob- 
lem we take to be of the order of the wavelength (see Sec. 3): 

FIG. 5. Contribution to the spectral distribution of the probability from the 
first two harmonics in the monochromatic plane wave, y= 16, q =  1. 

FIG. 6. Contributions from the first harmonic (a) and the first two harmonics 
(b) to the spectral distribution of the probability in the case of passage 
through a short lsser pulse, y= lo5, o.r= 50, q= 1. 

These conditions require that X + R or kR%- 1. 
The motion of the center of the electron packet is de- 

scribed by the classical equations of motion. ~ p e c i f i c a l l ~ ~  

~ P L  m dU -=--- 
dcp o p -  dr,' 

where U is the ponderomotive potential, equal to 

and averaging extends over the rapid oscillations of the field. 
In our case of a pulsed field, U depends on both the trans- 
verse coordinates and the phase c p ,  and it reaches a maximum 
at the center of the focus at the moment cp = 0 .  Therefore 

Ap, is the increment in p, over the time r, and it does not 
exceed a value of the order of ( m  172/ yR) r. For an ultrarela- 
tivistic electron Ap,--rn yAv, ,  and hence the upper limit of 
the transverse displacement of an electron over a time r is of 
the order of 
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FIG. 7. First harmonic in the spectral-angular distribution of the probability 
for different values of 0 7  in the focused laser pulse, y= 10'. O= 
v =  1 ,  w = 5 0  (a) and 100 (b). 

The relation Ar, 6 R  must be satisfied, whence we obtain the 
condition 

Since in our problem 71 y  is a small parameter 71 y- lo-', 
the condition (49) is quite mild and easily admits a situation 
in which kR 6 or.  

One more condition must be satisfied in order for our 
results to be applicable to a focused pulse. The spreading of 
the electron packet over the time during which it interacts 
with the laser pulse must be negligible. As is well known 
(see, for example, Ref. 13), the packet spreads most rapidly 
in the transverse direction, and it can be neglected at time t if 
t l m  y b 2 ~  1 .  This imposes an upper limit on the possible 
pulse duration, which, taking account of the fact that b  - A ,  
can be written in the form 

FIG. 8. Spectral distribution of the probability in a focused laser pulse, first 
harmonic, y= lo5, OJT= 50, v =  1. 

where w is an optical frequency and in our problem y  is very 
large, so that, for example, for y- 1 6  the right-hand side of 
Eq. (50) is of the order of 10" and therefore this condition 
does not interfere at all with the inequality 07% 1 .  

As a result, the results obtained in this work under the 
conditions (2), (49), and (50) can be used to describe the 
emission of a photon by an ultrarelativistic electron in a col- 
lision with a focused laser pulse at impact parameter p ,  if in 
our formulas 7 is interpreted as the maximum intensity of 
the field at a distance p  from the center of the focus. 

To obtain formulas for the emission probability which 
are valid in an experiment where a laser pulse collides with 
an electron beam whose radius is, as a rule, much larger than 
the laser focus, it is important to average the expression (35) 
over impact parameters in accordance with the formula 

Here Re is the effective radius of the electron beam, equal to 
the maximum impact parameter at which the influence of the 
radiation can be recorded in a given experiment. 

Averaging over the impact parameters can radically 
change the form of the spectral-angular distribution of the 
radiation. Figures 7a and b display the first harmonics of the 
radiation for different values of the parameter w r. The func- 
tion 

was chosen for ~ ( p l R ) .  One can see that the line profile has 
changed substantially. Its maximum has shifted appreciably 
to the right. This means that photons were more likely to be 
emitted from the periphery than from the center of the focus, 
which is simply related to an increase of 27rp in the weight- 
ing factor over the integral (51). Moreover, the fine structure 
of the line is smoothed out. Fine structure is manifested only 
in the nonmonotonic increase of the probability to the left of 
the peak for moderate values of wr; see Fig. 7b. 

The changes in the spectral distribution of the probabil- 
ity are not so dramatic. Figure 8 displays the spectrum cor- 
responding to the first harmonic averaged over the impact 
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FIG. 9. Contribution to the spectral distribution of the probability in a short 
focused laser pulse from the first (I), second (2), and third (3) harmonics, 
y= 105,w~=50, T= 1. 

parameters. One can see that the averaging procedure broad- 
ens the sharp peak characterizing the spectrum of an indi- 
vidual electron (Fig. 6a). Moreover, its position shifts 
slightly toward the blue. The right-hand limit of the spec- 
trum, of course, remains unchanged. 

Figure 9 displays the impact-parameter-averaged spectra 
corresponding to the first three harmonics on a logarithmic 
scale. These plots agree qualitatively and the position of the 
right-hand limits agrees quantitatively with the experimental 
results of Refs. 2 and 3.3) 

In conclusion, we note that although our calculations 
were all performed with a potential envelope g(cp1o.r) of the 
specific form (43), the results are qualitatively essentially 
independent of the form of the envelope. 

Figure 10 displays the computational result for the first 
harmonic of the spectral-angular distribution of the emission 
probability for a Gaussian envelope 

FIG. 10. First harmonic in the spectral-angular distribution of the probabil- 
ity for an envelope g of the form (52). The parameters are the same as in 
Fig. la. 

The values of the parameters 7, or, and 8 are taken to be 
the same as in the case displayed in Fig. la. It is clearly seen 
that the form of the first harmonic for the envelope (52) 
differs from the corresponding curve in Fig. l a  only by a 
small decrease in the probability in the violet part; this is 
explained by the fact that the field decreases more rapidly at 
the periphery of the pulse. 

Our assertion that the results are virtually independent of 
the form of the envelope pertains, however, only to one- 
parameter curves, which make it possible to describe short 
pulses. In principle, one can conceive of an envelope that is 
characterized by the pulse rise and fall times r, and by the 
pulse duration ri during which the amplitude of the field 
remains constant. Of course, even in this case our result that 
the width of the spectral line is independent of the pulse 
duration remains valid for an experimental scheme in which 
the rise time of the spectrometer is greater than ri . Nonethe- 
less, the shape of the line will be strongly dependent on the 
ratio of ri and r3. Specifically, in the case ri+ r, the contri- 
bution of the periphery will be negligible compared to the 
contribution of the region corresponding to the plateau of the 
envelope, and the larger the ratio r i / r s ,  the better the 
spectral-angular and spectral distributions will correspond to 
the monochromatic-wave model. 

This work was performed with the financial support of 
the Russian Fund for Fundamental Research, Grant No. 95- 
02-06056-a. 

We thank D. D. Meierhofer, A. I. Nikishov, and V. I. 
Ritus for a discussion of the results and for helpful remarks. 

''we employ a system of units f i=c= 1 and metric such that the scalar 
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"The first numerical calculation of the emission spectrum in a monochro- 
matic wave was performed in Ref. 2. See also Ref. 12. 
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