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We show that a dense degenerate neutron gas can go into a magnetically ordered state and that 
the phase transition is second-order. We also show that the emergence of spontaneous 
magnetization explains the characteristic values of the density and magnetic field of neutron stars 
(pulsars). Using the nonrelativistic magnetohydrodynamics approximation, we establish the 
dispersion relation for magnetohydrodynamic waves propagating in dense magnetically ordered 
neutron matter. Finally, we studqr the problem of the origin of spontaneous magnetization 
in a dense electron-positron plasma. O 1996 American Institute of Physics. O 1996 American 
Institute of Physics. [S 1063-776 1 (96)00506-91 

1. INTRODUCTION 

In a dense degenerate neutron gas, an example of which 
is a neutron star, spontaneous magnetization can be caused 
by the nuclear interaction of neutrons. This interaction acts 
in a way similar to the Weiss molecular field, an exchange 
interaction leading to a ferromagnetic state of an electron 
gas. In this sense we can speak of the ferromagnetic state of 
dense neutron matter. Such a mechanism for the formation of 
magnetization of neutron matter explains the value of the 
observed magnetic field and density of a neutron star. 

If magnetization is present, the value of the magnetic 
field can be estimated by the formula 

where pn= 1.93,unucl is the neutron's magnetic moment, 
,unucl=eh/2mpc is the nuclear magneton, m, is the proton 
mass, and a is the average neutron separation. 

As is known, the concept of neutron matter has meaning 
when the density of matter p is about 10" g/cm3, which 
corresponds to a neutron density n - cmV3 (see Ref. 1). 
Assuming that a - 10- l2 cm, we get 

which agrees with the astrophysical data on pulsar magnetic 
 field^.^ Note that if the gas density were higher and we 
would have a - l ~ - ' ~ c r n ,  the estimate would be 
B- 1016 G, which is much higher than the observed field 
strength. This suggests that the average neutron separation in 
a pulsar is closer to a - 10-l2 cm than to a - 10-l3 cm. (The 
distance of 10-l3 cm constitutes the nuclear force range.) 

In this paper we investigate the origin of spontaneous 
magnetization in neutron matter and study magnetohydrody- 
namic waves in such a medium in the nonrelativistic ap- 
proximation. We show that in dense magnetically ordered 
neutron matter modified acoustic and spin waves can propa- 
gate. 

We also use the nonrelativistic approximation to study 
the possibility of spontaneous magnetization in a dense 
electron-positron plasma. 

2. SPONTANEOUS MAGNETIZATION OF A DENSE 
NEUTRONGAS 

To describe a degenerate nonrelativistic neutron gas we 
use the main ideas of Landau's Fermi-liquid theory.3 Ac- 
cording to this theory, an equilibrium single-particle density 
matrix 3 can be found by solving the following nonlinear 
equation: 

where ,u is the chemical potential, Yo= 1/T is the reciprocal 
temperature, and 2(f) is the quasiparticle energy, which is a 
functional of the single-particle density matrix. This energy 
is determined by the formula 

where ki = p,a stands for the set of the quantum numbers of 
a neutron ( p is the neutron momentum and a is the neutron 
spin), and E(f) is the Fermi-liquid energy functional. The 
energy functional in Fermi-liquid theory is the analog of the 
system Hamiltonian. To describe a phase transition in a neu- 
tron Fermi liquid qualitatively we use the following ideas in 
building this functional. The-interaction energy of;wo neu- 
trons has the following form: 

where U1 and U2 are functions of neutron separation, and 
u1 and u2 are Pauli matrices (here we ignore tensor forces). 
Allowing for (2.3), we can write the energy functional in the 
form 

where n(r) and u(r) are the ordinary and spin neutron den- 
sities, related to the single-particle density matrix by the for- 
mulas 
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and EoCf) is the neutron kinetic-energy functional: 

Since both n(r) and a(r) are slowly varying functions of 
r ,  the energy functional can be written as 

where 

Hence, using Eq. (2.2), we can write the quasiparticle Hamil- 
tonian as 

g k l k 2 = e O k l k 2 + l l n i k l k 2 + ~ 2 u '  4 , k 2 *  

where ukIk2= ualu2~PlP2.  (Here and in what follows we as- 
sume that a state is spatially uniform, so that the ordinary 
and spin densities are independent of x.) 

Thus, we have the following equations for determining 
the single-particle density matrix: 

where 

r*. '=~~-51n(f).  
Introducing the magnetic moment density of the neutron 

liquid 

M=Pna(f)t  
we can write the basic equations (2.7)-(2.9) as 

M =  
J Z P ~ ~ : ~  

7r2h 

where we have allowed for the nonrelativistic dispersion law 
of the neutron gas, ~ ( p ) = p ~ / 2 m , ,  with m, the neutron 
mass, and Y =  C2 1,~;. Note that 12= a3U2, where a is the 
nuclear force range (a-10-l3 cm), and the quantity U2 
characterizing the intensity of nuclear forces is about 
40 MeV. This provides an estimate for the parameter v, 
namely v - 3 X  lo3. 

Introducing the dimensionless magnetization density 
x=  8a2v3p,~/971-4m,,c?, the dimensionless chemical poten- 
tial /I= ~ C Y ~ V ~ ~ ' / ~ I T ~ ~ , C ~ ,  the dimensionless density 
p = 8 a3 v 3 ~  in/97r4, and the dimensionless temperature 
T= 8 a2 v2~/97r4m,c2 (here a= e2/fic, and X,= film,c is 
the neutron Compton wavelength), we can write the system 
of equations (2.10) as 

where 

Clearly, the function 'P(z) defined in this way exhibits 
the following asymptotic behavior as z--, + m: 

In addition to the trivial solution x=  0, Eqs. (2.1 1) have 
a nontrivial one x # 0. To find the phase curve separating the 
regionsx=Oandx f O,wesetx=O inEqs.(2.11).Thenthe 
parametric equation of the phase curve has the form 

where the parameter z is linked to the chemical potential and 
temperature by the formula Z= PIT. Using the asymptotic 
behavior (2.12) of '4?(z), we have 

where pc= 2/27. The phase curve is depicted in Fig. 1. 
We see that for p<p, there can be no magnetically or- 

dered states. Let us fix the density p.  A certain transition 
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FIG. 1 .  

temperature T= T,(P) corresponds to this density. Then at 
7- 7, the magnetization is given by the formula 

x 2 = ~ ( p ) ( 7 , ( p ) -  7 ) ,  (2.14) 

where A ( p )  is a function of density defined in the following 
way: 

and the parameters T, and z, as functions of density can be 
found from Eqs. (2.13). The temperature dependence (2.14) 
agrees with the self-consistent field theory. 

Now we examine the case T< 1. What is interesting here 
is that for 1 we have the following estimate for real tem- 
peratures: T< lo8 K .  (The temperature at the surface of neu- 
tron stars is T 4  lo6 K . )  

If in what follows we assume P>O, the integrand in the 
definition of the function * [ ( P + x ) / T ]  can be replaced with 
an "unsmeared" Fermi step; as for the function 
T [ ( P - x ) / T ] ,  its asymptotic behavior depends on the sign 
of P - x .  Noting that according to (2.12) 

we arrive at following system of equations: 

Eliminating the variable P from these equations yields 

p-x ( ( (p+x) : )Y3-  2x - = ,J/2,p 
2 1. 

To find the solution x = x ( p , ~ )  of this equation for 
T+O, we first assume the parameters x and p to be such that 

m7 

FIG. 2. 

In this case Eq. (2.15) for 7 4 0  becomes 

p+x U3 p - x  U3 

2 x = ( T )  -(TI 
According to Eq. (2.17), the inequality (2.16) holds if 

p S  118. Thus, the density dependence of magnetization cor- 
responding to Eq. (2.17) is attained in the region 
0 < p s 1.8. As Fig. 2 shows, spontaneous magnetization 
emerges for p> p,= 2/27. For p< p, = 2/27 there is only the 
trivial solution x= 0 ,  which correspond to the normal, or dis- 
ordered, phase. Here the density p and the chemical potential 
/3 are related by the standard formula p= 2p3I2. 

As Eq. (2.17) implies, near p a p , =  2/27 we have 

which suggests that there is a second-order phase transition 
in density. 

For densities p> 118 condition (2.16) breaks down, with 
the result that for p> 118 another condition must be met: 

Hence, in analyzing Eq. (2.15) we must use the asymptotic 
behavior of P ( z )  as z-, - 03 (see (2.12)). We then get 

As this formula implies, within the range of parameters 
considered here, p t x  as T+O. Hence we have 

Since, by assumption, 2p-pU3>0, the above formula is 
valid when p> 118. Equation (2.18) clearly implies that 
dxldpl,, 118- 1. 

Thus, for 7-0, the density dependence of the magneti- 
zation has, according to (2.17) and (2.18), the form depicted 
in Fig. 2. 
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The density of a neutron star is n -  ~ m - ~ ,  which 
corresponds to the value p- 118. Here x= p, and therefore 
we have 

Thus, we see that a degenerate neutron gas can pass into 
a magnetically ordered state in response to variations of its 
density and that this is a second-order phase transition in 
density for p a p ,  . The values of the magnetization and den- 
sity of a neutron star predicted by our model agrees with 
astrophysical data. 

3. SPONTANEOUS MAGNETIZATION OF AN 
ELECTRON-POSITRON PLASMA 

The method used in Sec. 2 can be applied to the problem 
of spontaneous magnetization in a,dense electron-positron 
plasma. We believe that the exchange interaction between 
the particles of such a plasma acts as an ordering interaction. 
We start with the nonrelativistic plasma. As shown below, 
such a system can be described by a system of equations of 
the form (2.10) in which the neutron magnetic moment pn 
should be replaced with the Bohr magneton p~ and mn 
should be replaced with the electron mass m. Here the factor 
v can be determined from the structure of the Hamiltonian of 
the electron-positron interaction in the weakly relativistic 
case.4 (Only in this case can we introduce the concept of an 
interaction potential between particles.) Precisely, the poten- 
tial energy of the exchange interaction between electrons 
V:, (or positrons V f x )  is given by the formula 

The exchange potential energy between an electron and pos- 
itron is determined by 

Hence the self-consistent exchange energies of the electron- 
electron and positron-positron interactions in the Fermi- 
liquid model are 

and the energy of the electron-positron exchange interaction 
is 

where a + ( r )  and a - ( r )  are, respectively, the electron and 
positron spin densities, related to the electron and positron 
density matrices j-pl ,p2 and by the following for- 
mula: 

(see Eq. (2.9)). 
Hence for the electron exchange energy 

E L  ,p2 = dVl d f - ,P2 and the positron exchange energy 

& : p l  . p 2 = d V 1 d f + p l  ,pz  (where we have introduced the nota- 
tion V =  V + +  + V + -  + V -  -) we have 

Thus, the self-consistency equations for the equilibrium elec- 
tron and positron density matrices are 

where E: and E I_ have been defined by Eqs. (3.1) and (3.2), 
p +  are the positron and electron chemical potentials, and 
so is the kinetic energy of positrons and electrons. These 
self-consistency equations yield a self-consistency equation 
for the electron and positron spins (see Eq. (2.9)), 

and an equation for determining the electron and positron 
chemical potentials, 

We now allow for the electroneutrality condition 
n+ = n -  E n .  In this case the system of Eqs. (3.4) and (3.5) 
has the solution 

where the quantities a and p can be found from the follow- 
ing equations; 
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with 

(This situation corresponds to ferromagnetic spin ordering.) 
Since near the transition temperature the value of u must be 
small, we easily see that the equation for determining the 
critical temperature, derived from (3.6), has nontrivial solu- 
tions, since 5>0. 

However, Eqs (3.4) and (3.5) also have a solution corre- 
sponding to antiferromagnetic spin ordering: 

where 

with [= 115/4= 1 l.lre2ii2/6m2c2. 

Clearly, these equations coincide with Eqs. (2.10), with 
M=2,uu and v=[/,u2. Thus, the quantity v in Eqs. (2.10), 
in relation to Eqs. (3.8) and (3.9) is given by the following 
formula: 

Since Eqs. (2.10) coincide with the system of Eqs. (3.8) and 
(3.9), the analysis done in Sec. 2 is valid here, too, if m is 
substituted for m, . The phase transition occurs, as shown in 
Sec. 2, when n 2 ~ ~ / 1 2 ( ( u v ) ~ h ~ .  Since for an electron- 
positron plasma v = 2 2 ~ / 3  and the fine-structure constant 
a-11137, we have av-116. We see that the condition 
nb.lr4/12((uv)3~3 is met for densities n b  cmF3. 

If we are dealing with quarks rather than an electron- 
positron plasma, the fine-structure constant a must be re- 
placed with the strong interaction constant a,- 1/10, the in- 
teraction caused by gluon exchange. This suggests that in the 
nomelativistic case a quark system can also undergo a phase 
transition with magnetic ordering. Note that for two interact- 
ing quarks v can be calculated by analogy with the quantum 
electrodynamics calculation for the exchange intera~tion.~ 

Up to this point we have dealt with the nomelativistic 
case. However, Eqs. (3.8) and (3.9) are also valid in the 
relativistic case if ~ ( p )  is interpreted as the relativistic dis- 
persion law ~ ( p )  = JP- and ,u as the relativistic 

chemical potential, which differs from the nomelativistic one 
by the presence of the term mc2. Here we tacitly assume that 
an exchange interaction characterized by a phenomenologi- 
cal parameter v can also be introduced into the relativistic 
region. 

Note that the electron-positron plasma considered here, 
with a nonzero chemical potential p, is actually in a quasi- 
equilibrium state since the plasma lifetime with respect to 
processes of annihilation and creation of electron-positron 
pairs, 

(where ro is the classical electron radius), is considerably 
longer in the nomelativistic case than the Coulomb-collision 
relaxation time 

Here 

i.e., r,/r,= ( T / ~ c ~ ) - ~ ' ~ %  1. 
At ,u = 0 the electron-positron plasma is in equilibrium 

with the photon gas. We do not study this case here, how- 
ever, since it belongs to the relativistic region, where the 
possibility of introducing a parameter v related to the ex- 
change interaction requires a special investigation. 

It is possible that the emergence of spontaneous magne- 
tization in a dense gas of particles and antiparticles is part of 
the mechanism that led to separation of matter and antimatter 
at the early stages of the evolution of the universe. 

4. MAGNETOHYDRODYNAMIC WAVES IN DENSE NEUTRON 
MATTER 

In magnetically ordered neutron matter (Sec. 2) there 
can be modified acoustic and spin waves, just as there can be 
in a ferroelectric. Let us establish the law of dispersion for 
these waves in the nonrelativistic magnetohydrodynamics 
approximation. 

In describing neutron matter by a magnetic moment per 
unit mass, p(r,t) ,  and a velocity vector v(r,t), which we 
assume to be functions of the Eulerian coordinates r and 
time t, we denote the energy per unit mass by 
F = F (p, p ,  dpi / d x k ) ,  where p is the neutron matter density. 
Then the equations of magnetohydrodynamics assume the 
form5 

where H is the magnetic field, and the force f is given by the 
following formula: 
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In contrast to the ordinary magnetohydrodynamic equa- 
tion for a conducting medium, which contain the Lorentz 
force, our equations contain the force (4.3) caused by the 
nonuniformity of the magnetic field. 

Equations (4.1)-(4.3) must be augmented by the equa- 
tion of motion of the magnetic moment, 

where g = 1.93elmPc is the gyromagnetic ratio and ]Ti is the 
effective magnetic field, 

and by the equations of magnetostatics, 

curl H=O, div(H+4rpp)=O. (4.6) 

(The magnetic moment density is M= pp.) 
Equations (4.1)-(4.6) constitute the complete system of 

equations for describing the spectrum of the various vibra- 
tional modes of a magnetically ordered neutron liquid in the 
hydrodynamic approximation. 

Below we assume that the energy density F has the form 

where a is the exchange constant. To estimate the value of 
a in neutron matter we use the relationship between the ex- 
change constant and the Curie temperature well-known from 
the theory of ferromagnetism. As is known (see, e.g., Ref. 5), 
in an ordinary ferromagnet 

where (gePBlme)a,k2=wl is the spin wave spectrum, 
pB= efL/2mec is the Bohr magneton, 8 is the Curie tempera- 
ture, and a is the electron separation. This relationship 
clearly implies that 

Here, to estimate a, we replace 8 with the energy U2 of the 
nuclear interaction between neighboring neutrons, p~ by 
pn , me by mn , and ge by g. We then have 

a= ~ ~ a ~ m , l t i g ~ ~ .  

To linearize the system of equation (4.1)-(4.6) we first 
assume that the equilibrium state, the small deviation from 
which we are studying, is characterized by an equilibrium 
density po and spontaneous magnetization k ,  while the 
equilibrium velocity vo and the magnetic field H are zero. 
Linearizing Eqs. (4.1)-(4.6) about this equilibrium state 
leads to the following expression for the frequencies of mag- 
netohydrodynamic oscillations: 

where 

Here 6 is the angle between the wave vector k and the 
magnetization vector m, ws=gp0ak2 is the spin wave 
frequency, wo = k Jq is the acoustic wave frequency, 
P = p 2 d ~ l d p  is the pressure of neutron matter, and 
0?= 4.rrpopik2. 

Clearly, the conditions (4.8) and (4.9) imply that 

A2- 4 B =  (0;- mi+ w;(ag2 sin26- cos26)) 

with the result that w: >O. 
Let us analyze the dispersion relationship (4.7) in the 

two limiting cases of small and large wave vectors k. 
When k is small, the term o5- k4 in the expressions for 
and A2- 4 B  can be ignored. Then for the case of weak 

magnetoelastic coupling w t 4  w; , or 4 . r r ~ i l p ~ 4  dpldp, we 
have 

We see that the branch w+ is a slightly modified ordinary 
acoustic branch, while w -  coincides with the spin branch 
caused by the dipole-dipole interaction at small values of 
k. For the case of strong magnetoelastic coupling w : ~  wi, 
or 4 . r r ~ i l p ~ % d ~ l d p ,  we have 

c0s26 ( oi(cos26+ ug2sin26) + wi 
cos26+ag2 sin '6' 

In the limit of large wave vectors k- -+a ,  when 

we have 

1 w: + w;ag2 sin26, 
0: = 

wi+ 0: c0s26. 

The first branch, w+ , coincides with the well-known 
expression for the frequency of a spin wave modified by the 
dipole-dipole interaction. 

It appears that in the, case of neutron matter we have 
weak magnetoelastic coupling. To verify this we estimate the 
value of 4- by using the following expression for the 
pressure of an ideal degenerate Fermi gas:1 
P = (3 rr2)2'3?i2n5'3/5m .. Then for n- ~ m - ~  we have Jm'= lo9 cmls. For a neutron gas of this density we 
have J G i  - 2 fi 10" cm/s. Thus, we believe that the 
spectra of magnetoelastic oscillations (4.10) realize them- 
selves in neutron stars. 

Assuming that k- lIR, where R- lo6 cm is the neutron 
star radius, we find that 0,- lo4 s and w-- lo3 s. 
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