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A method is developed for the ensemble averaging of the microscopic Einstein equations 
(Einstein equations whose right-hand side contains the energy-momentum tensors of individual 
particles) for a system of self-gravitating particles. This results in macroscopic Einstein 
equations for continuous media that are accurate to second order in the gravitation interaction 
constant. The equations differ from the classical Einstein equations by the presence of 
additional terms caused by particle interaction. The terms are proportional to the third power of 
Einstein's constant and can be expressed in terms of the two-particle correlation function 
of the particles. In addition, the relativistic kinetic equation for the one-particle distribution 
function of gravitating particles is derived by a method that is more compact and complete 
than the one used earlier by the same author (Sov. Phys. JETP 72,437 (1989)). O 1996American 
Institute of Physics. [S 1063-776 1 (96)00107-21 

1. INTRODUCTION 

As is known,' the macroscopic Maxwell equations for 
continuous media can be obtained from the microscopic 
Maxwell equations by ensemble averaging the latter. 

The Einstein equations, whose right-hand side contains 
the energy-momentum tensor of matter, are phenomenologi- 
cal equations. It is natural to suppose that the Einstein equa- 
tions (or their generalizations) for continuous media can also 
be obtained from the microscopic Einstein equations, i.e., 
Einstein equations whose right-hand side contains the sum of 
the energy-momentum tensors of individual particles. How- 
ever, due to the nonlinearity of the left-hand side of Einstein 
equations, averaging the microscopic Einstein equations is 
much more complicated than averaging the microscopic 
Maxwell 

The objective of the present paper is to develop a 
method for deriving the macroscopic Einstein equations by 
the ensemble averaging of microscopic equations that are 
accurately up to second-order terms in the interaction con- 
st&t. Here we employ the ensemble averaging procedure 
introduced by ~ l i m o n t o v i c h ~ ~ ~  for deriving the relativistic 
kinetic equation for a plasma. The same procedure was used 
by the present author in Ref. 6 to derive a relativistic kinetic 
equation for gravitating particles accurate to second order in 
the interaction constant. 

We write the system of microscopic Einstein equations 
for gravitating particles in terms of the random function 
Na(qi,&) introduced by ~limontovich:~ 

6") are the coordinates and momentum of the lth particle of 
the a species. The latter coordinates and momentum are 
found by solving the equations of motion 

Here = ?j&('), 2i is the metric of the gravitational field 
generated by ail the particles, q,ik are the Christoffel sym- 
bols of the first kind given by the metric $.j, ma is the pass 
of a particle of species a ,  and c is the speed 'of light. 

The microscopic energy-momentum tensor of a system 
of particles can be expressed in terms of N, in the following 
way: 

where g is the determinant of gii, Zi= ( l l m a c ) ~ ' ,  and 

is the invariant volume element in eight-dimensional space.7 
Actually (3) is the sum of the microscopic energy- 
momentum tensors of the individual particles. 

We write the microscopic Einstein equations in the form 

"a 
where sj is the Einstein tensor in a Riemannian space with 
metric g i i ,  the tensor ' j  is defined in (3), X=8 rrklc4 is 

I= 1 

(1) In view of Eqs. (2) the random function (1) obeys the 
equation 

Here na is the number of particles belonging to species a ,  - - 
s is the canonical parameter along the path, qi and 6 are the 

dNa - -' dN 
$ --+r.. I - k  -=O dql 1,1kP P 3~ coordinates in eight-dimensional phase space, and qfl, and 

(5) 
1 
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In the sections below we develop a procedure for obtaining 
the Einstein equations for a continuous medium by averaging 
the system of equations (3)-(5). 

2. THE MACROSCOPIC EQUATIONS 

Let us represent the metric gij of the gravitational field 
generated by all particles as a sum of the averaged metric gi j  
and a contribution hi,  due to particle interaction: 

- g..=g..+h..  
11 IJ  I J  ' (6) 

where gij = (5 j )  is the ensemble average4 of gj . Note that 
(hij)=O. In addition to the momenta pi=m,cdq1ldFwe use 
the momenta pi measured in the metric gij  : 

Here s  is the canonical parameter introduced by g i j .  
The transformation from 6 to pi is given by 
- - -  
P  j'gjkp k= ffGkgkipi . t8) 

The Jacobian of transformation (8) is6 

where g  is the determinant of gij  . 
Now we introduce the function defined in the 

eight-dimensional phase space with coordinates ( q , p )  as 

where qtl,(s) and pl1)(s) are found by solving equations 
obtained from (2) with the transformations (8) taken into 
account: 

Here 

1 
Akj=gkj- ukuj Uk=- Pk 

mat 

and a;= Tz- rc is the difference of the Christoffel sym- 
bols of the second kind for the metric~ gij and gij . In view of 
Eqs. (11) the function ~ , ( ~ ~ , p ~ )  satisfies the following 
equation:6 

Note that the functions & and N, are related in the follow- 
ing manner: 

- g  
N , = y  N , .  

g  f f  

Equation (12) can also be obtained directly from (5) by re- 
placing the variables via (8) and (13). 

If in (3) we go over to the variables (8) and (13), we get 

where d4p/ 6 is the invariant element in the unperturbed 
momentum space. 

For subsequent calculation is it convenient to write the 
Einstein equations as 

or, with allowance for (14) and the identity 

(R i j  is the Ricci tensor of the Riemannian space with metric 
g i j ,  and V, is a covariant derivative in this space) as 

We write the left-hand side of the Einstein equations (15) as 

where k i j ( h )  is the sum of all terms that are first-order in h ,  
( 2 )  
R  i j ( h )  is the sum of all terms that are second-order in h ,  etc. 
In particular, 

where 

We also expand the expression 

in the integrand on the right-hand side of Eq. (15) in powers 
of h: 
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In particular, 

( 1 )  1 hSIPSP' 
L . .  =- -  - 

i jkm l2 (  SIP s P I + hstgs') (gikgjm- 

We average (15) over the paths: 

We introduce the one-particle distribution f i~nc t ion~-~  

P a )  = nafa 9 

and write (20) in the form 

( 1 )  ( 1 )  

Since R i j  is linear in h, we have ( R  i j ( h ) )  0 .  As a result 
the approximate macroscopic equations for the averaged 
metric gi j  that allow for the second-order terms in the inter- 
action constant assume the form 

where 

is the macroscopic energy-momentum tensor, and 

( 2 )  
The expressions for R i j  and Aij  can be obtained from Eqs. 
(16b), (18), and (19). 

Let us now calculate hi j  inside the region determined by 
the correlation radius and the corresponding correlation time. 
We assume the average gravitational field generated by the 
particles, and the correlation function as well, to be constant 
within the correlation region. In this case we can interpret g i j  
within the correlation region to be the Minkowski metric. 

To obtain the macroscopic equations (23) to the required 
accuracy it is enough to substitute into (24) the value of hi j  

obtained from the Einstein equations linearized with respect 
to gi j  . By employing the gauge Qi yii=O, where 

we arrive at the following form of the linearized Einstein 
equations: 

where (Db=NbUnbfb ,  O = ~ ' ~ V ~ Q ~ ,  and indices are raised 
and lowered using the Minkowski metric g i j .  

Subsequent calculations do not have a covariant form, 
but they are all done for the purpose of determining the com- 
ponents of the tensor Aij  at some point ( q )  in a selected 
coordinate system, where g i i (q )  = vij is the Minkowski ten- 
sor. No difficulties are encountered in writing the final result 
in covariant form. 

We use the identity 

Here 7 is the temporal coordinate, and q =  ( q  ' , q 2 , q 3 )  are the 
spatial coordinates. We substitute (26) into (25) and seek a 
solution of Eq. (25) in the form 

For ji we obtain the equation 

where the prime on the right-hand side stands for a deriva- 
tive with respect to q ,  and k =  llkll. We write the solution of 
Eq. (28) in the form 

.. 2Xmbc2 

~ b ' = k  I y m d S t  sin k ( q r -  n)u;iu;J@b( v 1 , q t , p ; ) .  
(29) 

As a result, for jJ we obtain 

where 

2Xmbc2 
Y?( 7 7 , ~ '  ,P; ,k) = ( 2 n ) 3 k  u ~ ~ u ; '  sin k ( q l  - 7 ) .  (31) 

For 
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where y=gij yij , we have 

sin k - ) (32) 

Let us also calculate the quantities 

To this end we write h;!)(v,v1,pL,k) in the form 

X(eik(v'-v)-e-ik(vf-v))  (33) 

and then introduce the 4-vectors k: = (k ,k)  and k i  = (-  k,k), 
where obviously 

kf =-ki+(-k) .  (34) 

( 1 ) .  

Calculating f i  f k  , we get 

Xe-ik.(q-q')fiiJb) 
lk 

x ( v , v l , p L  ,k)@b(vr9pL 3 k ) 9  (35) 

where 

The expressions (32) and (35) must be substituted into (12) 
and (24), with the latter becoming 

After averaging in (37) we arrive at the final macro- 
scopic Einstein equations, accurate second order in the inter- 
action constant. But first we must derive a kinetic equation 
for the one-particle distribution function to the same accu- 
racy. 

3. RELATIVISTIC KINETIC EQUATION: SECOND-ORDER 
ACCURACY IN THE INTERACTION CONSTANT 

We substitute (35) into (12) and get 

X ( V ,  v',P; , k ) p b T ~ ; i ~ a (  ~ , q , ~ a ) @ b (  T'*Q',P;). 

(38) 

Below we denote the set of all variables ( v ,q ,pa)  by x ,  the 
set (7 ,q '  ,p;) by x ' ,  while the momenta p; are denoted sim- 
ply by p' and the p',' by p". 

We average (38) over the set of systems:4 

X (  V ,  ?l',~',k')~'~~Aji~a(x)@b(x'). (39) 

Multiplying (38) by @ ; ( x l )  and averaging yields 

x e-ik.(q-q'')fii(c) 
Im 

X (  V ,  vR9~"9k)~1~mAji(~a(x)@b(n' )@,(xl'))- (40) 

Equation (40) is an equation for the second moment 
( N a ( x ) Q b ( x l ) ) .  The second equation for this moment can 
be obtained from Eq. (40) by the substitutions a -b  and 
x-x'. 

We introduce two-particle, three-particle, etc. distribu- 
tion functions: 

4 JETP 83 (I), July 1996 A. V. Zakharov 4 



X ds"S(x" - x a ( s f f ) )  = fabc(x,x' .x") .  i (41)  

Here 

S ( x - x a ( s ) ) = @ ( q i - q a ( s ) ) @ ( p j - p ; ( s ) ) .  

For the moments of random functions we have the following 
form~las:~ 

(Na(x))=na.fa ( 4 1 4  

(Na(x)Nb(xr))=(nanb-naSab)fab(~,~f) 

+(none-  na6a,)Gatf ,c(x,x")  ds' S (x1  - x a ( s f l x ) )  I 

Here x a ( s l x )  stands for the particle path through point x  of 
the phase space. Bearing in mind that @ , = N a - n J a  and 
that fa  is not a random function, we can easily obtain expres- 
sions for the averages ( N a ( ~ ) @ b ( ~ f ) )  and 
( N a ( x ) @ b ( x f ) @ ( x " ) ) .  

Substituting (41)  into (39) ,  (40), and similar equations, 
we arrive at an infinite chain of kinetic equations for the 
distribution functions f a  , fa ,  , f a b e .  etc. To obtain a kinetic 
equation for the one-particle distribution function f a  to sec- 
ond order in the interaction constant, we truncate the chain 
and assume that 

As a result we get an approximate system of equations for 
the functions f a ( x )  and g a b ( x , x r ) .  For na%l ,  

In deriving (43)  and (44)  we assumed that x f  # x , ( s l x ) ,  i.e., 
point x' is not on the path of particles of species a passing 
through the point x  of the phase space. 

In view of the weakness of the interaction, the path of 
particles of species b can be thought of as a geodesic in the 
Minkowski world: 

Here v f  = c ~ ~ l u ~ ~ ,  with U ' = ( U " , U ' ~ , U ~  3 ) .  
Integrating in (44)  with respect to sf', q", and p", we 

obtain 

In this equation for gab we have put on the left-hand 
side, since we assume that within the correlation region the 
metric coefficients g i j  are constant. The solution of this 
equation has the form 

i + - (k '  . v r ) ( r f  - 7 ' )  . 
C 1 (46)  

Here the subscript r indicates that after calculating the de- 
rivatives with respect to p we must replace the arguments 7 
and q by r and q + ( v l c ) ( r -  v ) ,  respectively. The solution 
(46)  allows for the effect of the path of a particle of species 
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b on a particle of species a. The reciprocal effect is taken 
into account by the solutions of the equation obtained from 
(45) via the substitutions a-b and x-x'. Such a solution 
can also be obtained from (46) via the same substitutions. 
The right-hand side of Eq. (43) must include the sum of 
these solutions. As a result we arrive at the desired relativis- 
tic equation to second order in the interaction constant. Here 
we restrict our discussion to space-time variation of the dis- 
tribution function that is so slow that it can be considered 
constant in the region determined by the correlation radius 
and correlation time. Then in calculating the integrals with 
respect to q',  v ' ,  rand f in Eqs. (43) and (46) we can ignore 
the dependence of fa and fb on coordinates and time. After 
integrating with respect to q' and k we arrive at the follow- 
ing equation for f a ( f a =  fa (g i ,p j )  and f; = f b ( g i , p J ) ) :  

where 

[ : i 
xexp - - ( k . v ) ( ~ - 7 ) -  - ( k . v ' ) ( r l  - q ' )  

C I 

Now let us examine the seven-dimensional distribution 
function, which depends on the coordinates and the spatial 
components of momentum p ,  (here and in what follows 
Greek letters are used to denote the spatial components of 
vectors and tensors): 

n a f a ( x ) = ~ ~ ( q ' , P ~ ) a (  m - m a c ) -  (49) 

The equation for F can be obtained from (47) by integrating 
both sides with respect to po. We must also integrate with 
respect to p; in (48). Let us take into account the identity 

Here and in what follows we assume that there is summation 
over repeated Greek indices. In calculating the partial deriva- 
tive with respect to pk on the left-hand side of (50) we as- 
sume all the components pk independent and only allow for 

the fact that gi ipipj=m2c2.  On the right-hand side of Eq. 
(50) this fact is taken into account in calculating the deriva- 
tives with respect to the spatial components of the momen- 
tum Pa- 

Using (50),  we arrive at the following kinetic equation 
for Fa : 

where 

[ : 1 
Xexp - ( k - v ) ( r -  q)+ - ( k . v f ) ( q '  - 7 ' )  . (52) 

C I I 
Now we only have to substitute the expression (36) for Inj(b) 
into (52) and integrate with respect to 4,  r, and 7'. 

The kinetic equation assumes the form 

where 

After integrating with respect to k in (54), we arrive at the 
following expression for Eap: 
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where 

is an analog of the Coulomb logarithm. 
Now we can easily write the covariant kinetic equation 

for the function f of eight variables qi  and pi : 

where 

The collision integral thus obtained is logarithmically 
divergent. Just as in plasma theory this difficulty must be 
resolved by introducing a cutoff in the expression for L. We 
set the upper limit in the integral 

to llr,,, where r,,, is the distance at which the kinetic 
energy of colliding particles becomes equal to their potential 
energy. The lower limit ko is set to 1/R, where the distance R 
depends on the nature of the averaged metric g i j .  For in- 
stance, if g .  is the Friedmann metric, then R = ( u 2 )  "'t, 

2 llil  where (u ) is the average thermal velocity of the particles, 
and t is the cosmological time. As shown in Ref. 9, allowing 
for an expanding universe removes the divergences as k-+0, 
with the contribution to L of the region with k< l lR  becom- 
ing negligible. 

The right-hand side of the resulting kinetic equation van- 
ishes if instead of the function fa we substitute the relativis- 
tic Maxwell distribution 

Here A, is a normalization constant, ii is the vector of the 
average velocity in an equilibrium state, T is the temperature, 
and kB is the Boltzmann constant. 

Earlier the kinetic equation (56) was derived in Ref. 6, 
but in a somewhat questionable manner. An additional met- 
ric was introduced in the process of deriving the kinetic 
equation, and the metric did not coincide with the averaged 
metric. As a result the left-hand side of the kinetic equation 
acquired a term interpreted as the action of a self-consistent 
gravitational field. If the variables in the corresponding equa- 
tion of Ref. 6 calculated by this additional metric are re- 
placed by variables calculated by the averaged metric ac- 
cording to a scheme similar to (7) and (13), we immediately 
arrive at the kinetic equation (56) with the kernel (57). 

4. EXPRESSING THE ADDITIONAL TERM IN THE 
MACROSCOPIC EINSTEIN EQUATIONS IN TERMS OF THE 
CORRELATION FUNCTION 

We substitute (32) and (35) into (37) and use (41). As a 
result the additional term Aij in the macroscopic Einstein 
equations can be expressed in terms of the correlation func- 
tion g a b ( x , x f )  as follows: 

where 

(594 

Here the quantities h!!) and are determined by (32) and 
(36), and the expression for the correlation function 
g a b ( x , x f )  is obtained by adding to (46) a similar term ob- 
tained via the substitutions a-b  and x t t x ' .  

Further simplification of the macroscopic equations can 
be achieved by substituting the explicit form of gab into (59) 
and calculating the integrals in (59) with respect to the vari- 
ables k ' ,  k", q', q", v', and rj'. This procedure requires 
separate study. 
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