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We have studied the dynamical behavior of the infinite-range Ising spin-glass model with p-spin 
interaction above and below the transition into the nonergodic phase. The transition is 
continuous at sufficiently high external magnetic field. The dynamic critical exponent of the power- 
law decay of the autocorrelation function at the transition point is shown to decrease 
smoothly to zero as the field approaches the "tricritical" point from above; in weaker fields the 
transition is discontinuous. The slow-cooling approach is used to study the nonergodic 
behavior below the transition at zero external field. It is shown that the anomalous response 
function A(t,tr) contains Sfunction as well as regular contributions at any temperature below the 
phase transition. No evidence of the second phase transition (known to exist within the 
static replica solution of the same model) is found. At low enough temperatures the slow-cooling 
solution approaches the one known for the standard Sherrington-Kirkpatrick model. 
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1. INTRODUCTION 

The free energy surface of spin glasses in the low- 
temperature phase has a very complicated structure and con- 
sists of an exponentially large number of valleys with infinite 
barriers between them (at least in the mean-field approxima- 
tion). This leads to unique dynamical properties. On arbi- 
trarily long (but finite) time scales such systems occupy only 
one valley and physical quantities depending only on spin 
variables at a single time differ from their static values de- 
rived from the Gibbs distribution. Usually such a behaviour 
is referred to as "nonergodic" The term "nonergodic" 
means here that the values of measurable physical quantities 
(magnetization, susceptibility, etc) cannot be regarded just as 
functions of the temperature and magnetic field at the mea- 
surement point ( T , H ) ;  rather, they are functionals of the 
trajectory on the (T,H) plane which lead to the final state 
one is measuring. A quantitative theoretical approach suit- 
able for the study of such a nonergodic behavior in a classi- 
cal Sherrington-Kirkpatrick (SK) spin glass1 and called 
"slow-cooling theory" was invented in the late 1980's by 
Ioffe et (see also Refs. 4 and 5) and then developed (in 
a slightly different version) in Ref. 6. 

The simplest and best-known example of nonergodic be- 
havior is the difference between so-called zero-field-cooled 
(ZFC) and field-cooled (FC) susceptibilities (xmc and XFC 

below), which is also well described in the static replica- 
symmetry-breaking approach by Parisi et However, it 
was shown in Refs. 2 and 5 that the values of the FC sus- 
ceptibilities obtained in the slow-cooling approach differ 
from the results of the Parisi theory; moreover, the same 
applies even to the values of the internal energy (which 
might be considered a quite robust quantity). Formally one 
can understand the origin of the difference between the re- 
sults of the slow-cooling and equilibrium theories as being 
due to the noncommutativity of two limiting procedures: the 
thermodynamic limit N-+m and stationary-state limit t,4m 
(here t, is the time the system spend in the glassy phase, i.e., 
the aging time). In the slow-cooling theory it is assumed that 

the limit N--+m is taken first, whereas in the equilibrium 
theory the limit t , + ~  is assumed to be carried out before it. 
As a result, the transitions between different valleys of the 
spin-glass phase space which are separated by "infinite" (in 
the limit N-+m) barriers are strictly prohibited in the slow- 
cooling approach, so the contributions of different valleys do 
not follow the Gibbs distribution in contrast to the case of the 
equilibrium theory. As a result, there are two sources for the 
differences between the values of the same physical quantity 
(e.g., energy) calculated within these two approaches: i) the 
metastable state (valley) within which the system is typically 
stuck after slow-cooling is nonoptimal, i.e., has higher free 
energy than the ground state; ii) in equilibrium there is an 
additional contribution from the sum over different valleys (a 
similar quantity is sometimes called configurational entropy 
or complexity~. It is not quite clear to us which of these two 
sources contributes more; however, there is a clear parallel 
between the temperature dependence of the configurational 
entropy of the SK model,1° 

and the relative difference between slow-cooling and equi- 
librium free energies which behaves similarly near T, (cf. 
Refs. 2 and 3). Therefore it is natural to expect that either the 
second cause (item ii)) is the dominant one, or that both of 
them are of the same importance. 

It is seen from (1) that in the vicinity of the spin-glass 
transition (which is the only analytically tractable region) the 
disagreement between the results of the two theories for the 
physical quantities of the SK model is very weak, indeed, the 
relative difference is found to be of order (T,- n3 in xFc 
and of order (T,- T)' in the internal energy, and did not 
receive much attention. The same statement applies to other 
spin-glass models that are characterized by a continuous Pa- 
risi function q(x) which differs only weakly (for T close to 
T,) from its maximum value q(1). 

There is another family of spin glasses that are charac- 
terized by one-step replica symmetry breaking (the Parisi 
function in these models is a step f~nction.'l-'~ Moreover, 
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these models are known to possess dynamic (at T= Td) and 
static (at T= T,) phase transitions at different temperatures 
(Td>Tc). Therefore, one expects all effects of history- 
dependence and nonergodicity to be more dramatic in the 
models of this second family. Note that the configurational 
entropy is known to be finite in these models right at the 
transition point: 

see Ref. 9 and references therein. Indeed, as will be shown 
below in the present paper, the slow-cooling solution for the 
model of that kind differs qualitatively from the results of 
static-replica theory. Another reason to be interested in this 
second family is the development of glass models without 
pre-existing whose behavior seems to be similar 
to the random spin glasses of the second family. Similar 
dynamical equations were also derived by ~eutheusser '~ in 
connection with structural glass problem. 

Recently significant progress was achieved in the inves- 
tigation of the dynamics of spherical p-spin interaction 
m ~ d e l , ' ~ . ' ~  which is in some sense exactly solvable: dynami- 
cal equations for this model can be written down exactly. In 
this paper we discuss the more complicated (and more real- 
istic) case of the Ising p-spin interaction spin-glass model, 
which belongs to the family mentioned above. In the case of 
infinite p the model is equivalent to the random energy 
model and exhibits one-step replica symmetry breaking.13 If 
p has a finite value, this phase is stable in some vicinity of 
the transition point only, whereas at lower temperatures a 
second-phase transition with full continuous replica symme- 
try breaking takes place.11 This property distinguishes the 
Ising version of the p-spin model from the spherical one and 
it is interesting to examine how it influences the dynamics. 

The paper is organized as follows. In Secs. 2 and 3 we 
introduce the model and derive the mean field generating 
functional, averaged over disorder, for the correlation and 
response functions. In Sec. 4 ergodic dynamics is investi- 
gated and the transition line Td(b) (where b is the external 
magnetic field) is found. It is shown that at sufficiently high 
magnetic field b>b,, the phase transition is of continuous 
nature and is reminiscent of the one known to exist in the SK 
model at finite field. The dynamic critical exponent vl char- 
acterizing the decay of spin-spin autocorrelation function at 
the dynamic transition line, C(r) cc t- '1, is found as function 
of b and shown to vanish as b+b,,+O. In weaker external 
fields the transition is discontinuous: the nonzero long-time 
limit of the autocorrelation function C(t-+m) appears just at 
T= Td(b), at zero field c(t+m)lTd = p - 2 at small p-2. 
The "tricritical" field value separating the regions of the 
first- and second-order spin-glass transitions is identified as 
b, a p -2. The reason for the existence of the tricritical field 
b,, is rather simple: in a nonzero external field the spins are 
already polarized at T>Td(b), i.e., the local magnetization 
(ui)#O; the interaction between E=ui - (a i )  on different 
sites i and j will now contain the usual pair-wise random 
term 6*Tj with relative strength o: b, which tends to pro- 
duce the usual SK-type transition and competes with the 
original p-spin interaction. Thus, in strong fields the "in- 

FIG. 1. Phase diagram. Thin lines--continuous transition, thick lies- 
discontinuous transition. 

duced" interaction wins and the transition is continuous. The 
phase diagram in T-  b-p coordinates is shown schemati- 
cally in Fig. 1. 

In Sec. 5 slow cooling of the system in the spin-glass 
phase is considered. It is shown that the behavior of the 
nonergodic dynamic response is qualitatively the same in the 
whole low-temperature phase, i.e., the additional low-T 
phase transition known from the replica solution" is absent. 
As the temperature goes down, the solution for the anoma- 
lous correlation and response functions interpolates smoothly 
between the one characteristic for spherical p > 2  spin 
model17 and the one for the usual p =2 Ising modeL2 We also 
found a downward jump in the specific heat as temperature 
decreases through T= Td. Such a behavior is known to exist 
in real glasses; in our model its origin may be associated 
with an abrupt drop in the configurational entropy [Eq. (2)] 
due to the freezing of the system in one of all possible 
[(m exp(S,,,,)] metastable states. 

Section 6 is devoted to the discussion of the results. 

2. THE MODEL 

The Ising p-spin interaction spin-glass model is de- 
scribed by the ~amil tonian~' . '~  

N 

where u i  is the Ising spin and b is the external field. The spin 
glass described by this Hamiltonian is a system of N Ising 
spins interacting via randomly quenched infinite-range inter- 
actions Jil .,.ip. For simplicity we will take the distribution of 
constants Ji, ,,,ip to be Gaussian: 

We assume Glauber dynamics for ui : the probability for ui 
to change its sign during unit time is 
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where the local field is hi= dHldai and P=T-' is the in- 
verse temperature. In the following, we put T= 1 without loss 
of generality. 

The quantities of interest are the average response func- 
tion 

which vanishes for t<  t', and the average spin correlation 
function 

- 
Here (...) means the dynamic average and ... means an av- 
erage over disorder. 

3. AVERAGE SELF-CONSISTENT GENERATING 
FUNCTIONAL 

In the thermodynamic limit N j m ,  the analysis simpli- 
fies and dynamics of the system can be described by a set of 
self-consistent equations for a single spin. These equations 
can be derived by introducing a generating functional for 
Glauber dynamics19*20 and averaging it over disorder. This 
functional is defined as 

and, as shown in Appendix, can be written as 

Here 

J = exp ( z I dtJi,  . . . i p ~ i , ( t ) $ ( t ) - - - i i p ( t )  
il<i2<...<ip 

zo [ i ]  is the generating functional for noninteracting spins, 

and the mi obey the equation 

d,mi(t) = i i i ( t ) [ l  -mf(t)] - [mi(t) - tanh h], 

m;(to)=mo. (6) 

It is convenient to use this functional in another form. Note 
that 

N 

z0[i] = I n s b i s g i ~ ; d i  
i= 1 

where 

S = Z  [ - i l  bi(ci-mi)dt-i  hi(hi-pb)dt 
i I 

Application of the operator j gives 

(7) 

where 

This integral is normalized to unity (i.e., Z[A=O]= I), so 
that the average over Jil ,.,ip can be performed. The following 
derivation of the mean-field generating functional is standard 
and almost coincides with the analogous one derived by 
Kirkpatrick and Thirumalai'2 for the case of Langevin dy- 
namics. There is no need to repeat this derivation and we 
write only the final result: 

(10) 

d,m(t) = i&(t)[l -m2(t)] - [m(t) - tanh h], 

with the obvious simplified notation for the time arguments. 
Here we use the notation p=pp2~2/2.  The correlation 
C(t,rl)  and response G(t,t l)  functions and have to be de- 
termined self-consistently from (8): 

and 

In the case of p = 2  the action in (8) coincides with the 
action of ~omrners '~  for the SK model. Below we will be 
mainly interested in the case ~=p-2<c l ,  since we already 
can consider p as a continuous variable. We will put also 
J = 1 to simplify the expressions. 

4. DYNAMICS ABOVE THE TRANSITION LINE 

In this section we study the dynamical mean-field equa- 
tion for constant temperature and magnetic field. Under these 
conditions, the system is expected to be in the paramagnetic 
phase (see the criterion below), so that the correlation and 
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response functions depend only on the time difference and 
are related by the fluctuation-dissipation theorem (FDT): 

Here it is assumed that to in Eq. (6) is equal to -m, so 
that m does not depend on mo. In a nonzero magnetic field, 
the Edwards-Anderson order parameter q=lim,,,C(t) is 
also nonzero at any temperature, so it is convenient to rep- 
resent the correlator C(r) as C(t) = e ( t )  + q. The part of SgI  
containing q is 

where (...), means ~ d z l J v ( . .  .)exp( - z2/2,uqP- I ) .  

In analogy to the previous section one can write z[);] in 
the following form: 

where j is 

and 

e(1,2)= d z G m c p - l ( 1 , 2 ) -  , C a L m q p - ' ,  

The function m in Zo obeys Eq. (6). 
One can by means of the FDT that the static 

limits of all correlation functions are independent of the 
short-time parts of C and G in (12). This leads to the equa- 
tion 

where m=tanh(z+pb) and (...) means the average over z .  
This equation coincides with the replica-symmetric equation 
found in Refs. 11 and 13. 

Moreover, we will see that for t%- 1 the expansion of C 
and G in pJ from (12) is at the same time an expansion in 
6 ( o )  - ~ ( o )  I,+. One can therefore use perturbation theory 
with respect to C and 6. 

Following ~ommers , ' ~  we write several terms of this ex- 
pansion, applying the FDT to each term: 

Let us first consider sufficiently large magnetic fields 
where the transition is expected to be of second order (the 
exact criterion will be derived below). The correlator C(w) at 
w-+O diverges at the transition line where 

At T=T, we have C(t) = At-'l where v, obeys the 
equation 

For the case of p =2, this equation was derived in Refs. 
19 and 21. In contrast to the SK model with p=2,  v, be- 
comes zero at the tricritical point where 

This equation along with Eqs. (13) and (15) determines T,,, 
q,,, and b,,. Near the tricritical point we can expand the 
left-hand side of Eq. (16) in v,. This expansion contains no 
first-order term and begins with 8, so that q at b - bt,9 1 is 

We can also find how b,, tends to zero in the limit p-+2. 
Expansion of the Eqs. (13), (15), and (17) in m2 yields 

In fields b<b,, at T= Tc, the correlation function C(t) 
does not vanish in the limit t--tw what makes phase transi- 
tion discontinuous. Consider the case of b =O. For o9 1 

All results at b=O will be correct only for &=p-291, 
since we restrict ourselves to a few terms in the expansion of 
(12). Assume that C(t) has time-independent part: 

lim C(t) = q. 
r-m 

Equation (20) yields (to lowest order in q) 
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This equation has the trivial solution q=O and a nontrivial 
one starting from some p=pc. This condition determines the 
transition point: 

These results will be found below by the adiabatic-cooling 
method. It should be emphasized that the transition tempera- 
ture is higher than the one derived in Ref. 11 by means of the 
replica method. 

To determine the critical behavior of the function C(t) at 
long times, consider its Laplace transform 
C(o)=S;ei"'C(t)dt. We suppose that for T slightly larger 
than Tc the function C(w) has a pole contribution and a 
remaining part: 

where the relaxation time r diverges when T+Tc. At the 
transition point e ( o )  c~ o V 2 -  ' (and c (  t) t- '2). To deter- 
mine v2, consider Eq. (20) at T= Tc . The terms of order 
o V 2  cancel, in agreement with (21). Comparison of the coef- 
ficients in the terms of order o Z V 2  gives the equation for v2. 
To leading order in E 

We can also find how the relaxation time r depends on 
the temperature T near Tc . Equation (20) at w=O yields 

As will be shown below, the characteristic time F of the 
function c ( t )  is much smaller than T. In the interval 
l/+w41/7, to lowest order of E, we obtain: 

2 s  , i o s  d 
O=pc-p+ - C(w)+ - - 

T r d o  
C(o )  + [ i ~ C ( o ) ] ~  

This equation (for s= 1) was studied by ~eutheusser '~ in his 
description of the dynamics near the liquid-glass transition. 
Assuming F0: (pc-  p ) - n  and r 0~ (pc-,u)u)-B, one obtains 

It should be mentioned that for the spherical p-spin in- 
teraction model17 the response function is 

For small E this expression is identical to (20). Therefore, the 
asymptotic behavior of the functions C(t) and G(t) is the 
same as for the spherical model (at least to the lowest order 
in E), as one can see from Eqs. (21), (23), and (24). 

5. SLOW COOLING 

5.1. Adiabatic equations and the transition line 

Probably the most direct way to investigate the behavior 
of the spin glass on a finite time scale is based on slow 

cooling, starting in the ergodic high-temperature phase. We 
will assume that the temperature and possibly the magnetic 
field vary on a time scale of order to%T-'. The situation is 
quite complicated, because now the correlation and response 
functions depend now on both time arguments and not on the 
time difference. It is convenient to divide these functions 
into "fast" and "slow" parts: 

The functions c ( t -  t') and Gt(t- t ') decay on the time 
scale ?'to and represent the dynamics in a "pure" state in 
the system phase space. The relevant time scale of the func- 
tions q(t , t l )  and A(t,tl) is to. It turns out that a closed 
system of equations can be obtained for the slow parts of the 
correlation and response functions. This was first proposed 
by Ioffe et al. in Refs. 2 and 3, where Langevin dynamics 
was used. An alternative method, which starts from Glauber 
dynamics, was developed by Homer and Freixa-Pascual in 
Ref. 6. It can be proved (see Appendix 2) that both methods 
give identical equations: Here we choose the second one. 

Now let us explain briefly the main idea. As was men- 
tioned in the previous section, for t- tl.>Tthe functions q 
and A are independent of the short-time functions c t ( t -  t') 
and Gt(t- t'). Thus, we can replace C and G by q and A 
respectively in the functional (12). Moreover, we can also 
take m(t) to be tanh(/3b). The existence of the terms dtm(t) 
and i&(t)[l -m2(t)] in Eq. (1 1) implies that the correlation 
functions are not equal to the asymptotic values and also 
have the relaxation parts. For example, the correlator C(t) 
= (u(t)u(O)) of the free spins in the constant field is 
~ ( t )  = tanh2(/3b) +[1 -tanh2(pb)]e-It'. Without these terms 
we would obtain c(t)=tanh2(pb). The actual form of the 
time-dependent correlation function for the interacting spins 
is different from simple exponential relaxation of course; 
however, its particular form is irrelevant for the derivation of 
the slow-cooling equations for the slow functions A(t,tl) 
and q(t,tl). 

If we take these remarks into account, the generating 
functional (12) in the adiabatic limit can be written as 

~ [ i ]  = j  exp[/ i ( t )  tanh h(t)dr]l , 
h=/3b 

(26) 

As in the previous section, we introduce the functions 

and rewrite (26) as 
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The self-consistency conditions are 

q( t , t l )=  h,$;z[i], ~ ( t , t ' ) =  $,S;Z[~], 

where 

To derive these equations we have to expand given in 
(29) and retain several terms of this expansion. This method 
is correct near the transition point for b =O and 8 9  1 and also 
for b near or greater than b,, and arbitrary E. When these 
conditions hold, the values of q, , ,~ and $A,,,tdtl are small. 
After some algebra the expansion of j to the second order in 
q and A results in Eqs. (30) and (31). The essential remark 
should be done before we write this equation. After the op- 
erator $b( l,2) 8, & acts on exp[$);(t)tanh ph(t)dt] the inte- 
gral JA(t, t)[l - tanh2(pb)]dt appears containing the unde- 
fined quantity A(t,t). Let us consider what such terms 
correspond to in the exact (not adiabatic) correlators. To de- 
rive the corresponding terms, the operator BSk should be 
applied only to the function i(t) in the exponent. As a result 
we obtain Jtl ,,A(t,t1)exp(t-t1)dfdt'. This integral equals 
zero for any value of A(t,tl). Therefore in the adiabatic limit 
we should set A(t,tl) equal to zero. 

Thus, the equation for A mentioned above is 

The equation for q is 

(31) 

Here 

d" 
m n  = --;; dz tanh(z + pb). 

Several remarks should be made about the behavior of 
the functions q(t, t l)  and A(t,tl). If the parameter q varies 
smoothly on the cooling trajectory, these functions vary also 
smoothly on time scales order to. If q jumps discontinuously 
at the critical temperature, we should also expect disconting- 
ous jump in the function q(t, t l)  at tl-t,. This means that 
the correlation function C(t,t l)  varies for t'-t, on a time 
scales shorter than the characteristic cooling time to. Thus, 
the functions q(t , t l )  and A(t,tl) for t' near t, should be 
related by the generalized FDT: 

and consequently 

which is consistent with the Eqs. (30) and (31). This condi- 
tion should be also satisfied if t- tml 9 to. The same assump- 
tions were used in Ref. 17, where the dynamics of the spheri- 
cal model was considered. In other words, the functions 
G(t,t l)  and C(t,t l)  at t-tlGt, and t - t ' e t ,  can be re- 
garded as Sfunction and &function respectively. 

Now we show how one can obtain some of the results of 
the previous section with the help of this generalized FDT 
and equations (30) and (31). For example let us find tricriti- 
cal point. Suppose that the cooling trajectory crosses the 
transition line near this point for b<b,. If we put 
t= t l= tc+O,  then 

Above T ,  , q satisfies the equation q = (m2) and for b = bt, 
the jump in the order parameter Sq becomes zero. Expansion 
of (33) in Sq gives the marginal stability condition (15) in 
first order and equation (17) in second order. 

Consider now the case of b =O and t = t' = t,+ 0. The 
equations become 

This yields q , = ~ ,  P , = ~ + E - E  In E as in (21). 
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5.2. The anomalous response function at b=O The solution of this equation has a degeneracy: we can 

Let us now consider the solution for q and A in the change the sign of the functions A and w simultaneously. 

spin-glass state below the transition point but at zero external However, we should choose the positive value of A, since it 

field b. Equations (30) and (31) reduce to corresponds to higher magnetization: 

Here and below integration interval does not contain t, . The 
solution for t a t ' ,  p=pC+2r,  and & E G ~  is 

For 7, T'LE, 

As can be seen, anomalous response function A consists 
of the Sfunction contribution only. As will be discussed be- 
low, such a solution is in agreement with the one-step replica 
symmetry breaking solution obtained previously for the same 
model in the static approach.11713 However, it turns out that 
these results holds only approximately, and more accurate 
calculations lead to an appearance of the regular (smooth) 
part in the anomalous response function. 

To find the smooth part of the anomalous response func- 
tion A we should expand j in (29) to third order in q and A. 
We also can put Aa&t- t,) in the third-order terms. Thus, 
the equation for A is 

The equation for q is 

Consider the region T ~ E ,  and introduce the notation 
q( t , t1 )=&+r+ rl+w(t,t ') .  Then 

The above choice of solution is based on the following 
physical arguments: the very presence of the anomalous re- 
sponse function is due to the possibility that the system can 
choose between different configuration-space valleys (which 
come into existence during the cooling) in order to minimize 
the free energy of the final state.2 In particular, when the 
cooling procedure is done at some constant magnetic field, 
the valleys with higher magnetization along the applied field 
direction are certainly preferable-which means that the ir- 
reversible contribution to the susceptibility should always be 
positive. 

The result (40) can be compared with the analogous one 
in the spherical model.17 There the smooth part of the func- 
tion A at small 7- and E is also a constant proportional to 
6. However, there is a family of special cooling trajectories 
where A has no smooth part and cooling at zero field belongs 
to this family. It is not clear whether such a family exists in 
the Ising modeI. 

Consider now the anomalous response function for r, 
T'%E. The equations for q and A in this region are 

For 7, T'S-6 the terms containing E in (41) are small, 
and the solution is closed to that for the SK model: 

In the opposite limit, T, r'G&, we can introduce the 
notation 

A t t  t t )  and q( t , t l )=  E w(t,tl) 

and write these equations as 
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We have not found analytical solutions of the Eqs. (43), 
but it seems evident that the solutions (which may be found 
numerically) interpolate smoothly between the results (40) 
and (42) corresponding to the regions T, ~ ' 9 e  and 7, T'% 

6, respectively. In another words, there is no qualitative 
difference between the solutions in these two regions. This 
result looks quite surprising: ~ardner" found using the 
static-replica approach that a second phase transition should 
exist in this model (for r&), which is characterized by 
full-replica symmetry breaking. In the dynamic approach we 
have not found any evidence for such a transition. 

5.3. Susceptibility and heat capacity 

Now it is easy to find observable quantities such as 
finite-field cooled and zero-field cooled susceptibilities and 
heat capacity. Consider the region HE. The value of XFC is 

to within T&, and hence it has a jump in the derivative with 
respect to temperature. Zero-field cooled susceptibility xzFc 
is determined by the integral of the "fast" part of the re- 
sponse function: 

and has a jump at the transition point. 
The heat capacity C = dEldT also has a jump; in order 

to derive it, the internal energy should be written in terms of 
functions C(t,t l)  and G(t,t'):17 

The derivative of this equation with respect to temperature 
yields a negative discontinuity in the heat capacity 

(note that in the standard Landau theory of second-order 
phase transitions the heat capacity shows a positive discon- 
tinuity when the temperature decreases). Static theory12 also 
predicts a jump in the heat capacity, but at lower (static 
transition) temperature. 

6. CONCLUSIONS 

We have studied the dynamics of the p-spin interaction 
Ising spin glass ( p = 2 + ~ )  above and below the dynamic- 
transition temperature Td [implicitly defined by Eq. (21)]. 
The discontinuous transition is found at zero and weak ex- 
ternal magnetic fields, bSb,,-E, whereas at higher fields, 
b a b , , ,  the transition is continuous and resembles (though 
definitely is not identical to) the SK model transition. Near 

the "tricritical point" b=b,, the dynamic exponent deter- 
mining the rate of long-time relaxation right at the transition 
approaches zero: vl cc d m .  

In the glassy phase the history dependence is described 
quantitatively by the anomalous response and correlation 
functions A(t,t ') and q(t,t I). We have derived equations for 
these functions and (in the case of zero external field) solved 
them in several regions of reduced temperature 7-41. Very 
close to T d ,  at H E ,  the main contribution to the anomalous 
response function A(t,tl) comes from the Sfunction term 
[cf. Eq. (331, in agreement with the replica-theory 
solution." Indeed, the one-step replica symmetry breaking 
found in Ref. 11 is commonly interpreted9 as a signature of 
the instantaneous "appearance" of an exponentially large 
number of valleys right at the transition i.e., of the extensive 
configurational entropy S,mN); those states do not acquire 
additional "fine structure" (and their number does not grow) 
as temperature decreases further. This structure of the equi- 
librium valleys would precisely agree with the "Sfunction 
only" solution for A(t,tl): the physical idea behind the 
slow-cooling approach is that the anomalous response is 
nonzero when the number of valleys grows (usually when T  
decrease) making it possible to lower the free energy by 
proper choice of the valley. 

However, we found that even in the smallest-T range the 
A(t,tl) response contains also the smooth part [cf. Eq. (40)] 
corresponding, by the same logic, to continuous splitting of 
the valleys below T d .  The same conclusion was reached by a 
different route in a recent preprint? The above results pro- 
vide additional [cf. [17]] evidence that the structure of the 
valleys most relevant to slow dynamics is different from 
those responsible for the equilibrium Gibbs partition function 
(which is reflected already in the fact that the dynamic tran- 
sition temperature is higher than the static one); for a discus- 
sion of additional aspects of the relation between dynamic 
and static quantities see Ref. 22. 

Heat capacity and zero field cooled susceptibility have a 
downward jump at the transition temperature. Note that a 
similar jump in heat capacity has been observed experimen- 
tally in real liquid-glass  transition^.^^ 

At lower temperatures (@&) the solution of the slow- 
cooling equations approaches that of the SK 
whereas in the intermediate region ~ e - 6  it interpolates 
between the above limiting cases. Since the solutions are 
qualitative similar in the regions HE and 72)&, we do not 
expect any additional phase transitions in the slow-cooling 
approach. Thus we found that the low-temperature properties 
of the SK (p=2) and p=2+e  Ising glass models are rather 
similar, in spite of the drastic difference known to exist be- 
tween the corresponding phase transitions. 

Real experiments on glasses as well as Monte Carlo 
simulations of glassy systems are always done on a limited 
time scale, which makes it virtually impossible to observe 
Gibbs equilibrium properties which are the subject of static- 
replica theory; on the other hand, the slow-cooling approach 
seems to be most suited to describe finite-time experiments. 
Unfortunately, it does not seem possible to compare directly 
the present analytical results with Monte Carlo simulation 
since our calculations are done for small e e l ;  however we 
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expect qualitative features of our solution to survive, e.g., for 
p =3 Ising-glass model which could be simulated directly. 

Let us note finally that potentially interesting problem 
which we have not studied here is the anomalous response 
behavior close to the tricritical point b= b,, (where the dy- 
namic exponents vl and v2 tend to zero). 
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Fundamental Research (Grant 95-02-05720) and INTAS 
Grant 93-2492 (within the research program of the Interna- 
tional Center for Fundamental Physics in Moscow). 

APPENDIX 1 

Let us first derive the generating functional ~ [ i ]  for one 
Ising spin in an arbitrary field. The distribution function for 
(5) obeys the equation 

~ , ~ { u , t ) + ~ ~ { a , t ) = ~ ,  (44) 

where 

We will be also interested in the function P (a , t , a ' , t r ) ,  the 
probability of finding spin a at time t provided that at time t' 
its value was a'; P (a , t , a ' , t l )  =0, t< t' . This probability is 
the Green function of the operator d,+L,: 

The solution of this equation is 

where 

We also can write the solution of (44), i.e., the distribution 
function: 

The process described by the equation (5) is Markovian. 
For this reason, the correlation function C = (ut,uI; . . atn)  is 
determined only by the distribution and probability func- 
tions: 

XP(u2,t2,~3,t3)~,-lP(un-l,tn-l .un,tn)un 

XP(un ,tn) (45) 

for t l> t2>. - .> tn>tO.  
Later it will be convenient to introduce the auxiliary 

functions 

and 

where m(t) obeys the equation 

d,m(t) = i i ( t ) [ l  -m2(t)] -[m(t) - tanh(pb)], 

m(to)=mo. 

These functions are connected by the relation 

We assume that 

( ~ ~ . . . a , , ) = $ - . . 8 , , ~ ~  

where 

and prove the same equation for the n-point correlator. 
On the one hand we can find using (45) 

On the other hand, for t>tl>.. .>t,>to 

X i 2 A ( t ) d ~ ]  1 A=O , 

which is identical to (48). 
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The procedure for the generalizing the functional Zo to 
the case of interacting spins is described in Refs. 19 and 20. 
Let us write C =  ( a l a2 . .  .ak),  where the indices are the 
unions of the time and space arguments. Now one can intro- 
duce auxiliary fields h and i and expand in J  the term with 
the interaction. The correlator C is 

where 

and (...) is the average over the dynamics of the noninteract- 
ing spins in the field hi .  (K,) can be written as a variation of 
2, : 

* * 
= ala2...ik exp 

X = O  

where 8,= ~ / ~ i ( t ) .  In expression (49) the integration over h 
and h" can be performed, which replaces h by p b  and ih" by 
SilGpb. Thus, the generating functional Z is 

where j is 

J = exp ( i l < i s . , < i p  I dUi ,... ipai1%2...8p). 

APPENDIX 2 

We show how to derive the adiabatic generating func- 
tional (26), starting from the Langevin dynamics of soft 
spins: 

Here H is the Hamiltonian (3), and &(t) is a white noise 
with zero mean and variance 

The constants ro and u should tend to infinity in the Ising 
limit provided that rolu = 1. 

As was shown in Refs. 12 and 17, the average of this 
Langevin equation over disorder yields 

+h( t )+ t ( t )  (51) 

with nonlocal noise 

(t(t)t(t1))=2r;1a(t- t l ) + t ( t , t r ) .  (52) 

The next step is to divide the functions C and G and 
noise 8 into slow and fast parts:2p21 

c( t , t1 )=F( t -  tl)+q(r,t '), c ( t , t l )=G( t -  t') 

Integration over fast noise leads to an equation for the 
slow magnetization2 which replaces the Langevin equation in 
the adiabatic limit: 

where in the case of Ising spins we have 

Now we $an easily construct the adiabatic generating 
functional Z[A]. Note that the correlation function can be 
written 

c ( t ~  ,... ,tn)=(m(tl)...m(tn)),. 

Thus, 

where 

S= - i  h, h,-z,-pb,- f8t,,t tanh h,.dtl)dr, I * (  

and the Jacobian is 

d(h,-z,-pb,-~A,,,~ tanh h,rdt1) 
J =  

ah,, 

since we should put A(t,t) =O in the adiabatic limit, as noted 
in Sec. 5.1. The average over z yields 

+ i  i 1 ~ 1 , 2 t a n h h 2 .  I 
Then we expand ~ [ i ]  over q and A and rewrite each term of 
the expansion as a variation of Zo=exp(Ji tanh h). After 
some algebra we obtain formula (26). 
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