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Raman scattering of light in small crystals is discussed. An analytical formula taking into 
account dimensional quantization of phonon spectrum is derived to describe Raman spectra of 
small crystalline particles. The calculations by this formula and previously known theory 
have been compared to experimental data on Raman scattering in germanium and diamond. 
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1. INTRODUCTION 

In recent years, researchers' attention has been focused 
on low-dimensional systems, such as quantum wires (one- 
dimensional) and quantum dots (zero-dimensional). The 
progress in this field is supported by developments in mod- 
em technologies used to manufacture such structures, and the 
research is stimulated by their interesting physical properties 
due to the dimensional quantum effects. Progress has been 
remarkable in both experimental and theoretical studies of 
dimensional quantization of electronic states in silicon, as a 
result, red luminescence was detected in porous silicon 
samples.' 

Raman scattering is an effecient tool for studying phase 
transitions in materials, phonon spectra, and excited states of 
low-dimensional systems. In order to interpret Raman spec- 
tra of silicon microcrystals, Richter et ~ 1 . ~  and Campbell 
et ~ 1 . ~  developed a theory of phonon confinement, which was 
later used to describe Raman spectra of other materials, such 
as gallium antimonide: gallium arsenide: and d i am~nd .~  

The theory293 is based on an a priori function of coordi- 
nates which accounts for the confinement of a phonon wave 
function in a finite crystal. According to this theory, phonon 
modes in small crystals are described by wave packets whose 
envelopes are Fourier transforms of confinement functions. 
The Raman spectrum in this case is obtained by integrating 
the response function of the system multiplied by the enve- 
lope function over a region in the K-space (within the Bril- 
louin zone). Specifically, in the Richter model the envelope 
has the form e ~ ~ ( - q ~ ~ ~ / 4 ) ,  where q is the phonon wave 
vector and L is the crystal size. Irrespective of the envelope 
function, the theory assumed that the lifetime of a phonon 
mode (the parameter l l r o  in Eq. (6) of Ref. 3) was the same 
as in a bulk crystal. Campbell et ~ 1 . ~  investigated confine- 
ment functions of various shapes and compared calculated 
parameters of Raman spectra with experimental data. Then 
they selected a function which led to the best agreement with 
experiments on silicon. The flaw of the is that it 
ignores interference of phonons reflected from boundaries of 
a low-dimensional object. 

We have attempted to take into account interference ef- 
fects in small crystals whose dimensions are comparable to 
the lattice constant. In view of this, we have compared our 
calculations with experimental spectra of materials having 

the diamond lattice, both reported in literature and measured 
by our group. 

2. THEORY OF PHONON SPECTRA OF SMALL CRYSTALS 

Calculations of phonon spectra of real crystals based on 
exact solutions of the dynamic problem are usually imprac- 
ticable because the number of degrees of freedom in a crystal 
lattice is enormous. Therefore, various simplified (idealized) 
models of crystals are of great importance. Let us consider 
the phonon spectrum of a one-dimensional monoatomic 
chain with additional bonds? i.e., an atomic chain whose 
components are acted upon by forces due to their neighbors 
and also by an additional force (unlike the common chain 
model), which arises when a particle is displaced from its 
equilibrium position (Fig. 1). If the interaction with close 
neighbors is only taken into account, motion equations of 
atoms in such a chain are as follows: 

where U(1,t) is the lth atom displacement from its equilib- 
rium position (1=0,1,2, . . . ,N), yo and y, are eleastic 
constants, and m is the atom mass. In the equation of motion 
for a usual atomic chain, the constant yo is zero, unlike Eq. 
(1). The frequency spectrum of the chain of N atoms with 
additional bonds and periodic boundary conditions is de- 
scribed by the following equations: 

Here we have introduced the notations s2=azy l  lm and 
fit= yolm, and 

q =  W ~ I L  (4) 

is the phonon wave vector, a is the lattice constant, and 
L = Na is the chain length. The parameter n runs from zero 
to N- 1. 

We will only discuss the optical phonon branch, which 
determines Raman spectra of solids. The model phonon 
spectrum derived from our theory allows us to describe gen- 
eral properties of some branches of phonon spectra in com- 
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FIG. 1. One-dimentional monoatomic chain with additional bonds: circles 
show atoms and wiggly lines show elastic bonds; yo, yl are coefficients of 
elastic bonds. 

plex crystal lattices. In particular, Eq. (3) desribes the spec- 
trum of vibrational excitons in NH4Cl and NaN03. The case 
y, <0  corresponds to optical phonon spectra of crystals with 
the diamond lattice, when the following relation holds: 

Given the phonon spectrum, we can determine the phonon 
group velocity and mass:7 

- - h[fl;- 4 ( ~ ~ / a ~ ) s i n ~ ( q a / 2 ) ] ~ ' *  
s2[(n;- 4(s2/a2)sin2(qa/2)]cos(qa) + s4 sin2(qa) ' 

(7) 

In the continuous-medium approximation (a+O), Eq. (1) 
transforms to the following equation: 

The phonon dispersion relation (4) is transformed in this case 
to 

E ~ =  ~ i - s ~ ~ ~ ,  (9) 

where E = n n ,  Eo=hf lo ,  and p=fiq. 
In the case of small q (slow phonons), Eq. (9) yields the 

conventional relation between energy and momentum: 

.. 2 

where mo is the phonon mass derived from Eq. (7) at 
q=o. 

The spectrum of oscillations of the atomic chain de- 
scribed by Eqs. (9, (9), (10) and characterized by the set of 
wave vectors defined by Eq. (4) is similar to that of a quasi- 
particle in a potential well with infinitely high walls. Really, 
when a particle is placed in a potential well, its spectrum is 
modified and becomes discrete8 For example, the solution of 
the continuous equation (8) ii a potential well with a width 
L is the following: 

In this case, the quantization of the continuous spectrum is 
just the same as in the atomic chain, where the quantization 
is due to the finite number of atoms [Eq. (4)]. 

Given this similarity, we can use a model in which the 
phonon motion in a small crystal is described as particle 
motion in a potential well. This model is equivalent to the 
full reflection of a phonon from the crystal boundary. In fact, 
the transmission factor across an interface for an elastic wave 
is approximately equal to the ratio of sound velocities in the 
contiguous media? In the case of an interface between dia- 
mond and air, T= l ~ - ~ .  Assuming this model, we select, in 
effect, only those solutions which correspond to phonon 
modes of a bulk crystal and do not take into consideration 
surface acoustic modes, which can be correctly accounted for 
only if real boundary conditions are known. 

Under similar conditions of dimensional quantization, 
the number of phonon modes in a certain range of energy is 
different for the three phonon spectra described by Eqs. ( 3 ,  
(9), and (10). 

Figure 2 shows energies of phonon modes calculated for 
one-dimensional quantum wells and shapes of the TO- 
phonon branch in diamond discussed above. The phonon 
wave vector is directed along the [loo] axis, and the widths 
of quantum wells are L= 5,7,10 lattice constants. 

3. GREEN'S FUNCTION OF THE PHONON EQUATION; 
RAMAN SPECTRUM OF A SMALL CRYSTAL 

The phonon equation for a three-dimensional lattice with 
additional bonds, taking into account only interaction be- 
tween neighbors, can be written as follows (we assume 
Y,< 1 1 : ~  

FIG. 2. Energies of diamond TO-phonon modes in the [I001 di- - rection in a quantum well with dimensions (a) L=5a; (b) 
L=7a;  (c) L= lOa (a is the lattice constant); I) dispersion rela- 
tion for the atomic chain with additional bonds [Eq. (511; 2) con- 
tinuous approximation [Eq. (9)]; 3) slow-phonon approximation 
[Eq. (lo)]; v,= 1332 cm-I is the highest TO-phonon frequency. 
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As in the one-dimensional case, a solution of Eq. (14) in the 
form of monochromatic plane waves like that described by 
Eq. (1 1) yields an optical phonon spectrum in a crystal with 
dimensions L X L2 X L3 : 

We assume that the crystal is cubic. Then 

The Green's function of the lattice may be defined as a so- 
lution of the following nonuniform equation: 

where l/To represents the phonon lifetime. Let us seek the 
solution in the form of a Fourier series in the wave vectors of 
quantized phonons and a Fourier integral with respect to the 
frequency: 

Using the integral representation of delta-functions, i.e., 

and solving the resulting algebraic equation, we obtain the 
desired coefficients of the Green's function expansion: 

where is defined by Eq. (16). 
The Raman spectrum of the crystal can be expressed as1' 

where (fis(daldq)fiL) is the matrix element of the deriva- 
tive of the polarizability with respect to the normal coordi- 
nate, which determines the Raman spectrum, and 

C e~p( i r l , , ~ r )  are the wave functions of the incident 
and scattered photons. The correlation function of atomic 
oscillations versus frequency can be derived using the 
fluctuation-dissipation relation: 

I, arb. units 

1 

FIG. 3. Raman spectra of germanium microparticles: 1)  experimental data 
{or the s60 sample from Ref. 1 1 ;  2) c?lculation by the Richter model for 81 
A particles; 3) our calculation for 78 A particles. The vertical bar shows the 
noise intensity in the experiment. 

where n ( 0 )  is the occupation number. 
Consider the following expression for the element of the 

polarizability derivative: 

In an infinite crystal ( V - t m )  the volume integral yields 
a delta-function, which ensures conservation of energy and 
momentum. In the limit 1 qLl ,I qsl < lql 1 = v/L, integration 
over a limited volume yields 

Thus Eq. (21) with matrix elements given by Eqs. (23) 
and (24) and the correlation function defined by Eq. (22) 
yields the desired Raman spectrum of a small crystal (a cube 
with the dimension L). 

4. COMPARISON OF CALCULATIONS WITH EXPERIMENTAL 
DATA AND RICHTER MODEL 

4.1. Germanium 

Let us compare our calculations to the experimental data 
from Ref. 11 on germanium microparticles in a matrix of 
sodium chloride. Three samples with different average di- 
mensions of particles were studied by Heath et al." The Ra- 
man spectrum of the sample with the smallest particle size is 
shown in Fig. 3. According to the data obtained by transmis- 
sion electron microscopy, the particle dimensions vary be- 
tween 60 and 110 A, while x-ray diffraction measurements 
yield the limits of 80 and 170 A. The half-width of the Ra- 
man line is 2.50 cm-'. The particle dimension estimated 
using the Richter model is 81 A, which is in a good agree- 
ment with the measurements. The particle dimension derived 
using our model is 78 A, which is also in agreement with 
independent experimental data. Figure 3 also shows spectra 
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I, arb. units 

FIG. 4. Rarnan spectrum of ultrafine diamond pTicles: I )  experiment; 2) 
calculation for particles with a dimension L = 40 A; To= 32 cm- '. 

calculated using the two models. Heath et al." assumed that 
the line half-width in a bulk crystal was 1.85 cm-'. At fre- 
quencies below 295 cm-', both models yielded the scattered 
light intensity lower than in the experiment. This might re- 
sult from the simplified form of the phonon spectrum (only 
one optical branch). Nonetheless, Fig. 3 indicates that our 
calculations adequately describe experimental data in the fre- 
quency range 285-295 cm- ' . 

4.2. Diamond 

Figure 4 shows the Raman spectrum of very fine dia- 
mond powder fabricated in an explosion. Guseva et a1.12 
studied such powders using x-ray diffraction and electron 
microscopy. Previously we studied Raman spectra of several 
types of such powders.6 Different techniques yielded particle 
dimensions ranging from 35 to 60 A. In our latest experi- 
ments, the resolution of the Raman spectra was improved 
and the signal-to-noise ratio was increased by a factor of two 
(from 5: 1 in Ref. 6 to 10: I). The spectral width of the mono- 
chromator slit in the experiment was 2.0 cm-'. Diamond 
particles were implanted in a matrix of potassium bromide 
using the technique described in Ref. 6. The content of the 
diamond powder in the matrix material was about 1%. The 
spectra were recorded in the back-scattering configuration by 
a photon-counting system in a digital form. Since the signal 
intensity was very low, each spectrum was recorded thirty 
times, the measurements were averaged, and the resulting 
curves were smoothed. 

Compared to the bulk diamond, the Raman spectrum of 
the powder is notably different. The intensity maximum of 
the fundamental mode is shifted from 1322 cm-' in the bulk 
material by 6 cm-' to the low-frequency side, and the line 
profile is apparently not a symmetrical Lorentzian curve. Its 
FWHM is 52 cm-'. We interpreted the peak at 1380 cm-' 
as oscillations of carbon groups on the particle surface due to 
bonds formed in the sp2-hybridization of electronic orbitals. 

Figure 5 shows spectra of diamond particles with dimen- 
sions of 40 A calculated by the two models. In comparison 
with germanium, the dispersion of optical phonons in dia- 
mond is larger, so the Raman spectrum calculated by our 
model has a wider low-energy sideband and clear intensity 
oscillations in the range of 1250- 1320 cm- ' . Calculations 
using Richter model do not yield such oscillations. The 

I, arb. units 
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F G .  5. Calculated spectrum of diamond particles with the dimension of 40 
A (To=2 cm-'): 1) our model; 2) Richter model. 

widths of calculated spectral lines in both cases are smaller 
than the experimental value. In the Richter model, this dis- 
agreement can be eliminated by taking a different shape of 
the phonon wave packet. In our previous work? we used the 
envelope function e ~ ~ ( - q ~ ~ ~ / 1 6 ~ ~ )  proposed by Campbell 
and ~ a u c h e t . ~  As a result, the spectral width of the wave 
packet increased owing to the stronger phonon confinement 
inside the particle. 

In our model, the disagreement between the calculated 
and measured line width can be eliminated by changing the 
phonon lifetime in comparison with the bulk crystal. This 
assumption is based on the chemical analysis of ultrafine 
diamond particles.'3 According to these data, the particles 
contain about 5 vol. % of various impurities, therefore the 
phonon lifetime may be shorter because of impurity scatter- 
ing in the crystal lattice. Gubarevich et al.13 measured the 
distribution of diamond particle dimensions by small-angle 
X-ray scattering. About 80% of particles have dimensions 
within 35-55 A, and the distribution function peaks at about 
40 A. Taking this figure as a particle dimension, one can 
estimate the lifetime and correlation length of phonons in the 
particles. We have found a value of I?, at which the calcu- 
lated spectrum is the best approximation to the measured 
one. The calculation yields ro=32  cm-', which corre- 
sponds to a phonon lifetime of t = 1.04. s (the respec- 
tive spectrum is given in Fig. 4). According to our model, the 
phonons with the wave vector q = d L  and the frequency 
R ( d L )  = 1327.5 cm- ' make the largest contribution to the 
Raman spectrum, and this parameter is in a good agreement 
with the experimental peak position. Equation (6) yields an 
estimate of the group velocity of these phonons: 
v = 1.9. lo5 crnts. Hence the correlation length for such 
phonons is d = vt = 19.8 A, which equals about one half of 
the particle size. 

5. CONCLUSION 

We have investigated changes in phonon spectra of dia- 
mond crystals when their dimensions are reduced to several 
tens of angstroms. The theoretical model of phonon spectra 
in such crystals is based on the motion of an optical phonon 
in a quantum well of a certain width with infinitely high 
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walls. We have established that the optical phonon spectrum 
of a nanocrystal consists of a set of levels different from that 
obtained by solving the traditional problem of a particle in a 
potential well with infinitely high walls. 

We have obtained an analytical formula which describes 
distinctive features of Raman spectra of small crystals. In 
contrast to the results of the well-known Richter theory, we 
have obtained oscillations in the Raman spectrum due to 
dimensional quantization. Our results are confirmed by mea- 
surements of nanocrytals of germanium and diamond. Rus- 
sian Editorial office. 
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