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Motion in the chaotic layer of a nonlinear resonance in the presence of weak high-frequency 
forces is studied both analytically and numerically. It is found that the secondary harmonics 
(among which there can generally be low-frequency harmonics) emerging even in second 
order in the small parameter at combinations of the primary frequencies may provide the leading 
contribution to the amplitude of the separatrix map of the system and to formation of the 
chaotic layer. O 1996 American Institute of Physics. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

The interaction of nonlinear resonances and the related 
chaotic modes of dynamical Hamiltonian systems belong to 
the most important and complex problems of the modem 
theory of nonlinear ~scillations."~ Usually the initial states 
are chosen near one of the resonances, which is assumed to 
be the leading resonance, while the others are interpreted as 
perturbations. In some cases the problem is reduced to study- 
ing a dynamical model interpreted as a pendulum (the lead- 
ing resonance) subjected to periodic  force^:^-^ 

known as a separatrix map. This map, first introduced by 
Zaslavskii and ~ilonenko; provides an approximate descrip- 
tion of the dynamical state of the leading resonance of the 
system moving near a separatrix at the times when the sys- 
tem passes the points of stable equilibrium. If the perturba- 
tion of the system (1) contains only one harmonic of the 
form 

V(x,t)=e cos(mxI2 - a t ) ,  (3) 

where m is a parameter, the amplitude WMA of the separatrix 
map is related by the formula 

V(X,~)=E,COS(X-ant) ,  n=1,2 ,..., N, (2) to the Mel'nikov-Amol'd integrals1 

where N is the total number of the perturbing resonances, 2 l ~  rRI2 

and there is summation over the index n. We think of A,(SZ>O)= - 
(m-I)! sinh(d2) 

(2Qlrn- 

V(x, t) as a weak (enG 1 ) and high-frequency ( a ,% 1 ) per- 
turbation. 

As is known, the phase space of a Hamiltonian system in 
which the number of degrees of freedom is greater than one 
is generally separated into regular and chaotic components.'~* 
The formation of the chaotic component, or dynamic chaos, 
was found to be related to the splitting of the separatrices, an 
effect qualitatively described in the 19th century by Henri 
~ o i n c a r i . ~ , ~  As shown by Mel'nikov's quantitative study? in 
order of magnitude the separatrix splitting (and everything 
that depends on it) decreases faster than any power of the 
small perturbation parameter, with the result that the splitting 
cannot be discovered by applying the ordinary technique of a 
series expansion in this parameter. In recent years rigorous 
analytical estimates of this exponentially small effect have 
appeared, both for canonical and for continuous 
Hamiltonian systems.9 

Another characteristic of dynamic chaos important for 
applications is the full area of the unstable region in the 
vicinity of a disintegrated separatrix, which became known 
as the chaotic layer.4 Mel'nikov's approach provides no 
means for estimating the width of this layer and its relation 
to the separatrix splitting. Today this problem has found its 
complete solution only for the case of a single-frequency 
perturbation in (1) on the basis of building what became 

f l=f2=0,  frn+l=frn-(l+fm-l)m(m-1)/4~2. 

By employing the resonance overlap criterion and the prop- 
erties of a standard map it was found that here the chaotic 
instability occurs in a layer ( ~ ( a w ,  whose width is' 

w,-alwMA(a)l; (6) 

here and in what follows w = 4 p 2  + cos x- 1 is the dimen- 
sionless deviation (in energy) from the unperturbed separa- 
trix. Below it is shown that if the perturbation (2) of the 
system (1) contains several distinct frequencies (N> I ) ,  the 
mechanism for formation of the chaotic layer differs drasti- 
cally from the respective mechanism in the single-frequency 
case. 

The separatrix map of a multifrequency (N> 1 ) system 
(1) with (2) can be written as 

where t, are the times when the system passes the points of 
stable equilibrium x= T, L is the total number of harmonics, 
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and summation takes place over the index 1. If the frequen- 
cies are incommensurable, the moments t, are measured on 
the continuous time scale. If the frequencies are commensu- 
rable and are integral multiples of a reference frequency 
n o ,  the second relationship in (7) can be represented in the 
following form: 

The very first numerical experiments in measuring the 
amplitudes of the harmonics of map (7) showed that not only 
are all the N primary frequencies (those that the Harniltonian 
H(x,p,t) contains) present in the spectrum of the map, but 
so are some combinations of these frequencies, i.e., L is 
always larger than N. 

Section 2 describes the mechanism by which the har- 
monics of the combination frequencies enter into the separa- 
trix map and gives estimates of the amplitudes of these har- 
monics. In Sec. 3 the results are applied to the standard map. 
Section 4 is devoted to brief remarks on the calculation tech- 
nique and gives some numerical results. 

2. AMPLITUDES OF THE HARMONICS OF COMBINATION 
FREQUENCIES OF A SEPARATRIX MAP 

In analyzing the motion in the chaotic layer of the lead- 
ing resonance of the system (I), (2) it has proved convenient 
to introduce a new position variable and a new momentum 
variable describing the deviation of the phase variables 
x(t) and p(t) from their values on the unperturbed separatrix 
x,(t) and p,(t): 

x,(t) = r arctan(et), p,(t) = 2 sin(xS(t)/2). 

Introducing F2(u,x.t) = [p,(t) + u][x-x,(t)] as the 
generating function, we obtain the following expression for 
the Hamiltonian of the y-motion (summation over n is im- 
plied): 

-sin y[sin x,+E, sin(x,-Q,t)]+y sin x,. 

(8) 
Assuming 1 y (t) 1 < 1 because of the weakness of the pertur- 
bation and performing the approximate substitutions 
sin y ~ y  and cos y-t 1 - f y in the Hamiltonian (8), we ar- 
rive at the following equation of motion: 

Here we are interested only in the forced solution y, (van- 
ishing as &--to), which can be built by successive approxi- 
mations. We introduce the following notation for the differ- 
ence of the left- and right-hand sides of Eq. (9): 

The approximation process must reduce this difference to 
zero. 

For the first approximation we take the expression 

and then calculate the difference (10) for it: 

We see that the terms of the type E, sin(x,-ant) have 
vanished from Ay,, but instead new terms have appeared. 
To compensate for these new terms we need the second ap- 
proximation 

Knowing yZ2) makes it possible to calculate AyZ2) and con- 
tinue the approximation process. 

Note that even if the initial system (I), (2) contains a 
fairly small number of terms, the number of terms in the 
expressions for A y il) , y '$') , A y Z2) , . . . proves to be large 
and snowballs as the approximation order increases. The so- 
lution y,(t) can be constructed accurately, as a rule, only by 
applying the techniques of computer algebra which proves 
extremely cumbersome. The aim of this study, however, is 
not to find exact dependences but to obtain order-of- 
magnitude estimates. Hence we restrict our study to the sec- 
ond approximation (1 1) for yZ2) . 

Returning to the system (I), (2), we assume that the per- 
turbation consists of only two high-frequency harmonics 
(Q1,Q2+1) and consider the first harmonic, 
e l  COS(X-Qlt). In this expression, for the motion near a 
slightly deformed separatrix the phase variable x can be rep- 
resented by the sum of the unperturbed motion and the de- 
viation from such motion: ~ = x , + y ~ ~ ) .  When combined 
with the approximate substitutions sin y=yL2) and cos y=l 
and with the condition that both 0 and R2 are much larger 
than p,,,,-2, this representation yields 

Clearly, in addition to the primary harmonics with the 
frequencies Cl and Q2,  secondary harmonics with frequen- 
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cies equal to the sum and difference of R l  and Kt2 appear in 
the perturbed system, with the latter contributing to the sepa- 
ratrix map spectrum and to the formation of the chaotic 
layer. Note that one of the secondary harmonics may prove 
to be low-frequency, with the result that it plays the principal 
role in forming the chaotic layer (see Sec. 4). 

The reader will recall that in constructing a separatrix 
map one must calculate the variations of the system Hamil- 
tonian over one period of rotation or half-period of oscilla- 
tion, and the amplitude of each explicitly time-dependent 
harmonic is proportional (see Eq. (4)) to the corresponding 
value of the Mel'nikov-Amol'd integral.' Employing this 
technique, we can find the amplitudes W of the separatrix 
map harmonics generated by the secondary harmonics of the 
perturbation for the following combinations A 0  of the pri- 
mary frequencies: 

(1) Two primary frequencies R l  and R 2  are much 
higher than unity, and the frequency of the secondary har- 
monic is A R = R , f  R2>O: 

to Chirikov's results,' the ratio of these values is independent 
of the single parameter K in the system and is equal to 

This ratio can also be obtained from the data of Ref. 7, where 
the splitting angle of the standard map separatrices was de- 
termined both analytically and numerically: 

with [6, l= 11 18.82, . . , a constant found in Ref. 7. Note 
that the same constant enters into the rigorous asymptotic 
estimates of the upper and lower bounds on the chaotic layer 
width of the standard map. 

In Ref. 1 already it was assumed that the discrepancy 
between theory and calculations is due to the anomalously 
strong effect of the higher harmonics in the perturbation. 
This assumption has been verified, and it was found that 
secondary harmonics of the standard map play the leading 
role. 

Introducing other variables and using the properties of a 
periodic delta function, we can show that a continuous sys- 
tem equivalent to the standard map (15) has the form1 

(2) Two primary frequencies R 1  and R 2  are much 
higher than unity, and the frequency of the secondary har- 
monic is AR=Rl-R2>O: 

(3) Three primary frequencies R1 ,  R 2 ,  and R 3  are 
much higher than unity, and the frequency of the secondary 
harmonic is AR=R1+R2-R,>O: 

Note that in case (3) it would be more natural to talk about a 
tertiary harmonic rather than a secondary because W depends 
on the third power of the perturbation parameter. 

3. THE SEPARATRIX MAP AMPLITUDE FOR A STANDARD 
MAP 

We wish to link the first example of applying the above 
results with the standard Chirikov map, which in the notation 
of Ref. 1 assumes the form 

~ = I + K  sin 6, 8 = 6 + i .  (15) 

The standard map is used as a model in solving many prob- 
lems of modern nonlinear dynamics. Hence the numerous 
studies done with this model and devoted to it. 

It has long been known that the values of the separatrix 
map amplitudes for the system (15) calculated via the 
Mel'nikov-Arnol'd integral (WMA) and those measured in 
numerical experiments (WE) differ considerably. According 

i.e., is an expanded version of the system (I), (2) with an 
equidistant spectrum with the reference frequency 
R o  = R = 27~1 I/?? and the parameters E ,  = 1 for all values of 
n. To be able to assume that we are dealing with a high- 
frequency perturbation we set K 4  1. 

Let us now use Eqs. (4) and (5) to find the contribution 
to the separatrix map of each harmonic in (18) on the as- 
sumption that the specified harmonic is the only perturbation. 
For 0 %  1 we can easily see that in any type of motion only 
the harmonic with the lowest frequency (n = 1 for phase ro- 
tation with p>O and n =  - 1 for the phase rotation with 
p<O) is important. This harmonic generates a single- 
frequency separatrix map with an amplitude (Eqs. (4) and (5) 
with m = 2) 

This reasoning was considered sufficient to drop the infinite 
number of terms with In 1 > 1 from (1 8). 

Bearing in mind the above mechanism of secondary har- 
monic formation, we note that each pair of terms of the form 

in the Hamiltonian (18) generates secondary harmonic of the 
principal frequency R at the sum of the frequencies, thus 
enhancing the action of the leading term in the perturbation 
and adding a certain quantity to the amplitude (19). Let us 
find the total value AW1(R) of all these corrections by em- 
ploying (12) for the amplitude of the secondary harmonic of 
the separatrix map at the sum of the frequencies, where we 
must put R 1 = ( n + l ) R ,  a , = - n o ,  A R = R % l ,  and 
EI=E2=1: 
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The numerical factor in this relationship is independent of 
and, hence, of the standard map parameter K. By employ- 

ing the formulas of Sec. 2 we can easily verify that for 
1 the contributions of secondary harmonics with other 

frequency combinations are infinitesimal. 
The amplitude ratio calculated in this way, 

is considerably closer to the experimental value (16), but the 
difference is still large. 

Note that all the above relationships were derived on the 
assumption that the perturbation is weak, en% 1, which is 
definitely not the case for the standard map (18), where 
en= 1 holds for all values of n, and this fact will have an 
effect on Rc . 

Since we have already allowed for the effect of the 
higher harmonics (In1 > 1) by calculating their contribution 
(20), we can now ignore them and instead of (18) consider a 
reduced system: 

P 
=-+cos x + a  cos x cos(fit), 

2 (21) 

where for our case we must put a=2 .  The system (21) was 
studied by ~elfreich? who determined the correction factor 
f(a)  to the Mel'nikov-Arnol'd integral as a function of the 
perturbation intensity a.  From Fig. 4 of Ref. 9 it follows that 
f (a)= 1.38 at a =  2, and we can now allow for the perturba- 
tion intensity as one more correction AW2(fi) to the ampli- 
tude (19): 

If the effects considered are assumed to act independently, 
the resulting amplitude ratio is 

This practically coincides with the experimental value 
(16) but is somewhat smaller than the value (17) found from 
the separatrix splitting angle. 

4. NUMERICAL CALCULATIONS 

Studying the effects caused by the formation of second- 
ary harmonics required determining numerically the ampli- 
tudes of the harmonics of the separatrix map (7) and the 
following characteristics of split separatrices: the intersection 
angle ys , the phase volume of the region between neighbor- 
ing intersection points &$, and the maximum splitting in 
momentum, AP,,,, . 

The reliability of the results of numerical integration of 
the Hamilton equations of motion can be guaranteed only if 

one employs canonical calculation algorithms (i.e., algo- 
rithms that preserve the phase volume). Many popular calcu- 
lation techniques (say, the Runge-Kutta method) do not sat- 
isfy this requirement, and hence suppress weak real 
dynamical effects and introduce spurious dynamical effects. 
The explicit canonical second-order algorithm used in the 
present study is described in the Appendix. 

The system (I), (2) possesses a symmetry of the type 
x, p, t- ( 2 ~ - x , p ,  - t), which makes it possible to calcu- 
late only one separatrix instead of two. The symmetry also 
implies that the central homoclinic point Pfb(7.r) lies on the 
straight line x = r and for a small perturbation is close to the 
value p, ,max=2. To find the separatrix intersection angle 
y, it is sufficient to study a small neighborhood of this point, 
while calculating the phase volume 4 requires reaching the 
neighboring intersection point. In addition, it is necessary to 
know P f b ( a )  to guarantee a "hit" at the chaotic layer in 
finding the amplitudes of the separatrix map harmonics. For 
this reason the search for Pfb(r) practically always consti- 
tutes the first stage in the calculations. 

In building the separatrix map (7) the initial conditions 
for the orbits were selected randomly from a narrow interval 
within the part studied (rotation or oscillation of the phase) 
of the chaotic layer. Each trajectory either performed the 
required number of periods of motion (the period of motion 
T is the time interval between two successive moments t, of 
intersection with the stable phase x= r )  or was terminated 
due to a change in the type of motion. In any case a new 
random trajectory was initiated and the process was repeated 
so as to reach the fixed number of periods N , .  For each 
period the mean energy w was calculated by the formula1 

Determining the energy variation Gw = G- w for each pair of 
adjacent periods and assigning it to the moment t, common 
for all these periods, we can build the separatrix map (7) 
(8wk ,T,,~), k= 1,2, . . . ,Np- 1, on the continuous time 
scale. In the case of commensurable frequencies it has 
proved convenient to recalculate the map in terms of the 
phases T,= nor, (mod2r) with respect to the reference fre- 
quency f iO (see Sec. 1). Note that this stage can be skipped 
because the values of the amplitudes of the harmonics do not 
depend on it, as experience shows. In calculating the periods 
T we fixed the shortest period Tmi,, which made it possible 
to estimate the total width of the part of the chaotic layer 
under investigation: 

It is interesting to see how the results of the above mea- 
surements agree with each other and with the theory. To this 
end the system (I), (2) with a single perturbation harmonic 

V(x,t) = E cos(x-at), ~=0.075,  f i =  10.0, (26) 

was studied. In this and other examples of the present section 
the separatrix map was calculated for phase rotation with 
p>o. 

The following characteristics of split separatrices were 
found: the angle y,-7.09X the phase volume 
AS=5.66X and the maximum splitting in momentum 
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A9m,-1.44x All three values yield practically the 
same expected value W,, for the amplitude of the separatrix 
map harmonic, 

which agrees well with both the measured value 
wE-2 .87~ (see Fig. 1) and the value 
WMAw2.84x calculated via the Mel'nikov-Arnol'd in- 
tegral (Eq. (4) with m = 2). The width of the rotational part 
of the layer found from the minimum period and Eq. (25), 
w,,,-2.84X is also close to the theoretical value 
nWMA-2.84X lov4 (see ~ q .  (6). Five periods of the sepa- 
ratrix map (7) for this case are shown in Fig. l. The reference 
frequency was taken at no= 2.0 for convenience of compari- 
son with Fig. 2. In all captions to the figures the numbers in 
parentheses are the frequencies corresponding to the mea- 
sured values WE of the amplitudes of the harmonics. 

The addition of a symmetric harmonic to the perturba- 
tion changes nothing either qualitatively or quantitatively, 
and the perturbation assumes the form 

Such a result can be explained by saying that the only sec- 
ondary harmonic emerging here (on the difference of fre- 
quencies) has the high frequency 2 n  and its effect is ex- 
tremely small. 

The picture changes dramatically when the two pertur- 
bation harmonics are asymmetric in frequency: 

The second and third rows in (29) show that the frequencies 
of the harmonics are commensurate and that the reference 
frequency is no= 2.0. 

The total separatrix map amplitude measure for this 
case, WE-1.33X is almost five times larger than for 
the symmetric perturbation (28), even though the frequency 
Ktl was increased. The reason is the emergence of a second- 
ary harmonic with the low frequency 
A 0  = + Q2 = no= 2.0. Figure 2 depicts one period of the 
separatrix map and the amplitudes of all three harmonics. 
The horizontal scales in Figs. 1 and 2 are the same, and 
comparison of the two reveals the changes caused by the 
appearance of a secondary harmonic whose amplitude is 
larger by several orders of magnitude than the amplitudes of 
the primary frequency harmonics that generated the second- 
ary harmonic. Consequently, we can assume the map to be 
single-harmonic with a frequency no= 2.0. The layer width 
w,=QoWE(flo)-2.89X calculated by the single- 
frequency formula (6) as the sum of contributions from all 
harmonics proved to be smaller than the value 
w,,,= 3.47X calculated from the minimum rotation pe- 
riod. Applying formula (12) to this case yields an estimate 

FIG. 1. Numerical integration of the system (1) with the single-frequency 
perturbation (26). The initial conditions for the orbits were selected within a 
narrow interval inside the rotational part (with p>O) of the chaotic layer. 
The dots stand for the elements (Sw = G- w and T,= fl,t, (mod 2 ~ ) )  of 
the separatrix map (7) with the reference frequency R,= 2.0, and the curve 
represent the result of fitting by the least squares method. The amplitude of 
the map is WE(lO.O)-2.87X lo-'. 

W(n0)-2.7X which agrees, in order of magnitude, 
with the measured value WE(ilO)w 1.32X 

The following characteristics of split separatrices with 
the asymmetric perturbation (29) were found: the angle 
yS-7.15X the phase volume 4- 1.32X and 
the maximum splitting in momentum AYm,-9.24X lop5. 
Processing these data by formula (27) shows that only mea- 
suring the phase volume As yields a plausible forecast for 
the expected value of the separatrix map amplitude, Wsp= 
$JOAs- 1.32X lo4. However, this possibility also vanishes 
if the sepvatrix map cannot be thought of as being approxi- 
mately single-frequency. 

A multifrequency separatrix map occurs, for instance, 
when the perturbation is of the form 

Figure 3 shows that three secondary harmonics are added to 
the three primary harmonics, with the secondary harmonic at 

FIG. 2. The same as in Fig. 1 but with the asymmetric double-frequency 
perturbation (29). The amplitudes of the primary separatrix-map harmonics 
are WE(12.0)- 1.91 X and WE(- 10.0)- -2.13X and the ampli- 
tude of the secondary harmonic is WE(2.0)- 1.32X 
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FIG. 3. The same as in Fig. 1 but with the triple-frequency perturbation 
(30). The amplitudes of the primary harmonics of the separatrix 
map: WE( 13.0)-5.88X WE( 19.0)=2.48X lo-', and WE(31.0) - 1.91 X lo-'; the amplitudes of the secondary harmonics: WE( 1.0) 
-9.78X WE(6.0)- -3.67X lo-', and WE(12.0)-- 1.36X 

the frequency combination AR = R + R2 - R 3  = 1 .O having 
the largest amplitude. Applying formula (14) yields the esti- 
mate W(l.O)-2.4X which agrees, in order of magni- 
tude, with the measured value WE(l.O)-- 1.0X l o p 6 .  The 
width of the chaotic layer calculated by the minimum rota- 
tion period, w,,,- 1.22X in this case proved to be 
close to the sum of the contributions of all the separatrix map 
harmonics calculated by the single-frequency formula (6). 

5. CONCLUSION 

We have established that the motion of the Hamiltonian 
system ( I ) ,  (2)  in the vicinity of the separatrix of the princi- 
pal resonance with several perturbing harmonics of distinct 
frequencies differs dramatically from the well-studied case 
of a single-frequency perturbation. Not only does the inter- 
action of the perturbation and the principal resonance have a 
strong effect on the spectrum of the separatrix map of the 
system and the formation of a chaotic layer, but so does the 
interaction of the perturbing resonances with one another, the 
result of which is secondary harmonics at combinations of 
the primary frequencies. The exponential frequency depen- 
dence of the separatrix map amplitude leads to a situation in 
which even very weak but low-frequency perturbations may 
play the leading role in dynamic chaos formation. Generally 
the width of the chaotic layer is not determined by the simple 
formula (6) and can substantially exceed the sum of contri- 
butions of all the terms in the separatrix map calculated by 
the single-frequency theory. 
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APPENDIX THE CANONICAL INTEGRATION ALGORITHM 

We used the method of building canonical generating 
functions developed in Ref. 11, which makes it possible to 
replace continuous Hamiltonians of the equation of motion 
by their discrete analogs, canonical maps. One iteration of a 
map is equivalent to integrating equations on a time interval 
r with an error amounting to 0(7"+'), where n is the order 

of the map. The method allows, at least in principle, maps of 
any order to be constructed, but we restrict our discussion to 
the second order ( n = 2 ) ,  which for systems of type (1) im- 
plies that the new variables depend explicitly on the old. 

After we have gone over to the extended phase space of 
system, the system ( 1 )  becomes 

We assume that the generating function depends on the old 
coordinates x  and t and the new momenta F and h and in- 
troduce the following compact notation: 

am+n 

dtmdxn 
[cos x+ V ( x , t ) ] =  fm,  . 

The second-order generating function 

generates an explicit canonical map of the form 

Because of phase-space conservation, the calculation er- 
ror oscillates instead of building up as the number of itera- 
tion increases. The amplitude of these oscillations allows for 
an analytical estimate: " 

The last relationship helps to select the required time step T, 

while the presence of the integral of motion K(x ,p ,h ,  t )  = 0 
makes its possible to effectively monitor the accuracy in the 
calculation process. 
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