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Specially made asymmetrical semiconductor heterostructures with two or more quantum wells 
may contain metastable bound states of hole pairs because holes of some dimensional 
subbands have negative effective masses. O 1996 American Institute of Physics. 
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A series of relatively narrow lines whose positions can 
be described by the formula for the hydrogen atom and 
which converge not on the usual short-wave side of the spec- 
trum but on the long-wave side has been detected in absorp- 
tion spectra of bismuth iodide at helium 
This reversed hydrogen-like series was accounted for in 
Refs. 1-6 in terms of bound states of pairs of equally 
charged particles-electrons (bielectron) or holes (bihole)- 
due to the specific shape of their energy spectra. A reversed 
hydrogen-like series may be also due to electronic transitions 
from the valence band or a double-charged impurity center to 
bound bielectron states formed from two branches of the 
conductance band in one of which the electron effective 
mass is negative.' A similar effect may take place in the 
valence band, and a bound state may be formed by two 
holes. In this case the set of discrete lines is higher than the 
fundamental absorption edge, hence the bound states are 
metastable. Conditions under which a reversed hydrogen-like 
series may be detected in a semiconductor absorption spec- 
trum have been investigated both theoretically and 
experimentally?-'0 and it was found that bound states of two 
quasiparticles with repulsive interaction between them is 
only possible in materials with rather exotic electronic spec- 
tra. The dispersion relation of a semiconductor can rarely be 
controlled by varying parameters, so the range of materials 
in which a reversed hydrogen-like series can be observed is 
very limited. 

The progress made in semiconductor nanotechnology al- 
lows one to fabricate heterostructures containing quasi-two- 
dimensional quantum wells, in which the electron and hole 
spectra are extraordinarily diverse and whose parameters can 
be varied over wide ranges by either changing the geometry 
of the quantum wells or by applying an external field. Hole 
spectra in quantum wells are usually modified more easily 
because the one-dimensional ( 1 0 )  potential generating the 
quantum wells lifts the valence band degeneracy at the center 
of the Brillouin zone and forms a set of two-dimensional 
( 2 0 )  subbands in the quantum wells. The hole states corre- 
sponding to nonzero 2 0  quasi-momenta are formed from 
states of both light and heavy holes, so their classification in 

terms of light and heavy holes makes sense only at zero 
2 0  quasimomentum. As a result of this mixing of states of 
light and heavy holes," the hole effective masses in some 
subbands may be negative.'* This, in turn, allows two holes 
of different subbands to form a bound state, although the 
interaction between them is repulsive. Since this interaction 
is Coulomb, even though modified by the field of image 
charges due to interfaces,13 it is natural that reversed 
hydrogen-like series are observed in optical spectra of some 
quantum wells. Note that the hole spectrum in a quantum 
well can be engineered by selecting parameters of the het- 
erostructure, moreover, the spectrum can be modified by an 
external field, e.g., an electric field aligned with the growth 
axi~.'~,'' 

The paper describes a theoretical study of the position 
and shape of the first line in a reversed hydrogen-like series 
due to the bound state of two holes in an asymmetrical sys- 
tem of quantum wells with a highly nonparabolic spectrum 
of one hole subband. 

1. Let us consider a heterostructure whose hole spectrum 
is shown in Fig. 1. The numbers 1, 2, and 3 in Fig. 1 denote 
dimensional subbands in the following order: 1) the lowest 
heavy-hole subband (HHI); 2) the second heavy-hole sub- 
band (HH2); 3) the lowest light-hole subband (LH1). The 
higher subbands are not shown in the diagram. In what fol- 
lows, the subbands are labelled by the indices s n ,  where 
s = HH, LH, and n is the subband number in the respective 
s band. If the terms up to the fourth order in the 2 0  quasi- 
momentum k are retained, the spectrum of an s n  hole sub- 
band can be described by the equation 

where A,, is the energy in the s n  subband at zero momen- 
tum (the energy is measured so that A =0), and m,,  is its 
effective mass, which is positive in the HH1 and LH1 sub- 
bands and negative in the HH2 subband. The third term on 
the right-hand side of Eq. (1) describes the subband nonpa- 
rabolicity and contains the parameter b,, , whose dimension 

1175 JETP 82 (6), June 1996 1063-7761/96/061175-05$10.00 O 1996 American Institute of Physics 1175 



FIG. 1. Energy spectrum of holes in (1) HHl, (2) HH2, and (3) LHl sub- 
bands. 

is length and which is introduced phenomenologically, typi- 
cally cm, and mo is the free-electron mass. 

The kinetic energy of a hole pair from the sn and s 'n '  
subbands at zero center-of-mass quasimomentum can be ex- 
pressed as 

where we have written A={sn,sln'}, Ax=Asn+Aslnl,  
bt=  b:+ b:,,, , and the reduced effective mass of the hole 
pair is defined as usual: 

- 1 m ~ l = m ~ + m s l n l .  (3)  

In Eq. (2)  k is the 2 0  quasimomentum of the relative motion 
in the pair. 

It follows from Eq. (3)  that if one hole is from the HH2 
band, the reduced mass mA may be either positive or nega- 
tive. In the latter case, which will be considered below, two 
holes can be in a bound state only under the condition 

ImtII321 <msn  (4 )  

where sn = HH1 or LH1. We will indicate heterostructures in 
which the condition given by Eq. (4) holds at sn = HHl. In 
this paper, we assume for definiteness that 
mHHl> lmHH21 >mLHl . In this case, the spectrum of two-hole 
states without Coulomb interaction has the form given in 
Fig. 2. 

2. The Coulomb interaction between two holes is, natu- 
rally, repulsive if their reduced mass is positive. Otherwise 
their interaction is effectively attractive, which takes place in 
the case of holes from the HHl and HH2 subbands. 

It is convenient to consider the interaction between holes 
in the Wannier representation. The effective-mass envelope 
function of the hole pair without Coulomb interaction, 
I h,k, - k), can be presented as a product of the envelope 
functions of their respective subbands"? 

where S is the heterostructure area, the z-axis is the structure 
growth axis, p is the transverse vector of the relative motion 

FIG. 2. Energy of two-hole states versus quasimomentum of relative mo- 
tion. The curves 1, 2, and 3 correspond to the HHl-HH2, HHl-LHl, and 
HH2-LH1 hole pairs, respectively. 

in the pair, and fsnk(z) is the 1 D envelope function of a hole 
with quasimomentum k in the sn subband, which is the so- 
lution of the 1D Schrijdinger equation with a rectangular 
quantum-well potential and appropriate boundary conditions 
on interfaces.16 The equations are transformed to the Wan- 
nier representation, in which the discrete quantum parameter 
/3 has a sense of the vector connecting the two holes, through 
the conventional unitary transformation 

where N is the number of elementary cells in the heterostruc- 
ture area. 

In the Wannier representation, the kinetic energy of the 
holes in Eq. (2) is diagonal in both subband index and /3 if 
the quasimomentum k is replaced with - i V ,  where V is the 
gradient operator with respect to P. The potential energy can 
be expressed using the approximation 
f s n k ( z ) ~ f s n o ( z ) ~  fsn(z),16 i.e., the mixing of light and 
heavy holes is ignored in the envelope function, although it 
is taken into account in the kinetic energy [Eq. (2)] .  This 
approximation is justified because the mixing vanishes as 
k+O and the typical dimension a* of bound states of hole 
pairs is considerably larger than the lattice constant: 
a * %= a. Therefore, the envelope function is constructed 
largely from the states whose quasimomentum satisfies the 
condition ka * 4 1.  Hence the Coulomb matrix elements con- 
necting the HH and LH subbands, which are proportional to 
ala*, may be equated to zero, and the spinor nature of the 
hole envelope functions defined by Eq. (5)  may be ignored. 
Another consequence of this approximation is that the Cou- 
lomb interaction is diagonal with respect to p in the Wannier 
representation: l7 

Here we have written Al={slnl ,sin;), G(P;z,zl) is the 
electrostatic Green's function for the heterostructure, and 
purely real 1 D envelopes f,,(z) can be selected in all cases. 
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Usually the difference between the dielectric constants 
of quantum-well and quantum-barrier materials is small, so 
the effect of image charges can be neglected in our qualita- 
tive analysis of hole states, although it may be significant and 
the electrostatic Green's function can be expressed as 

where E is the average dielectric constant of the heterostruc- 
ture. 

Thus, the effective Harniltonian of the hole pair can be 
written in the form 

where UAA,(P) is determined by Eq. (7). We will denote the 
diagonal elements UA, of this operator by UA , where A only 
includes the indices of the heavy-hole subbands. It is obvious 
that nondiagonal elements UAA1 are considerably smaller 
than diagonal ones because the envelope function of the HHl 
subband has no nodes, whereas the HH2 envelope has one 
node, and hence the integrand in Eq. (7) changes sign. 

3. Let us determine the density of states g(E) in the 
usual way through the Green's operator G(E) of the Hamil- 
tonian defined by Eq. (9) written in the form 

where H(') is the operator of the hole pair kinetic energy and 
U is the operator of the pair potential energy. We havel8 

1 
g(E)=- lim ImTr G(E-iy), 

rny++o 
(10) 

where G(E) = (E - H)- ' satisfies the Dyson equation 

and G(')(E)=(E -H('))-' is the Green's operator of the 
Harniltonian H('). Instead of expressing G in the form of an 
infinite series in powers of U, let us use a different technique 
for calculating the density of states in the region of expected 
resonance. Suppose that the eigenfunctions of H are known: 

Hlanm) =E,,,I anm). (12) 

Here a is a quantum number that determines the type of the 
hole pair, which is, generally speaking, a mixture of states 
with different A, and n and m are quantum numbers charac- 
terizing the relative motion of the holes. Then the Dyson 
equation can be easily solved in the {anm)-representation, 
and the diagonal element of the Green's operator, 
(anmIGI anm)=G,,, , can be written in closed form, i.e., 

(anml G ( O ) ~  anm) 

Gmm= 1 - (nnmlG( ')~Ianm) 

We expand the functions (anm) in the basis formed by 
the eigenfunctions of the operator H('): 

Introducing the notation G~')(R,E) = ( A ~ J  G(O)I A k), we 
have 

4. It is obvious that the elementary excitations of hole 
pairs are determined by the poles of the function (16), and 
the positions of the peaks in the density of states correspond- 
ing to metastable states can be found by calculating the roots 
of the denominator on the right-hand side of Eq. (16). The 
functions I anm) can be approximately calculated using the 
technique19 based on the Harniltonian in Eq. (9) presented in 
the form 

where 

and the operator WAA (x) is added to the Hamiltonian in Eq. 
(18) to obtain the full Hamiltonian in Eq. (17). The param- 
eter ,y is derived from the condition that the first-order en- 
ergy correction due to the operator 

should be zero, then the nondiagonal elements WAA1 = UAAl 
are calculated using perturbation theory, as a result of which 
hole states are mixed through the Coulomb interaction. In 
what follows, we will ignore this mixing because, as was 
stated above, the nondiagonal elements are relatively small. 
In this approximation, the quantum parameters a and A are, 
naturally, equivalent. 

5. If mA<O holds, the operator in Eq. (18) has both 
discrete spectrum and continuum eigenvalues. The discrete 
states form, naturally, a Coulomb set of levels with the en- 
ergies 

where n=0,1,2, . . . , and ~ ~ ( ~ ) = l m , l e ~ / 2 t i ~ .  The param- 
eter ,y in Eq. (20) is derived from the equation 

in which the eigenvalues of the Hamiltonian in Eq. (18) are 
the usual wave functions of a 2 0  hydrogen atom. Specifi- 
cally, the "ground" state has the wave function 

where a x  = ti2/lmAle2. In calculating (A001Ak), we obtain 
the well-known Gegenbauer integral, which yields where 
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and, taking into account that ciO)(k,E) = (E- ~ , ( k ) ) - ' ,  we 
obtain 

(24) 

Here 

6. Given the envelope functions f,,(z) and f,,,, (z'), we 
can calculate the matrix element ( A  kl u I A@) numerically. 
Since the electrostatic Green's function in Eq. (8) can be 
approximated by the formula G(P;z,zl) - I/&/? in the limit 
P a d ,  where d is the typical dimension of the heterostruc- 
ture along the z-axis, we use this approximation to demon- 
strate some properties of Eq. (16) for n = m = 0. In this case 
the matrix element can be calculated through a Gegenbauer 
integrals and is expressed as 

After introducing the notation Ei = E - A, and dimensionless 
variables 

we can express the denominator on the right-hand side of Eq. 
(16) as 

The binding energy Ei and parameter x are complex 
variables with vanishingly small imaginary parts, according 
to the definition given by Eq. (10). The real part of Eq. (28) 
allows us to determine the positions of the peaks in the den- 
sity of states corresponding to metastable states from the 
condition Re D(x)=O. It is natural that Eq. (28) has a 
unique solution corresponding to the hole pair state with the 
quantum numbers n = m = 0. The imaginary part of Eq. (28) 
can be easily determined by calculating the sum with respect 
to k in Eq. (16) in the limit y++O, and it determines the 
width of the peak in the density of states. It is easier, how- 
ever, to calculate the line shape numerically in accordance 
with Eq. (10) by separating the real and imaginary parts of 
the denominator on the right-hand side of Eq. (16). For this 
reason, we do not give the results of the simple, but rather 
lengthy calculations. 

7. The approximate expression, Eq. (2), for the spectrum 
of the hole subbands at small k may be used if the curves do 
not cross at k a * ~  1 and corresponding states of different 
subbands are not mixed. Therefore, we limit our model by 
the condition E2(km) > E (k,), where k, is the momentum 
of the HH2 subband minimum (the radius of the minimum 
energy ring in the quasimomentum space). Besides, we can 
approximate the HH1 spectrum for simplicity by a quadratic 
function, i.e., bHHl=O. Then the condition on the effective 
masses in the HH1 and HH2 subbands in our model takes the 
form 

where x i=  2mob;Alh2. The necessary condition for the ex- 
istence of bound states of the HHl and HH2 holes expressed 
by Eq. (4) is compatible with Eq. (29) only if the denomina- 
tor on the right-hand side of Eq. (29) is larger than unity. 
Therefore the range of admissible parameters of our model is 
defined by the condition 

For example, in a nanometer heterostructure with Aa40 
meV and m 3 0. lmo , the lower limit of the nonparabolicity 
parameter is about 5 .  cm. 

Another limitation on the model parameters follows 
from the general condition of the Wannier scheme validity, 
namely, the effective Bohr radius of the hole bound state 
(a * - &ax) should be much larger than the interatomic dis- 
tance a. Thus the admissible reduced hole mass in our model 
has both upper and lower limits: 

where a, = h2/moe2. One can verify that these inequalities 
define a wide range of realistic model parameters, so our 
results can be applied to real structures. 

8. The parameter X -  ' derived from Eq. (21) can be in- 
terpreted as an effective dielectric constant of the hetero- 
structure characterizing interaction between the holes in the 
state with n = m  =0. Within the framework of our simple 
model, Eq. (21) can be rewritten in the form17 

where A = ln(.rrax/2a) - 314. Therefore, within the range of 
model parameters defined by Eqs. (29)-(31) there is a 
unique solution of Eq. (32), which defines x (note that the 
condition E X <  1 holds), so that the parameter a introduced 
by Eq. (27) is determined. Figure 3 shows the lines of zero 
denominator D(x) of the Green's function in Eq. (16) plotted 
on the plane defined by the two parameters E X  and a, at 
different values of E ~ E ~ / ~ R ~ ( ' )  (these values are shown on 
the corresponding curves). The diagram demonstrates that 
the binding energy Ei is always smaller than 4 R ~ ( ' ) / E ~ ,  
which is the upper limit of the binding energy due to the 
potential p- ' in two  dimension^.'^ 
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FIG. 3. Solutions of the equation D(x)=O. The numbers on the curves 
denote the binding energy Ei divided by 4 ~ y ( ' ) / ~ ' .  

The line shape corresponding to the discussed meta- 
stable state can be easily derived by numerical methods from 
Eq. (16). It is very close to a Lorentzian curve 

and for admissible model parameters the line width r is 
usually much smaller than Ei. For example, with 
b,,=5.10-~ cm and JmAJ/mo=O.l we have 
r - 0 . 1 ( 4 ~ ~ ' " / ~ ~ ) .  

A numerical calculation for an Alo,,Gao.7As-GaAs het- 
erostructure with quantum wells of widths 9a and 5a  sepa- 
rated by a quantum barrier of a width 4a indicates that the 
hole spectrum in HH1, HH2, and LHl subbands is similar to 
that given in Fig. 1, and the conditions on the model param- 
eters described above are satisfied. The reduced mass of the 
pair of holes from the HH1 and HH2 subbands is 
m,, = - 0.27mo (m = 0.123mo and m2= - 0.085mo), and the 
energy gap between edges of the HH1 and HH2 subbands is 
A2= 25.6 meV (AHH1= 22.4 meV and A 48.0 meV, en- 
ergies are measured with respect to the GaAs valence band 
top). These parameters are compatible with the limitations on 

the parameter b2 for the HH2 subband: 6.3. cm 
< b 2 s  lop6 cm. 
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