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It is observed that besides the conventional "stochastic" scenario of bifurcational transition to 
one of two equivalent (probabilistically symmetric) final states in nonlinear systems, a 
different-"dynamic"-scenario can be realized, having strong probability symmetry breaking 
due to the high speed of the transition. In a model example (the first period doubling 
bifurcation in the logistic mapping) the boundary is found dividing the stochastic (probabilistically 
symmetric) regime from the dynamic regime (having broken probability symmetry) of 
bifurcational transitions. It is shown that the critical (limiting) noise level is expressed in terms 
of the speed of the transition by a power law with a rather high exponent (around seven). 
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1. INTRODUCTION 

In bifurcations a nonlinear system acquires new stable 
equilibrium states. We consider the frequently encountered 
situation, in which two equivalent final states arise in the 
system, that is, states having identical energies, but differing 
in some non-energetic aspect, say, the phase (period- 
doubling bifurcations1 in mappings, and parametric 
generators2) or polarization (polarization states in nonlinear 
optics3). 

It is customary to assume that as a result of the action of 
noise one of these states is chosen according to the law of 
chance, so that the equivalent states 1 and 2 turn out to be 
symmetric in their probability: 

We will call a bifurcational transition with probability sym- 
metry a stochastic scenario. In practice, this scenario is real- 
ized for very slow (adiabatic) variation of the parameters of 
the system. 

Historically it turned out that the stochastic scenario, 
presupposing probability symmetry of the final states, 
strongly overshadowed the other possible scenario of a bifur- 
cational transition, specifically a fast bifurcational transition 
with symmetry breaking, wherein the probability of one of 
the final states turns out to be higher than that of the other: 
P I  > P2 or PI < P2. An indication of the existence of tran- 
sitions with probability symmetry breaking as a consequence 
of rapid variation of the controlling parameter of the system 
was given by shishkova4 and ~ e s h t a d t . ~  They noted that in 
the absence of noise the final state of a system with continu- 
ous parameters is completely determined by the initial con- 

ditions and that a "noise-free" bifurcational transition with 
finite speed is completely regular and completely predict- 
able. We shall call such a transition scenario dynamic. Ac- 
cording to the dynamic scenario, the probabilities P I  and 
P2 of the transitions to states 1 and 2 take, depending on the 
initial conditions, the extreme values 

Of course, a purely dynamic and a purely stochastic sce- 
nario enter as limiting cases of the behavior of real systems 
with bifurcations, which, on the one hand, obey dynamic 
regularities and, on the other, are subject to the action of 
noise. 

The striking difference in the behavior of nonlinear sys- 
tems near a bifurcation in the absence and in the presence of 
noise stimulated us to analyze intermediate regimes, where 
the contributions of dynamic and stochastic factors are com- 
parable in magnitude. Such an analysis has allowed us to 
estimate the ratio between the noise level and the rate of 
variation of the control parameter of the system for which 
the symmetry of the probability of winding up in a definite 
final state is broken and the stochastic scenario (1) gives way 
to the dynamic scenario (2). 

Let us consider the question in the particular instance of 
the first period-doubling bifurcation in a dynamic system de- 
scribed by the logistic mapping. The particular nature of the 
treatment does not prevent us from seeing through to the 
general pattern of the problem. The main result of the analy- 
sis consists in establishing a boundary between the stochastic 
and dynamic scenarios. We will show that the boundary 
(critical) value of the noise level a: is given by a power law: 
a:= CSu, where S is the dimensionless rate of variation of 
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the control parameter of the system, and C and (Y are con- 
stants. For sea, the purely stochastic scenario (1) is real- 
ized, whereas for aSaC the bifurcational transition is con- 
trolled by the purely dynamic scenario (2) with strong 
probability symmetry breaking. 

It seems to us that the proposed dynamic-stochastic 
model of bifurcational transitions should be useful in the 
analysis of many systems with symmetry breaking, including 
the excitation of oscillations with a definite phase in para- 
metric oscillators and polarization effects in lasers. 

2. MODEL OF A NOISY DYNAMIC SYSTEM WITH VARIABLE 
CONTROLLING PARAMETER 

As a simple model of a dynamic system with bifurcation, 
we will use the standard example of the logistic mapping 

We will assume the control parameter r in this mapping to be 
a variable quantity that depends on the discrete time n. In the 
numerical estimates, we assign the dependence of r ,  on n by 
the piecewise-continuous function 

where S, as above, is the rate of variation of the control 
parameter r  and A r  = r  - ro is the total variation of r .  The 
quantity N = [ A r l S ]  = nb- n, denotes the integer part of the 
fraction A r l S .  We choose the initial value ro to be some- 
what smaller than the first critical value r c l  = 3, which cor- 
responds to the first period-doubling bifurcation, and the fi- 
nal value r l  to be greater than rCl  but less than the second 
critical value rc2= 3.4, at which the second period-doubling 

FIG. 1. Dependence of the control parameter r ,  on the discrete 
time n, adopted for illustrative calculations. 

takes place. Thus, the indicated parameters satisfy the in- 
equalities rO< r c l  < r l  < r c 2 .  A graph of the dependence of 
r ,  on n is shown in Fig. 1. 

In addition, we introduce additive noise into the logistic 
mapping by replacing x ,  by x,+ f , .  As the final result, the 
iteration procedure is prescribed by the relation 

We assume the noise process f ,  with zero mean ( f  ,) = 0 to 
be stationary. We assume the values of f ,  at neighboring 
points in time to be uncorrelated: ( f i f j )  = a 2 d i j ,  where a2 is 
the variance of the process f ,  . 

In the absence of noise, after reaching the final state r l  
the sequence x ,  can belong to one of two final "antiphase" 
states, 

Here x -  and x +  are the lesser and greater values of xf in the 
limit cycle arising after the first period doubling (Fig. 2b). 
The antiphase character of the sequences x i f  and x i f  means 
that when x l f  takes the larger value x + ,  x2f  takes the smaller 
value x - ,  and conversely. This antiphase character is re- 
flected in Fig. 2c. The phase difference between the se- 
quences x l f  -and x2f can be expressed as a time delay 
.2f- I f  

n - X n -  1 . 
These sequences are depicted in Fig. 2c by a series with 

a bifurcation diagram (Fig. 2a) and the logistic mapping (Fig. 
- + - +  2b) possessing a limit cycle xf  = . . . ,x ,x ,x ,x , . . . . 

FIG. 2. Bifurcation diagram of the 
period doubling (a), the limit cycle 
and the antiphase sequences x,!,j and 
for logistic mapping. 

first 
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FTG. 3. hobability of reaching the first final state xAf ver- 
sus the logarithm of the noise intensity In(&) for two val- 
ues of the normalized rate of change S of the controlling 
parameter: I) S=0.004, 2) S=0.008. 

3. PROBABILITY OF TRANSITION TO A PRESCRIBED FINAL 
STATE IN THE PRESENCE OF NOISE 

The system described above was subjected to numerical 
analysis with the starting value ro=2.8 and final value 
r , = 3 . 2  and various values of the speed S lying within the 
limits from 0.002 to 0.01. The iteration procedure was begun 
from the fixed point defined by the condition xo= 1 - l l r o .  
To obtain the random quantity f, , we used a random number 
generator which produced values f normally distributed with 
variance a 2 .  

For the first term of the sequence, x l ,  we chose the 
value x = xo + f . Subsequent iterations x2 ,x3, . . . , etc., 
were determined by means of the mapping (5). 

The calculations were aimed at determining the prob- 
ability P I  of winding up in the final state xAf [Eq. (6)] ,  which 
is realized in the given system in the absence of noise. The 
dependence of P I  on the noise level for two values of the 
rate of change of the controlling parameter, 0.004 and 0.008, 
are shown in Fig. 3. Each point in the graph was obtained 
from 200 realizations of the process (5). 

In the absence of noise, i.e., for u2 =0, the investigated 
nonstationary system continuously approaches the sequence 
x i f ,  so that P I  = 1 and P2  = 0 .  When noise is introduced, the 
probability P 1  begins to decrease, and at a high enough value 
of the noise intensity a2 it tends asymptotically to 112. The 
probability P 2  = 1 - P 1  of the appearance of the antiphase 
state x:f tends to the same value, 112, but from below. 

The plots of P I  vs the logarithm of the noise intensity 
u2 reveal a dependence that is nearly linear. From these 
curves we can estimate the critical noise level a: at which 
the probability P ,  falls to the level 0.75, intermediate be- 
tween the dynamic and stochastic regimes. The critical val- 
ues ln(4)  are indicated in Fig. 3 by the arrows. 

The dependence of the critical value of the noise level 
u: on the normalized values of the speed S= Sl Ar = 1lN is 
shown by the points in Fig. 4. The quantity 1IS= N tells how 
many steps it takes to cover the difference Ar = r ,  - ro . This 
dependence can be approximated by a power-law (the solid 
line in the figure) a z = C S a  with coefficient C =  1820 and 
fairly large exponent a= 7. 

For u24 a:, noise has only a weak effect and the prob- 
ability P I  is essentially equal to unity. The dynamic scenario 
( 2 )  is realized in this case. On the contrary, for a2%a: the 
stochastic, probabilistically symmetric scenario (1) is real- 
ized. It follows from what has been said that for the system 
to reliably wind up in the post-bifurcation state the transition 
must take place quite rapidly, in order to satisfy the inequal- 
ity a24 a: = CSa .  

4. POSSIBLE APPLICATIONS 

In the literature, reports frequently appear about nonlin- 
ear systems in which the probability symmetry of the final 
equivalent states is broken. We will mention only two ex- 
amples of physical phenomena. One is the breaking of po- 
larization symmetry attendant on the passage of laser radia- 
tion through an active medium (see the review in Ref, 3 and 
the literature cited therein). It cannot be ruled out that the 
reason for marked polarization asymmetry in a number of 
cases can be transitional dynamic processes taking place dur- 
ing the formation of the polarization state of the generated 
secondary laser radiation. 

FIG. 4. Dependence of the critical noise level corresponding to the prob- 
ability of realization of the first final state P,=0.75 on the normalized rate 
of change S of the controlling parameter. The region above the curve cor- 
responds to the stochastic bifurcation regime, and below-to the dynamic 
bifurcation regime. 

1188 JETP 82 (6), June 1996 Butkovskii et a/. 1 188 



Another example pertains to the formation of two 
equivalent phase states in degenerate parametric oscillators. 
Stable equilibrium states in such generators have identical 
amplitudes, but differ in phase by 180" (Ref. 1). Goto in 
1959 (Ref. 6) and Akhmanov and Roshal' in 1964 (Ref. 7) 
proposed using the phase difference in the oscillations to 
create parametrons, i.e., phase memory cells. 

At high noise levels the phase states of a parametron are 
probabilistically equivalent, but experiments have frequently 
recorded them as being probabilistically non-equivalent, es- 
pecially when the parametron is switched on rapidly.7 Such 
an asymmetry is directly connected with the dynamic sce- 
nario discussed above. If the "residue" of the previous os- 
cillation in the parametron exceeds the noise level, then this 
residue will impose its phase on the new oscillation arising 
in the parametron after the bifurcational transition. This cor- 
responds exactly to the dynamic scenario with broken sym- 
metry of the phase states. If the amplitude of the residue is 
small in comparison with the noise, then the stochastic sce- 
nario with equiprobable phase states will be realized. The 
parametron weak-signal detector proposed in Ref. 7 makes 
use of symmetry breaking of the phase states as an indication 
of the presence of a signal. 

It is not ruled out that the speed of the transition may 
play an important role (or, as they say, be a predisposing 
factor) in other bifurcation phenomena with symmetry 
breaking.*-'' 

5. CONCLUSION 

In spite of the simplicity of the model chosen for analy- 
sis (first bifurcation of period doubling), the analysis per- 
formed here reflects the general regularities of fast bifurca- 
tional transitions in noisy nonlinear systems. Such 
regularities include the following: 

1. The transition probability to a given final state is de- 
termined not only by the noise intensity, as was assumed 
earlier, but also by the speed of the transition. Depending on 

the ratio between the factors, a regime is realized in practice 
approximating either the stochastic scenario with probability 
symmetry of the final states, or the dynamic scenario with 
strong symmetry breaking. The conventional stochastic sce- 
nario with equiprobable final states corresponds in truth only 
to slow bifurcational transitions. 

2. The boundary between the stochastic and dynamic 
regimes in the plane of the noise intensity a and the speed S 
of the transition is defined by the power-law dependence 
a:= CSa with a fairly large exponent cu (for first bifurcation 
of period doubling, a--7). 

The regularities we have identified can shed additional 
light on the nature of bifurcational transitions in which the 
symmetry of the final states is broken. 
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