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We develop the Glauber-theory description of the final-state interaction (FSI) in quasielastic 
A ( e , e r p )  scattering. The important new effect is an interaction between the two trajectories which 
enter the calculation of the FSI-distorted one-body density matrix and are connected with 
incoherent elastic rescatterings of the struck proton on spectator nucleons. We demonstrate that 
FSI distortion of the missing-momentum distribution is large over the whole range of 
missing momenta. The important finding is that incoherent elastic rescattering of the ejected 
proton leads to strong quantum-mechanical distortions of both the longitudinal and transverse 
missing-momentum distributions. It is shown that allowance for the finite longitudinal size 
of the interaction region associated with proton-nucleon collision neglected in the standard Glauber 
model drastically affects the theoretical predictions at high longitudinal missing momentum. 
We also find very large corrections to the missing-momentum distribution calculated within the 
local-density approximation. O 1996 American Institute of Physics. [S 1063-7761 (96)00406-41 

1. INTRODUCTION 

In recent years much experimental and theoretical effort 
has been devoted to the investigation of final-state interac- 
tion (FSI) effects in quasielastic A ( e , e r p )  scattering at high 
e2. The strength of the FSI is usually characterized by the 
nuclear transparency TA defined as the ratio of the experi- 
mentally measured cross section to the theoretical cross sec- 
tion calculated in the plane-wave impulse approximation 
(PWIA). The strong interactions that the struck proton un- 
dergoes during its propagation through the nuclear medium 
causes TA to deviate from unity. It is e~pected,'.~ however, 
that, at asymptotically high e 2 ,  TA must tend to unity due to 
the color transparency (CT) phenomenon in Q C D ~ - ~  (see 
Ref. 6 for a recent review on CT). From the point of view of 
multiple-scattering theory this effect corresponds to a cancel- 
lation between the rescattering amplitudes with elastic (diag- 
onal) and inelastic (off-diagonal) intermediate states. These 
coupled-channel effects only become important at suffi- 
ciently high e 2 ,  and recent quantum-mechanical analysis7 of 
A ( e , e r p )  scattering has shown that the CT effect from the 
off-diagonal contribution to FSI is still weak in the region 
~ ~ 5 1 0  G ~ v ~ ,  which was confirmed by the NE18 
experimenL8 Thus, there are reasons to expect that in the 
region e2-2-10 G ~ v ~ ,  which is particularly interesting for 
future high-statistics experiments at CEBAF, FSI in 
A  ( e ,  e  ' p )  scattering will be dominated by elastic rescattering 
of the struck proton on the spectator nucleons. In this region 
of e2 the typical kinetic energy of the struck proton 
~ ~ ~ , = ~ ~ / 2 r n , 2 1  GeV is quite large, and FSI can be treated 
within the standard Glauber model? The purpose of the 
present paper is to present a Glauber-theory description of 

the missing-momentum distribution in inclusive A ( e , e r p )  
scattering. We focus on the region of missing momenta 
p,5kF (here kF-250 MeVlc is the Fenni momentum). 
Such an analysis is interesting for several reasons. 

First, understanding the p,-dependence of FSI effects is 
necessary for a quantitative interpretation of the data from 
the NE18 experiment8 and from future experiments at 
CEBAF. The point is that experimentally one measures the 
A ( e , e r p )  cross section only in a restricted acceptance win- 
dow in the missing momentum. Because FSI affects the 
missing-momentum distribution in comparison with the 
PWIA case, the absolute value and the energy dependence of 
the experimentally measured nuclear transparency will be 
different for different kinematical domains. Consequently, 
understanding the p,- and e2-dependence of the conven- 
tional FSI effects is imperative for disentangling the small 
CT effects at CEBAF and beyond. 

Secondly, another CT effect which can be obscured by 
FSI is the forward-backward asymmetry of nuclear 
t r a n ~ ~ a r e n c ~ ' ~ - ' ~  about p,,,=O (as usual we choose the z 
axis parallel to the three-momentum of the virtual photon). 
The CT induced forward-backward asymmetry increases 
with e2. However, similar forward-backward asymmetry is 
generated by FSI even at the level of elastic rescattering of 
the struck proton from the spectator nucleons. This is a con- 
sequence of the nonzero real part of the p N  elastic scattering 
amplitude. Qualitative estimates6 show that for e25 10 G ~ V ~  
the FSI-induced asymmetry can overcome the CT-induced 
effect. For this reason, the interpretation of results from the 
future CEBAF data on the forward-backward asymmetry as a 
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signal for the onset of CT requires an accurate calculation of 
the missing-momentum distribution in the Glauber model. 

Last but not least, the quantitative theory of FSI in quasi- 
elastic A(e,erp) scattering is interesting from the point of 
view of the nuclear physics as well. At high momenta, the 
single-particle momentum distribution (SPMD) is sensitive 
to short range NN correlations (SRC) in nuclei. Because of 
FSI effects, the experimentally measured missing- 
momentum distribution in inclusive A (e,elp) scattering may 
differ considerably from the real SPMD. There has already 
been extensive work on FSI effects in the optical model ap- 
proach to distorted-wave impulse approximation (DWIA) 
(for a detailed review with many references to earlier works 
see Ref. 13). The novel aspect of FSI we focus on in this 
paper can be called the interaction of the two trajectories 
which enter the calculation of the FSI-modified one-body 
density matrix. This interaction of the two trajectories is in- 
duced by the incoherent rescatterings of the struck proton off 
the spectator nucleons and is missed in the standard formu- 
lation of DWIA. Several aspects of the interaction of the two 
trajectories via incoherent rescattering, mostly at large p, , 
were discussed in recent Of special relevance to 
the present paper is an obse~a t ion '~  that the effects of FSI 
due to incoherent rescattering overwhelm the SRC effects by 
the large parameter 

SRC (1) 

Still another novel quantum-mechanical effect found in Ref. 
14 is a nontrivial interference of the FSI and SRC effects, 
which is quite strong in the 4~e (e , e1p )  scattering, but is 
suppressed in heavy nuclei with respect to the incoherent 
rescattering effect by the small parameter -rclRA. Here 
atot(pN) is the proton-nucleon total cross section, r,-0.5 fm 
is the SRC radius [numerically, in the gigaelectronvolt en- 
ergy range the pN interaction radius is similar to r, and 
a,ot(p~)-4wr:], and RA is the radius of a target nucleus. 
Even in the lightest nucleus, deuterium, in which the prob- 
ability of FSI is still very small, FSI effects are quite 
strong.'' Furthermore, incoherent rescattering of the struck 
proton from the spectator nucleons do substantially modify 
the longitudinal missing-momentum distribution compared 
with the SPMD. It leads to large tails in the missing- 
momentum distribution at high Ipm,,l, which are of a purely 
quantum-mechanical origin and defy the classical treatment. 
This vast variety of FSI phenomena justifies looking at the 
salient features of FSI effects and, in particular the effects of 
incoherent rescattering, in a simplified shell model neglect- 
ing SRC effects [the full analysis of 4 ~ e ( e , e r p )  scattering is 
presented elsewhere.lg] In heavier nuclei, which we study in 
the present paper, FSI distortions of the missing-momentum 
distribution turn out to be strong even in the region of rela- 
tively small momenta, pm5300 MeVlc. We find that the 
inclusion of incoherent rescattering causes the p, distribu- 
tions to depart substantially from predictions of the conven- 
tional DWIA over the whole range of missing momenta. 

One important finding from our study of FSI is a natural 
applicability limit for the Glauber formalism in the case of 
the A(e,erp) reaction. It is connected with the finite longi- 

tudinal size of the interaction region for proton-nucleon col- 
lisions, which is about the proton radius. This is neglected in 
standard applications of multiple-scattering theory, what 
leads to an anomalously slow decrease (~lp,, ,)-~) of the 
missing-momentum distribution at high p,,, . The physical 
origin of this anomalous behavior is an incorrect treatment in 
the Glauber model of the incoherent rescattering of the 
struck proton on the adjacent spectator nucleons, when the 
longitudinal separation between the struck proton and spec- 
tator nucleons is comparable with the proton size. Our esti- 
mates show that uncertainties due to finite proton size effects 
can be large only for Ip,,,~~SOO MeVIc. In this region of 
IPm,,l, besides the short range NN correlations, the experi- 
mentally measured missing-momentum distribution becomes 
sensitive to the finite proton size effects in FSI, which makes 
the experimental study of NN correlations much more diffi- 
cult. It is important that this novel sensitivity of the missing- 
momentum distribution at high Jp,,,l to the proton size does 
not disappear at high e2 and persists in the coupled-channel 
multiple-scattering theory when the CT effects for the inelas- 
tic (off-diagonal) rescattering of the struck proton are in- 
cluded. One must be aware of this effect in the interpretation 
of the high-p, experimental data-from future experiments at 
large e2. 

Our paper is organized as follows. In Sec. 2 we derive 
the Glauber theory formulas for calculation of the missing- 
momentum distribution in A(e,erp) scattering. We also dis- 
cuss briefly the generalization of our formalism to the case 
with allowance for CT effects. We conclude Sec. 2 with 
comments on other works on the application of the Glauber 
model to A(e,erp) reaction. The subject of Sec. 3 is the 
detailed comparison of the Glauber model with the optical 
potential approach. Here we emphasize the importance of the 
novel FSI effect of distortion of the one-body density matrix 
by incoherent elastic rescattering of the struck proton in the 
nuclear medium, which emerges in the Glauber model natu- 
rally and is missed in the optical model. We conclude Sec. 3 
with comments on the formal analogy between the optical 
potential treatment of the FSI and the Glauber formalism as 
applied to the exclusive A(e,erp) scattering. In Sec. 4 we 
derive the multiple-scattering series for the transverse 
missing-momentum distribution. We show that the p,, dis- 
tribution can be formally represented in a form when all the 
effects of quantum-mechanical distortion for coherent elastic 
rescatterings are reabsorbed in the local p,, distribution, 
which then is convolved with the differential cross section of 
multiple incoherent elastic rescattering of the struck proton 
on the spectator nucleons. In Sec. 5 we discuss in detail how 
the incoherent rescattering of the struck proton on the spec- 
tator nucleons significantly affects the longitudinal missing- 
momentum distribution at high Ip,,,l. The qualitative 
quantum-mechanical analysis of this phenomenon is pre- 
sented and the emerging applicability limits of the Glauber 
model are discussed. In Sec. 6 we present our numerical 
results. The summary and conclusions are presented in 
Sec. 7. 

One remark on our terminology is in order: In the 
present paper we consider the A(e,elp) reaction without 
production of new hadrons. We will use the term "inclusive 
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A(e,erp) scattering" for the process in which one sums the 
cross section over the undetected final state of the residual 
nucleus. The term "exclusive A(e,elp) scattering" will be 
used for process in which there is only one knocked-out 
nucleon (the struck proton). 

2. FSI AND THE MISSING-MOMENTUM DISTRIBUTION IN 
THEGLAUBERTHEORY 

We begin with the kinematics of quasielastic A(e,erp) 
scattering. Following the usual practice,13*19 we assume that 
the differential cross section of the A(e,erp) reaction can be 
expressed through the half-off-shell ep-cross section, aep , 
and the distorted spectral function, S(Em ,pm), as 

Here K is the kinematic factor, v and q are the (e,el) 
energy and momentum transfer, Q ~ = ~ ~ -  v2, the struck pro- 
ton has momentum p and energy E(p) = Tkh+mp, the miss- 
ing momentum and energy are defined as pm=q-p and 
Em= v+mP- E(p) and the z-axis is chosen along q. Equa- 
tion (2) is written under the assumption that the difference 
between the spectral functions corresponding to absorption 
of the longitudinal (L) and transverse (T) photons, connected 
with the spin effects in FSI, can be neglected. We ignore spin 
effects in FSI because when the energy of the struck proton 
is large they become small. Since we do not distinguish be- 
tween the longitudinal and transverse spectral functions, be- 
low we treat the electromagnetic current as a scalar operator. 
Also, note that Eq. (2) is related to the cross section averaged 
over the azimuthal angle between the missing momentum 
and the (e,er) reaction plane, which does not contain the LT 
and ?T interference responses.13 

In terms of the distorted spectral function the nuclear 
transparency in a certain acceptance domain D of the miss- 
ing energy and the missing momentum can be written as 

Here S,,(Em ,pm) is the theoretical spectral function of the 
PWIA calculated for the vanishing FSI. The missing- 
momentum distribution which is of our interest in the present 
paper is given by 

The distorted spectral function can be written as 

~ ( ~ r n  ,pm)=Z (Em+E~- l (~rn)+mp-m~)r  
f 

(5) 

where MAP,) is the reduced matrix element of the exclusive 
process e + Ai+e +(A - l ) f+p.  Then the missing- 
momentum distribution reads 

In our analysis we confine ourselves to target nuclei with 
large mass number A %- 1. Then, neglecting the center of mass 
correlations, we can write MAP,) as 

Here qi and qf are the wave functions of the target and 
residual nucleus, respectively. The nucleon " 1" is chosen to 
be the struck proton. For the sake of brevity, in Eq. (7) and 
hereafter the spin and isospin variables are suppressed. The 
factor S(rl ,..., rA), which describes the FSI of the struck pro- 
ton with spectator nucleons, is given by 

where bj  and zj  are the transverse and longitudinal coordi- 
nates of the nucleons and T(b) is the familiar profile function 
of the elastic proton-nucleon scattering. (As usual we assume 
that the spectator coordinates may be considered as frozen 
during propagation of the fast proton through the nuclear 
medium.) For r(b) we use the standard high-energy para- 
metrization 

Here apN is the ratio of the real to imaginary part of the 
forward elastic pN amplitude, BpN is the diffractive slope 
describing the t-dependence of the elastic proton-nucleon 
cross section: 

In the Glauber high-energy approximation, the struck proton 
propagates along the straight-path trajectory and can interact 
with the spectator nucleon "j" only provided that z j>zl ,  
which is the origin of the step-function @zj-zl) in the FSI 
factor (8). Physically, this means that we neglect the finite 
longitudinal size of the region where the struck proton inter- 
acts with the spectator nucleon. The consequences of this 
approximation will be discussed in section 5. 

The sum over all the final states of the residual nucleus 
in Eq. (6) can be performed making use of the closure rela- 
tion 

which leads to 
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Thus, from the standpoint of the nuclear physics, the calcu- 
lation of the missing-momentum distribution w (p,) reduces 
to an evaluation of the ground-state expectation value for a 
special many-body operator 

where 

The essential characteristic of the operator U from Eq. (14) 
is that it distorts the target nucleus wave function in the 
variables r2, ..., rA only when some of the ri are close, within 
the high-energy pN interaction radius, to at least one of the 
two straight-line trajectories beginning from the points r, 
and ri , which arise after we take the square of the reduced 
nuclear matrix element (7). The crucial point of the subse- 
quent analysis is that the FSI generates a short-range inter- 
action between these two trajectories, which will be one of 
the main factors in the distortion of missing-momentum dis- 
tribution as compared to the SPMD. 

Note that thus far we have not used the specific form of 
the Glauber attenuation factor (8). The obvious generaliza- 
tion of Eq. (12) with allowance for the CT effects is the 
substitution 

where IE) is a three-quark wave function which describes 
the state of the proton (the ejectile) after absorption of the 
virtual photon at point rl , and $3q(rl ,r2 ,..., rA) is an operator 
which describes the evolution of the three-quark wave func- 
tion of the struck proton as it propagates in the nuclear me- 
dium. In terms of the electromagnetic current operator j,, , 
the ejectile wave function is expressed as1' 

where Gip(Q) = ( i ]~ , , (Q) l~ )  includes the electromagnetic 
form factor of the proton as well as all the transition form 
factors for the electroexcitation of the proton, e + p j e l  + i. 
In the case of the nonrelativistic oscillator quark model the 
evolution operator S3q can readily be computed using the 
path-integral It is possible to evaluate this 
operator also in the coupled-channel multiple scattering 
the01-y.~ Here we restrict ourselves to the conventional, 
single-channel, Glauber approximation; the CT effects will 
be considered elsewhere. 

Equations (8), (12) form the basis of the Glauber-theory 
calculation of the missing-momentum distribution and 
nuclear transparency in A(e,elp) reaction. Evidently, even 
neglecting the CT effects, evaluation of w(pm) is quite an 
involved problem. For the reasons outlined in the Introduc- 
tion, in this communication we confine ourselves to an 

evaluation of FSI effects in the simplified shell model, which 
is well known to give a good description of SPMD at mod- 
erate momenta ~ ~ 5 2 5 0 - 3 0 0  MeVIc, in which the short- 
range NN correlations effects are known to be marginal?3 At 
larger p, SPMD will be dominated by SRC  effect^?^,^^ but 
in the p, distribution observed in A(e,elp) scattering FSI 
effects are stronger than SRC  effect^.'^"^"^ Furthermore, in 
the gigaelectronvolt energy range of interest in the present 
paper, ~ , ~ - - r :  holds, and FSI and SRC contributions to the 
transverse missing-momentum distribution are very similar 
to each other with the FSI effect being numerically much 
larger (see the inequality (1)) (this fact is also corroborated 
by the small correlation effect found in Ref. 26 in the case of 
the integral nuclear transparency). Finally, a counterdistinc- 
tion between the SRC and FSI effects is the striking angular 
anisotropy of FSI effects versus the isotropy of the SRC 
contribution to the p, distribution. 

Therefore, as far as the salient features of FSI are con- 
cerned, in particular understanding of the role of the interac- 
tion between the two trajectories in the FSI factor, it is rea- 
sonable to use a simple independent-particle nuclear shell 
model to calculate the missing-momentum distribution in the 
region p,S kF . After neglect of the SRC the A-body semidi- 
agonal density matrix q i ( r ,  ,r2,. . . ,rA)WT (r; ,r2,.  . . ,rA) 
still contains the Fermi correlations. To carry out the integra- 
tion over the coordinates of the spectator nucleons in Eq. 
(12) we neglect the Fermi correlations and replace the 
A-body semidiagonal density matrix by the factorized form 

Here 

is the shell-model proton one-body density matrix and +,, are 
the shell-model wavefunctions, and pA(r) is the nucleon 
nuclear density normalized to unity. The errors connected 
with ignoring the Fermi correlations must be small, because 
the ratio of the Fermi correlation length 1,-3/k, to the in- 
teraction length corresponding to the interaction of the struck 
proton with the Fenni-correlated spectator nucleons, 
lint-[4~t,t(p~)(nA)]-1 (where (nA) is the average nucleon 
nuclear density) is a small quantity (-0.25). Note that the 
high accuracy of the factored approximation for the many- 
body nuclear density in the calculation of the Glauber-model 
attenuation factor for hadron-nucleus scattering has been 
well known for a long time (for an extensive review of 
hadron-nucleus scattering see Ref. 27). 

After we use the substitution (17) in Eq. (12), the 
missing-momentum distribution can be written as 

where the FSI factor @(rl  , r i )  is given by 
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Equation (19) is a counterpart of the conventional formula 
for the SPMD. Due to the dependence of the FSI factor 
@(rl  ,r;) on rl and r; , the missing-momentum distribution 
normalized to unity does not coincide with the SPMD. Using 
the Glauber formula (8), we obtain the closed analytical ex- 
pression for the FSI factor (20) 

where we introduced the partial optical-thickness function 

The convolution integrals in the FSI factor can further be 
simplified by exploiting the fact that t(b,z) is a smooth func- 
tion of the impact parameter b compared to the pN profile 
function I'(b): to zeroth order in the small parameter B,,IR; 
(RA is the nucleus radius) 

To the same approximation, 

where the strong dependence on the important variable bl 
- b; is concentrated in the function d b )  given by 

We checked that for nuclear mass number A 2 10 the smear- 
ing corrections to Eqs. (23) and (24) change the final results 
for w(p,) and TA by at most 1-3% in the range of p, con- 
sidered. Finally, making use of Eqs. (21), (23), (24) and ex- 
ponentiating, which is known to be a good approximation for 
A + 1, we obtain 

(The exponentiation (26) simplifies the discussion below, it 
is not required in the numerical calculations.) Below we will 
refer to the first two terms in the exponent in Eq. (26) as 
I'(T*) terms, and to the last one as the I'*T term. Note that, 
were it not for the r*I' terms in the exponent, the FSI factor 
would have factored into two independent attenuation (and 
distortion) factors which only depend on r and r', respec- 
tively. The r*I' term expresses the interaction between the 
two trajectories, which is a steep function of I bl - b; 1 on the 
scale &. This interaction substantially affects the ob- 
served missing-momentum distribution and will be of major 
concern in this paper. 

Besides the three-dimensional distribution w(p,), we 
will consider the p,,,-integrated p,, distribution, w,(p,,), 
and the p,,-integrated p,,, distribution, w,(p,,,). Perform- 
ing the relevant longitudinal and transverse momentum inte- 
grations in (19), we obtain 

where 

Equations (19), (26)-(30) form the basis for our Glauber- 
model evaluations of the missing-momentum distribution 
w(p,) and the transparency TA(pm) in A(e,elp) scattering. 
As was emphasized in Sec. 1, the three-dimensional distri- 
bution (19) is particularly important for interpreting and ac- 
curately comparing with theory the experimental data taken 
with the limited acceptance domain D when the nuclear 
transparency TA(D) is defined according to Eq. (3). The 
early discussion of effects of the I'*T terms on TA centered 
on the reshuffling of the p, distribution by incoherent res- 
tattering from small to large transverse missing 

and is only applicable for p,Zk,. In the 
present paper we shall present the first evaluation of TA 
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(NE18) with full allowance for all the distortions predicted 
by the Glauber model for the kinematical conditions of the 
NE18 experiment.' 

The formalism expounded above is rather simple and is 
based upon the same ideas as the Glauber theory of diffrac- 
tive hadron-nucleus  interaction^.^ We gave a very detailed 
derivation mainly because in the current literature there exist 
discussions of A (e,elp)  scattering within the same Glauber 
model, in which the important effect of interaction between 
the two trajectories either is missed a l t ~ ~ e t h e ? ' . ~ ~  or is not 
given a full For instance, the authors of Ref. 
30 in their counterpart of our FSI factor (26) put 

and miss the rapid dependence on the A r ,  = r, - rI of the 
T*T term in the exponent of FSI factor. In conjunction with 
the local-density approximation (LDA) for the one-body 
density matrix32 (we comment more on this approximation 
below), 

(here W(r-r') is the Fourier transform of the SPMD), this 
leads to a missing-momentum distribution which is propor- 
tional to the SPMD?' missing all the distortion effects 
which, as we shall demonstrate below, are quite strong. The 
same criticism is relevant to an analysis33 of quasielastic 
(p ,2p) scattering. 

The fact that neglect in Ref. 30 of the absorption-factor 
dependence on the variable Ar, is not justified was pointed 
out by author of Ref. 31. Still, these authors included the 
dependence of the FSI factor only on the longitudinal com- 
ponent of the vector Ar, , incorrectly putting in the FSI factor 

b, = b; = (b, + b;)/2 (33) 

and so missed an interaction between the two trajectories 
which is a steep function of Ab, = bl  - b; . For this reason, 
the approximation (33) precludes an accurate treatment of 
the transverse missing-momentum distribution and can not 
be justified. Reference 31 also used the LDA for the one- 
body density matrix. It is easy to show using Eqs. (19) and 
(26) that the approximation (33) leads to a  integrated 
transverse missing-momentum distribution which is propor- 
tional to the p,-integrated transverse SPMD. Furthermore, in 
the region pmS k, , where nf(p,) may be approximated by a 
Gaussian, in the resulting three-dimensional missing- 
momentum distribution the dependence on the transverse and 
longitudinal components will factorize, with the 
p,,-dependence being the same as that of the SPMD. Such 
a factorization cannot be correct, because the term =T*T in 
Eq. (26), which has the steepest dependence on Ab,, and the 
terms aT(T*), which are smooth function of Ab, , have quite 
different dependence on z ,  - z ;  . Our numerical results show 
that the three-dimensional missing-momentum distribution 
(19) actually has a manifestly nonfactorizable form. 

To conclude the discussion of approaches of Refs. 30 
and 31, one remark is in order on the LDA (32) for the 
one-body density matrix used in Refs. 30 and 31. The LDA 
is widely believed to be a very good approximation for 
heavy nuclei. Our numerical results show that the LDA re- 

sults for the missing-momentum distribution in A(e,e 'p) are 
too crude an approximation even for nucleus mass number 
A = 40. The comparison of the LDA results with those for the 
full-shell model density matrix (18) will be presented in Sec. 
6. 

3. CONNECTION BETWEEN THE GLAUBER MODEL 
AND THE OPTICAL-POTENTIAL APPROACH 

A comparison between the Glauber formalism set up in 
Sec. 2 and the optical potential approach, also known as the 
conventional DWIA, that is usually used to describe the FSI 
effects in A(e,e1p) scattering at low e2 is in order. In the 
DWIA the FSI effects are taken into account by introducing 
an optical potential Vow(r) (for a recent review with exten- 
sive references to early works see Ref. 13). Then the outgo- 
ing proton plane wave becomes distorted as a consequence 
of the eikonal phase factor 

(v is the velocity of the struck proton). The missing- 
momentum distribution in this approach is given by Eq. (19) 
with the following FSI factorization 

The important feature of the DWIA is that the optical poten- 
tial does not depend on the individual coordinates of the 
spectator nucleons. Thus the optical potential in the DWIA 
embodies an effective description of how the nuclear me- 
dium influences the wave function of the struck proton. 

As a matter of fact, the Glauber attenuation factor (8) is 
merely a consequence of solving the wave equation for the 
wave function of the struck proton in the eikonal approxima- 
tion. Nevertheless there is an important conceptual difference 
between the DWIA and the Glauber-model approach. In the 
DWIA the FSI effects are taken into account at the level of 
the wave function of the ejected proton. However, it is clear 
that a rigorous evaluation of the probability distribution of a 
subsystem (the struck proton in the case under consideration) 
of a process including a complex system (the system of the 
struck proton and spectator nucleons in our case) requires 
calculations at the level of the subsystem density matrix. 
Equations (8) and (12) embody precisely this procedure in 
the case of quasielastic A (e , e lp)  scattering. Indeed, as was 
mentioned above the Glauber attenuation factor (8) solves 
the wave equation for the outgoing proton wave function for 
a certain configuration of the spectator nucleons, 
7={r2, ..., rA). (As usual, when the energy of the struck proton 
is high, one can neglect the motion of the spectator nucleons 
during the propagation of the fast struck proton through the 
residual nucleus.) The reduced nuclear matrix element 
squared which was obtained through the wave equation for 
the struck proton at fixed 7 is averaged over the spectator 
nucleon positions in Eq. (12). It is clear that the averaging 
over 7 is merely a way of evaluating the diagonal matrix 
element of the subsystem (the struck proton) in momentum 
space. In another words the difference between the treatment 
of the FSI effects in the DWIA approach and in the Glauber 
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model can be formulated as a difference in the order of op- 
eration. Schematically, the order of operations in the DWIA 
is as follows: 

1. Averaging over the spectator nucleon positions 
(evaluation of the optical potential). 

2. Solving the wave equation for the struck proton wave 
function using the effective optical potential and calculation 
of the reduced nuclear matrix element squared. 

In the case of the Glauber model the reverse order is 
used: 

1 .  Solving of the wave equation for the struck proton 
wave function at fixed positions of the spectator nucleons 
and computing of the reduced nuclear matrix element 
squared. 

2. Averaging over the spectator nucleon positions. 

In contrast to the optical potential FSI factor (35),  the 
Glauber-model factor (26) has a nonfactorizable form due to 
the presence of the term mT*T. The interaction between the 
two trajectories of the struck proton in the Glauber FSI factor 
(26) connected with T*T term is a consequence of averaging 
over the spectator nucleon positions after computing the ma- 
trix element squared for fixed the spectator configuration 7. 
The physical origin of the T*T term in the FSI factor @ (26) 
is the incoherent elastic (see Sec. 4) rescattering of the struck 
proton on the spectator nucleons as it propagates through the 
target nucleus. It is precisely the sum over the nucleus exci- 
tations created by the elastic rescattering of the ejected pro- 
ton which leads to the nonfactorizable expression (26). 

There is a formal analogy between the optical model FSI 
factor (35) and the Glauber-model factor, if the r*T term in 
the exponential of (26) is excluded. Indeed, such a reduced 
Glauber attenuation factor @"(rl , r ; )  takes on a factored 

"Pt form as a function of r ,  and r ,  . 

@:it(rl , r ; )=s : i t ( r l )~ : i : ( r i ) ,  

with 

The integral nuclear transparency and the missing- 
momentum distribution calculated with the FSI factors (26) 
and (36) differ substantially. Our numerical results give 
clearcut evidence that the T*T term in (26) becomes very 
important in the region pm'200 MeVlc. This is a conse- 
quence of the short-range (in the variable r ,  - ri)  "interac- 
tion" between the two trajectories in the FSI factor (26).  It is 
clear that such a short-range interaction cannot be modeled 
in the optical-potential approach even by means of any modi- 
fications of the factored attenuation factor (35). Thus, the 
optical model DWIA which was successful in the region of 
low e 2 ,  cannot be extended to describe the inclusive 
A ( e , e l p )  reaction at high Q2. The essential feature of the 
high-e2 region is that in this case both the coherent rescat- 
tering of the struck proton on the spectator nucleons and the 
incoherent rescattering leave the direction of the proton mo- 
mentum practically unchanged. For this reason they need to 
be treated on the same footing. In contrast, at low e 2 ,  when 
the energy of the struck proton is small, every incoherent 

rescattering of the struck proton causes a considerable loss of 
the struck proton's energy-momentum. As a result, the flux 
of the outgoing proton plane wave is suppressed. This effect 
is modeled in the DWIA by the imaginary part of the effec- 
tive optical potential. Thus, the DWIA and the Glauber 
model appear to be applicable to the description of A ( e , e l p )  
scattering in different kinematical domains, at low e2 and at 
high e2, respectively. 

It is interesting that at high Q2 the optical potential form 
of the Glauber-model FSI factor (36) still has a certain do- 
main of applicability. One can show that in the shell model 
without NN correlations the FSI factor (36) corresponds to 
the situation in which the sum over the residual nucleus 
states includes only one-hole excitations of the target 
nucleus. In the multiple elastic rescattering expansion of Sec. 
4 the FSI factor (36) emerges in zeroth order in the T*T 
term. To a certain extent, it can be identified with single- 
nucleon knockout exclusive A ( e  ,e ' p )  scattering. Indeed, in 
this case the index f in Eq. (7) labels the shell state of the 
target nucleus occupied by the struck proton. Then, neglect- 
ing the Fermi correlations between the spectator nucleons, 
one can write down the reduced matrix element correspond- 
ing to the removal of the proton in the state f from the target 
nucleus in the form 

Summing the squares of the matrix elements (38) over the 
states f immediately leads to the formula (19) with the re- 
duced FSI factor (36) instead of the full one (26). It is worth 
noting that from the quantum-mechanical point of view, the 
FSI factor (36) describes the FSI effects from coherent res- 
tattering of the struck proton. 

Making use of the FSI factors (26) and (36),  one obtains 
for the integral nuclear transparency in quasielastic A ( e  ,e ' p )  
scattering 

(uin(pN)  = utot(pN) - u e l ( p N ) )  for the inclusive reaction, 
and 

for the exclusive process. 
Thus the integral nuclear transparency is controlled by 

the inelastic proton-nucleon cross section in the inclusive 
case and by the total proton-nucleon cross section in the 
exclusive one. The physical origin of this difference is obvi- 
ous. The incoherent elastic rescattering of the struck proton 
in the nuclear medium do not reduce the flux of the ejected 
proton. For this reason the attenuation is controlled by the 
inelastic proton-nucleon cross section in the inclusive case. 
In the exclusive A ( e , e  ' p )  reaction the struck proton is for- 
bidden to knock out spectator nucleons through incoherent 
elastic rescattering. The corresponding attenuation is con- 
trolled by the total proton-nucleon cross section and F(LC 
<T?. 
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As we already emphasized, the above correspondence 
between the FSI factor (36) and exclusive A(e,erp) scatter- 
ing takes place only in the idealized shell model. This corre- 
spondence is partly lost if short-range NN correlations are 
included. Indeed, A(e,e 'p) scattering on the proton of the 
correlated NN pair causes ejection of the spectator nucleon 
of the correlated NN pair,24*25 and the corresponding final 
state will not fall into the exclusive category. However, at 
small missing momenta p, the probability for ejection of 
spectators must be small, because the typical momenta of 
nucleons in the correlated pair are of the same order in mag- 
nitude and >kF , and triggering on small p, one effectively 
suppresses the contribution from correlated NN pairs. 

4. INCOHERENT RESCAlTERlNG AND THE TRANSVERSE 
MISSING-MOMENTUM DISTRIBUTION 

Equations (39) and (40) suggest that in the case of the 
integral nuclear transparency FSI effects admit partly a 
simple quasiclassical interpretation. On the other hand, it is 
clear that the missing-momentum distribution (19) or TA(pm) 
as a function of p, does not admit a classical treatment. The 
integration over rl and r; in Eq. (19) shows that the experi- 
mentally observed cross section of A(e,elp) scattering at a 
particular p, is a result of manifestly quantum interference 
of amplitudes with different positions where a virtual photon 
strikes the proton. We would like to emphasize that in the 
case of the three-dimensional missing-momentum distribu- 
tion (19) the FSI effects from the incoherent rescatterrings 
(connected with the term xT*T in the FSI factor (26)) taken 
separately also cannot be treated classically. Indeed, the 
lower limit in the z-integration for the term mT*T in Eq. (26) 
is equal to the maximum value of the lower limits of the 
z-integration in the term a T  and XI'". This implies that on 
part of the struck proton's trajectory incoherent rescattering 
is forbidden. Hence no probabilistic interpretation of the ef- 
fects connected with the T*T term in the FSI factor (26) in 
the case of the nonintegrated distribution (19) is possible. 

An exceptional case is the p,,,-integrated p,, distribu- 
tion (28), when in the FSI factor (30) the lower limits of the 
z-integration in the terms mI'(T*) and aT*T become equal. 
In this unique case, the probabilistic treatment that is pos- 
sible for the integral nuclear transparency (39) can to a cer- 
tain extent be extended to the transverse missing-momentum 
distribution (28). To demonstrate this fact it is convenient to 
rewrite (28) in the form 

Let us introduce a local transverse momentum distribution 
which includes all the distortions from coherent elastic scat- 
tering effects at the level of the optical form of the Glauber 
FSI factor (36), 

This local distribution (42) is normalized as 

Then, after expanding the last exponential factor in Eq. (41) 
in a power series, we can represent the p,,,-integrated trans- 
verse momentum distribution in the form of the multiple 
incoherent elastic rescattering series 

m 

w,(prn,)=C w!V)(prn,), 
v=O 

(43) 

where the zeroth order term is given by 

and the contribution of the v-fold component for v a l  is 

Equations (43)-(45) represent w,(p,,) in a form when all 
the quantum distortion effects are contained in a local 
missing-momentum distribution ~ , ,~~~(b , z ,p , , )  computed 
with the FSI factor without the T*T term. The contributions 
(45) to the expansion (43) from the incoherent rescattering 
connected with the I'*r term admit a probabilistic reinter- 
pretation. 

The transverse missing-momentum distribution (28) ob- 
tained using the closure relation (1 1) is appropriate to inclu- 
sive A(e,erp) scattering. Nevertheless, the representation 
(43) can be used to estimate the contribution to the cross 
section of this process from events with a fixed number of 
the knocked-out (recoil) nucleons. Our numerical results 
show that the dominant contribution to the transverse 
missing-momentum distribution in the region p, 5 kF comes 
from the terms with 16 1. This means that the inclusive cross 
section of A(e,etp) scattering in the above kinematical do- 
main is saturated by the events without (v=O) and with one 
(v= 1) knocked-out recoil nucleon (besides the highenergy 
ejected proton). At higher p,, the contribution from the 
terms with v>l also becomes important. From the convolu- 
tion (45) it is obvious that the large-v terms decrease more 
strongly with p,, and the large-p,, behavior of wr1(pm,) 
is only sensitive to the small-p,, behavior of the SPMD. 
The relative contribution of the v a  1 terms increases with the 
nuclear mass number.I6 The role of incoherent rescattering in 
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the region p, 2 kF was recently discussed in Ref. 16. It was 
shown there, in particular, that incoherent rescattering leads 
to a large tail in the missing-energy distribution. In the inte- 
grand of (41) the steepest dependence on the variable A is 
contained in the last exponential factor. As a result, at high 
p, incoherent rescattering effects become more important 
than distortion effects and the local transverse momentum 
distribution (43) can be approximated by the attenuated (but 
undistorted) single-particle transverse momentum distribu- 
tion. This approximation has been used in Ref. 16. We will 
see that in the region p, 5 k, of interest in the present paper, 
the FSI effects connected with distortion and with incoherent 
rescattering are of the same order of magnitude, and both of 
them must be taken into account simultaneously. 

One must be careful with the physical interpretation of 
incoherent rescattering in the A(e,erp) reaction because the 
expansion (43) is somewhat formal and does not imply that 
incoherent rescattering allow a classical treatment. For in- 
stance, as we will see below, the representation (43) even 
does not imply that the momentum transfers in the incoher- 
ent rescattering of the struck proton on spectator nucleons 
are purely transverse. For this reason, in particular, the FSI 
effects associated with incoherent rescattering of the struck 
proton in the nuclear medium cannot be modeled via the 
Monte-Carlo approach. 

5. LONGITUDINAL MISSING-MOMENTUM DISTRIBUTION 
AND APPLICABILITY LIMITS OF THE GLAUBER 
MODEL 

The failure of the quasiclassical probabilistic treatment 
of incoherent rescattering becomes especially evident in the 
case of the longitudinal missing-momentum distribution. Na- 
ively, from the classical point of view, one expects that this 
distribution not to be affected by the elastic rescattering of 
the struck proton on the spectator nucleons. In fact, as one 
can see from Eqs. (19), (26), because of the last term in the 
exponential in Eq. (26), the incoherent rescattering must af- 
fect, and have a nontrivial impact on, the longitudinal 
missing-momentum distribution. 

It is worth noting that even from a simple qualitative 
quantum-mechanical consideration one can understand that 
the incoherent rescattering must influence the longitudinal 
missing-momentum distribution. If A1 is the distance be- 
tween the point where the virtual photon strikes the ejected 
proton and the point where incoherent scattering of the spec- 
tator nucleon takes place, then the momentum transfer in the 
pN scattering has the uncertainty Ak- llAl. For sufficiently 
small A1 the longitudinal momentum transfer can be compa- 
rable to the transverse one. Thus, one can see that in the 
region of high Ip,,,(, p,, (Ipm,zl-pm,) the incoherent re- 
scattering of the struck proton on the adjacent spectator 
nucleons must considerably affect the missing-momentum 
distribution compared to the PWIA case. Specifically, as we 
will see below, the T*T term in the FSI factors (26), (29) 
gives rise to a substantial tail at high Ip,,,l, which is missed 
if the optical potential form (36) of the FSI factor is used. 

From the technical point of view, this sensitivity of the 
longitudinal missing-momentum distribution to incoherent 
rescattering derives from the above mentioned aspect in the 

z-integration for the term aT*r in Eq. (26). Whereas the 
factor @zit(rl ,ri) defined by Eq. (36) has a smooth behavior 
in the variable 6 = zl  - zi at the point 6=0, the FSI factor 
(26) as a function of 6 has a discontinuous derivative with 
respect to 6 at the point 6=O, which has its origin in the 
nonanalytical function max(zl ,zi) as the lower limit of the 
z-integration. After the Fourier transform, the singular be- 
havior of the integrand in Eq. (19) (and Eq. (27) as well) in 
the variable 6 shows up as anomalous behavior of the miss- 
ing momentum distribution at high longitudinal momenta. 

Let us proceed with an analysis of the longitudinal mo- 
mentum distribution for the case of the p,,-integrated dis- 
tribution (27). The absence of the integration over b-b' 
makes a qualitative analysis of this case considerably simpler 
than for the nonintegrated one (19). It is convenient to re- 
write the longitudinal FSI factor (29) in the form 

with 

In Eq. (46) we separated the function @topt(b,z,zr) 
from the FSI factor (29), which to a certain extent can be 
interpreted as the optical potential FSI factor which describes 
only those distortion of the plane wave connected with real 
inelastic interactions (absorption) of the struck proton in the 
nuclear medium. We will refer to the corresponding longitu- 
dinal missing-momentum distribution as w~opt(Pm,z). Since 
@topt(b,z,z ' ) is a symmetric function of z and z', the func- 
tion W ~ , ~ ( P , , ~ )  is even in p,,, . 

For the purposes of the qualitative analysis, one can ap- 
proximate the functions C1,2(b,~,~ ' )  for A S  1 by the follow- 
ing expressions: 

where 

and (n , )  is the average nuclear density. 
Then, using these approximations, the longitudinal 

missing-momentum distribution can be cast as a convolution 

Here c2(k) stands for the Fourier transform of the factor C2. 
Equation (54) shows clearly that the major effect of the non- 
zero real part of the pN-amplitude contained in the factor C,  
is a shift of the longitudinal missing-momentum distribution 
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by k1 .I7 In the region of e2-2- 10 G ~ V ~  this shift due to the 
nonzero up, is quite large, k,-20 MeVlc, and causes the 
p,,, distribution to be quite asymmetric about pm,,=O. 

The role of the factor C2 is much more interesting. In the 
approximation (51), the Fourier transform of the factor C2 is 
given by 

In the domain of e2 we are interested in, numerically 
k2- 10-20 MeVlc. Hence a strong inequality k2-6kp is sat- 
isfied and cz(k) has the form of a sharp peak, much narrower 
than the conventional SPMD. Consequently, at Ipm,,1 < k, 
the factor c2(k) in the convolution representation (54) acts 
like a Sfunction and at small Ipm,,l we have 

whereas at sufficiently large Ipm,,l z k F  the p,,,-dependence 
of wz(pm,,) will be controlled rather by the asymptotic be- 
havior of c2(k), with the result that 

W,(P~,,)~P,,"Z. (57) 

For real finite-size nuclei, when c2(k) is evaluated from 
the exact expression (49), the width of the peak in the Fou- 
rier transform c2(k) will rather be controlled by the the in- 
verse nucleus size because k 2 5  l/RA. Still, due to the strong 
inequality kF+ llRA, the resulting peak in c2(k) again turns 
out to be much narrower than the SPMD. Consequently, the 
finite nucleus size will not change the asymptotic law 
c 2 ( k ) ~  k-2, which derives only from the nonanalytical be- 
havior of the functions (49), (51) at the point z = zr  . 

Our numerical results show that even in the region 
Ipm,,l -200-300 Mevlc there is considerable deviation from 
the optical approximate formula (56), although the missing 
momenta at which the anomalous behavior (57) sets in are 
considerably greater than kF , beyond the domain of applica- 
bility of the independent particle shell model used in the 
present paper. 

The longitudinal momentum transfer in the incoherent 
rescattering of the struck proton in A(e,e'p) reaction stems 
from the absence of an incoming proton plane wave in this 
case. Indeed, from the quantum-mechanical point of view the 
missing-momentum distribution (19) corresponds to interfer- 
ence of the amplitudes of the different positions at which the 
virtual photon strikes the proton. For each of these ampli- 
tudes the wave function of the spectator nucleons, after the 
struck proton leaves the target nucleus, will be distorted 
along the straight line that begins where the photon-proton 
interaction takes place. It is clear that the decomposition of 
the distortion of the spectator nucleon wave function into 
plane waves, besides the components with transverse mo- 
mentum, contains components with longitudinal momentum. 
The asymptotic behavior (57) of the longitudinal momentum 
distribution is a consequence of the discontinuous distortion 
of the spectator nucleon wave functions. This discontinuity is 
connected with the Bfunction appearing in the Glauber at- 
tenuation factor (8). It is evident that allowance for the finite 
longitudinal size, dint, of the region where proton-nucleon 
interaction takes place must lead to smearing of the sharp 

edge of the &function in Eq. (8). Evidently, d*, is approxi- 
mately the proton radius. As a consequence of the smearing 
of &function in Eq. (8), the law (57) will be replaced by 
a somewhat steeper decrease at high Ipm,,l. As a generaliza- 
tion of Eq. (8) to the case of finite dht one can consider the 
substitutions 

e ( z ) = e  exp( - $), 
dint dht 

Of course, there is no serious theoretical motivation to use 
either of the prescriptions (58) or (59) at such Ipm,, l ,  where 
the missing-momentum distributions corresponding to the at- 
tenuation factor (8) and obtained with substitutions (58) or 
(59) start differing strongly. The latter can be used only to 
clarify the applicability limits of the standard Glauber model. 
Fortunately, it turns out that the kinematical range of the 
longitudinal missing momentum, where the Glauber model is 
still applicable, is quite broad. In Refs. 14 and 15 it was 
confirmed that the Bfunction ansatz in the Glauber attenua- 
tion factor for the deuteron target works very well in the 

c500 MeVIc. Our numerical calculations in the region I ~ m , z l -  
kinematical domain lp,,,ls300 MeVlc also show that intro- 
duction of the finite size of the interaction domain, dht-1 
fm, leaves practically unchanged the standard Glauber-model 
predictions obtained with the Bfunction in Eq. (8). 

Notice, that due to the NN repulsive core, the probability 
of finding two nucleons at the same point in the target 
nucleus really is suppressed. This means that at high Ipm,,l, 
even without allowance for the finite din, the tail of the lon- 
gitudinal missing-momentum distribution will decrease con- 
siderably more abruptly when the short range NN correlation 
are taken into account. Since the NN correlation radius is - 1 
fm, both the NN correlations and finite-dint effects, as well as 
the effect of their interplay, can be neglected in the region 
I P m , z l  5300 MeVlc under discussion. 

However, when higher p,,, are concerned, this incom- 
pleteness of the Glauber model in the case of A(e,erp) scat- 
tering in the high-lpm,,l region makes questionable the mere 
possibility of using the measured missing-momentum distri- 
bution for deriving the information on the short-range NN 
correlations in nuclei: besides the genuine short-range NN 
correlations, the missing-momentum distribution at high 
I P m , z l  probes the spatial extension of the nucleon as well. 
Note that this sensitivity of the high-lpm,,l tails to the 
nucleon size survives also at high e 2 ,  in the CT regime 
where off-diagonal inelastic rescattering makes a large con- 
tribution. 

To conclude this section, we would like to emphasize 
that in the A(e,erp) reaction we face a situation which is 
quite different from small-angle hadron-nucleus scattering. 
In the latter case the incoming hadron plane wave exists. 
Hence &function effect in the Glauber attenuation factor (8) 
disappears and the Glauber-model predictions for the 
hadron-nucleus scattering are free of uncertainties connected 
with 
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the finite longitudinal size dht . However, it is clear that this 
problem will arise again in quasielastic (p,2p) scattering at 
large angle. The corresponding analysis of the reaction 
(p,2p) in the kinematical range of the BNL experiment34 
will be presented elsewhere. 

6. NUMERICAL RESULTS 

In this section we present our numerical results from the 
Glauber model for the missing-momentum distribution and 
nuclear transparency in quasielastic A (e,e 'p) scattering. In 
order to avoid the complications with the target nucleus spin, 
we restrict ourselves to the case of the closed-shell nuclei 
1 6 0  and @ ~ a .  We adjusted the oscillator shell model fre- 
quency o,,, for these two nuclei to reproduce the experimen- 
tal value of the root-mean-square radius of the charge distri- 
bution, (r2)'I2. We used the values35 (r2)'I2=2.73 fm for 
160, and (r2)11'=3.47 fm for %a, which correspond to the 
oscillator radius ro,c=(m,oo,c)-112 equal to 1.74 fm for 160  

and 1.95 fm for %a. The difference between the charge 
distribution and the proton nuclear density connected with 
the proton charge radius was taken into account. This is a 
realistic model; we checked that it gives a charge density and 
SPMD in the region of ~ ~ 5 2 5 0 - 3 0 0  MeVlc, which are 
practically indistinguishable from the results of more in- 
volved Hartree-Fock calculations. 

As it was stated in Sec. 2, we use the exponential para- 
metrization of the proton-nucleon elastic amplitude. The dif- 
fraction slope of the pN scattering was estimated from the 
relation 

In our calculations we define the pN cross sections and apN 
as mean values of these quantities for the p p  and pn scat- 
tering. We borrowed the experimental data on pp ,  pn cross 
sections and a,, apn from the recent review.36 In the region 
Q2-2-10 Gev2, the Q2-dependence of the Glauber-model 
predictions for the missing-momentum distribution comes 
predominantly from the energy dependence of BpN and 
ael(pN). (We recall that the typical kinetic energy of the 
struck proton is ~ ~ ~ = ~ ~ / 2 m ,  .) Typically BpN rises from 
BpN=4.5 G~V- '  at Q2=2 GeV2 to BpN=8 G~V-'  at Q2= 10 
GeV2, and ael(pN) falls from ael(pN)=23 mb at Q2=2 
GeV2 to ael(pN)=l 1.5 mb at Q2= 10 G ~ v ~ .  In our kine- 
matical domain, at,(pN) slightly decreases with Q', 
ato,(pN)-43.5 mb at Q2=2 GeV2 and ato,(pN)-40 mb at 
Q2= 10 GeV2. We recall that in the Glauber model the tra- 
jectories of the high-energy particles are assumed to be 
straight lines. For Q2>2 GeV2, the struck proton has a mo- 
mentum 2 2  GeVIc, whereas the mean value of the momen- 
tum transfer in pN scattering is cg - 1/&-0.45 GeVlc. 
Thus, there are reasons to believe that the Glauber formalism 
is still reliable at the lower bound of the kinematical domain 
of interest in the present paper, Q2-2-10 Gev2. 

To illustrate the role of incoherent rescattering in inclu- 
sive A (e ,e 'p) scattering, we present a systematic compari- 
son of results obtained for the full Glauber theory with the 
T*T term in the FSI factor (26) included, and the truncated 

FIG. 1. The Q'-dependence of nuclear transparency for '60(e,e'p) and 
40Ca(e,e'p) scattering. The solid curve is for the inclusive 
(pml ,pm,,)-integrated transparency T? as given by Eq. (39) and the dot- 
and-dash curve is for the exclusive transparency as given by Eq. (40). 

version (the conventional DWIA) when T*T term is not in- 
cluded. We remind the reader that in the independent-particle 
shell model these two versions are relevant to the inclusive 
and exclusive conditions in A(e,elp) scattering, respec- 
tively. 

The results for the integral nuclear transparencies TP 
and defined by Eqs. (39) and (40) are shown in Fig. 1. 
Because of the rise of ai,(pN), TP slowly decreases in our 
kinematical range; r, which is controlled by atot(pN), is 
approximately flat. As one can see from Fig. 1, the replace- 
ment of ah(pN) by atot(pN) considerably reduces the inte- 
gral nuclear transparency and the difference between the 
T? and is much larger than the several percent correla- 
tion correction to TA .26 The computed values of TP and 
PF define the missing-momentum distribution n,fXpm) 
=w(pm)lTA normalized to unity for the cases when the T*T 
term in the FSI factor is included (inclusive A(e,e 'p) scat- 
tering) and not included (exclusive A(e,elp) scattering), re- 
spectively. 

When the acceptance domain D in the definition (3) in- 
cludes all the missing momenta, the integral nuclear trans- 
parency depends only on the diagonal component of the pro- 
ton one-body density matrix, i.e., the nuclear density. In 
contrast, the missing-momentum distribution and transpar- 
ency TA(pm) as functions of pm or TA(D) for a certain ac- 
ceptance domain D as defined by Eq. (3) are controlled by 
the whole one-body density matrix. The results we report 
here are mostly for the realistic oscillator shell model one- 
body density matrix (18). In order to check the sensitivity of 
the results to the form of the one-body density matrix, we 
also report on calculations for the LDA parametrization (32) 
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of the one-body density matrix. A comparison of these two 
versions is very interesting for clarifying the accuracy and 
applicability limits of the LDA parametrization (32), which 
is widely used in the literature for nuclei with large nuclear 
mass number A.  

In Figs. 2 and 3 we show the angular dependence of the 
ratio of the normalized missing-momentum distribution 
nefXpm ,8) to the SPMD n,(p,) for pm = 150, 200, 250 and 
300 MeVIc at e 2 = 2  and 10 Gev2. The forward-backward 
asymmetry of this ratio is a consequence of the nonzero real 
part of the elastic pN amplitude. The appearance of a bump 

2 -  

I - 

for pm=300 MeVIc at 0=10O0 for e 2 = 2  Gev2 in the full 
Glauber calculation with the T*r term is connected with the 
fact that momentum transfer in the incoherent rescattering is 
predominantly transverse. At e2=10 G ~ v ~ ,  the bump 
evolves into a shoulder, which is related to the higher value 
of the diffraction slope. In contrast to the version with the 
T*T term, in the case without the T*T term we rather find a 
dip at 8-80" for pm-250-300 MeVIc. This obviates a con- 
siderable distortion of the outgoing proton wave by the quan- 
tum FSI effects due to the elastic rescattering of the struck 
proton without the excitation of the residual nucleus. 

2 2 2 
Q = 2 G e V  Q ~ =  2 ~ e ~  ,/- 

,/---- ------ -- - 
" 

/' /' ------ -0 ----.-. 

FIG. 3. The same as in Fig. 2, but for 
40~a(e,e'p) scattering. 
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kE - clusive missing-momentum distribution - 
k - ne&,,, .8) in 160(e,e'p) scattering cal- 
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dash and long-dashed curves are for 
missing momentum p m =  150, 200, 250, 
and 300 MeVlc, respectively. 
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FIG. 4. The missing-momentum de- 
pendence of the nuclear transparency 
in parallel (8=0,180°) and transverse 
(8=90°) kinematics calculated (solid 
curve) for the full FSI including the 
I'*T terms and (dashed curve) in the 
optical approximation not including 
the I'*T terms. 

Figure 4 illustrates the p,-dependence of the noninte- 
grated nuclear transparency TA(pm ,8) for parallel (8=0), 
transverse (8=90°) and antiparallel (8=180°) at e 2 = 2  
G ~ v ~ .  Figure 4 demonstrates more clearly the relative role 
played in different kinematics by the absorption effects con- 
nected with the terms aT(T*) and incoherent rescattering 
effects related to the T*T term in the full FSI factor. We see 
that absorption generates a dip in the nuclear transparency in 
A(e,elp) reaction for exclusive conditions at p,-270-300 
MeVlc in the case of transverse kinematics (8=90°). With 
allowance for incoherent rescattering (when the T*T term is 
included), the nuclear transparency in transverse kinematics 
rises steeply at p,>250 Mevlc. Even in the (anti)parallel 
kinematics (8=0 and 8=180°) the effect of r*r term be- 
comes significant at pm2250 Mevlc. This effect is a mani- 

festation of the longitudinal momentum transfer discussed in 
Sec. 5. The overall conclusion from Fig. 4 is that incoherent 
rescattering only becomes significant at a sufficiently large 
missing momenta, ~ ~ 2 2 0 0 - 2 5 0  MeVlc. 

The corollary of the results shown in Fig. 4 is that the 
three-dimensional missing momentum distribution has a sub- 
stantially nonfactorizable dependence on the transverse and 
longitudinal components of the missing momentum. In order 
to demonstrate the degree to which the p,, -p,,, factoriza- 
tion is violated we present in Fig. 5 the nuclear transparency 
versus p,, at different p,,, for at e 2 = 2  G ~ v ~ .  As one 
can see, the p,, -p,,, factorization is manifestly violated. 
For the both versions, with and without the T*T term, trans- 
parency TA(pL g,,,) is a lively function of p,, , and nefXpm) 
is strikingly different from the SPMD. This shows clearly, in 

2.0 300 250 200 150 

1.0 I 

0.5 - 

0.2 - 

-wo.l : 

aE : 
Y 
aE 
V 

h* 

0.1 : 

0 100 200 300 0 100 200 300 
, MeVlc 

pm* 

FIG. 5. Nuclear transparency for 
%a(e,elp) scattering at e 2 = 2  
G ~ V ~  as a function of the transverse 
missing momentum p,, at different 
fixed values of the longitudinal miss- 
ing momentum p,,, [MeVIc]. The 
boxes a and c are for the full FSI 
including the I'*T terms, and the 
boxes b and d are for the optical ap- 
proximation to FSI with the I'*T 
terms not included. 
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FIG. 6. Multiple-elastic rescattering 
decomposition of nuclear transpar- 
ency in 160(c,etp) scattering inte- 
grated over the longitudmal missing 
momentum. The dot-and-dash curve 
is for exclusive transparency (v=O), 
the solid curve shows inclusive 
transparency summed over all rescat- 
terings (all v), and the dashed curve 
shows the effect of incfudmg the first 
elastic mattering (v=0,1). 

particular, that the approach of Ref. 31 cannot be justified 
because the approximation (33) of Ref. 31 yields an almost 
p,, -p,,, factorization form of w(p,) with the same 
p,,-dependence as for the SPMD. 

In Figs. 6 and 7 we show nuclear transparency versus 
p,, for the full acceptance D versus the longitudinal mo- 
menta. The version with the T*r term corresponds to the full 
multiple incoherent scattering series (43) for w,(p,,), 
whereas the case without the r*T term in the FSI factor is 
equivalent to keeping only the zeroth-order term in the series 
(43). Besides these two limiting cases, we present in Figs. 6 
and 7 also the sum of the first two terms, v=O and v= 1, in 
the series (43). From Figs. 6 and 7 we conclude that in the 
kinematical domain the considered terms v=0,1 do practi- 
cally saturate the inclusive A(e,elp) cross section. The in- 
coherent rescatterings of the struck proton become important 
for p,, 2200 MeVIc. 

The p,,,-dependence of nuclear transparency for the full 
acceptance in the transverse missing-momentum is shown in 
Fig. 8, the solid and dashed curves are for the versions with 
and without the r*T term. As the nuclear mass number in- 
creases, the clear-cut two-dip structure evolves for the case 
without the r*T term. Therefore, the attenuation for the FSI 
of the struck proton significantly distorts the missing- 
momentum distribution as compared to the PWIA case. Fig- 
ure 8 shows that the r*r terms generate tails in the longitu- 
dinal missing-momentum distribution which already start 
taking over at Ip,,,lZ200 MeVIc. As in the case of a purely 

parallel kinematics (see below), there is a considerable 
forward-backward asymmetry about pm,,=O connected with 
the nonzero a p ~ .  The integral forward-backward asymmetry 
AFB defined as 

[where N(pm,,>O) and N(p,,,<O) are the numbers of 
events with p,,,>O and p,,, <0, respectively] is large, 
AFB- -(0.07-O.O8), and approximately constant in our ki- 
nematical region (Q 2-2- 10 G ~ v ~ ) .  The forward-backward 
asymmetry was suggested as a signature of the onset of 
=lo-12 because at large e2 it is generated by inelastic (off- 
diagonal) scattering of the struck proton on spectator nucle- 
ons. The above cited forward-backward asymmetry for the 
nonzero ap, obscures the use of this asymmetry as a CT 
effect, as a matter of fact, it exceeds by a factor of 2-4 the 
contribution to the asymmetry from the nondiagonal rescat- 
tering estimated in Refs. 11 and 12. Here we wish to notice 
that the nonzero apN, which is the origin of the forward- 
backward asymmetry in the Glauber model, is connected 
with the contributions to the elastic pN amplitude from the 
secondary reggeons. As is well known37 the reggeon ex- 
change requires a finite formation time that increases with 
hadron energy, for which reason the real part of the in- 
nuclear-medium elastic p N  scattering amplitude, relevant to 
the A(e,elp) scattering, could partly differ from the in- 

FIG. 7. The same as in Fig. 6, but for 
@ca(e.elp) scattering. 

k '  
0.2 - 

0.1 i 
0 100 200 0 100 200 300 

pmL, MeVlc 
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FIG. 8. The longitudinal missing- 
momentum dependence of nuclear 
transparency integrated over the 
transverse missing momentum p,, . 
The solid curves are for the full FSI 
including the T*T terms, the dashed 
curves are for the optical approxima- 
tion to the FSI with the T*T terms 
not included. 

-2-,,------ 

0.2 0 

-300 0 200 -300 0 300 
P ~ , ~ .  MeVlc 

vacuum pN scattering amplitude. In the absence of a rigor- 
ous theoretical model for the reggeon exchanges it will be 
difficult to disentangle the CT contribution to the forward- 
backward asymmetry. Nevertheless, any rise of AFB with e2 
will signal the onset of the CT effects, since the finite- 
formation-time effects for the reggeon exchange can only 
reduce the value of AFB predicted in the standard Glauber 
model. 

It is instructive to compare the p,,,-dependence of 
nuclear transparency for parallel kinematics, p,, =0, 6=0, 
180°, shown in Fig. 4, and for the full acceptance in p,, , 
shown in Fig. 8. This comparison very clearly demonstrates 
that the major contribution from incoherent rescattering into 
large-b,,,l tails comes from the region of the sufficiently 
large p,, . The same conclusion can be drawn from the re- 
sults presented in Fig. 5. We recall that just this pattern of 
the contribution to the missing-momentum distribution from 
the incoherent rescattering of the struck proton on the adja- 
cent spectator nucleons at high-(p,,,( region was predicted in 
section 5 from the uncertainty relation. Thus, our numerical 
results give a clear-cut evidence of the need to treat the in- 
coherent rescattering of the struck proton in A(e,e 'p) reac- 
tions in a quantum-mechanical manner. 

The above discussion of the missing-momentum distri- 
bution can be summarized as follows: In the realistic model, 
distortions from incoherent rescattering (m I'*r terms) take 
over at ~ ~ 2 2 0 0  MeVlc, whereas distortions by coherent re- 
scattering (a r+T*  terms) dominate at smaller p,5200 
MeVlc. However, even in this region of relatively small mo- 
menta the corrections for the incoherent rescattering are non- 
negligible. For instance, the integral nuclear transparencies 
T? and r differ substantially, and the difference is due to 
the contribution of incoherent rescatterings in the inclusive 
A(e,elp). Because the contribution from the incoherent re- 

scattering depends on the missing momentum, nuclear trans- 
parency measured in a restricted acceptance domain D may 
differ considerably from the integral nuclear transparency, 
even though in both cases the inclusive experimental condi- 
tions are imposed. Although the contribution from incoher- 
ent rescattering comes predominantly from high p,, this 
does not imply automatically that nuclear transparency for 
sufficiently small p, will be close to r . As we have seen, 
even without the T*I' term, the missing-momentum distribu- 
tion will differ considerably from the PWIA case. 

The above is especially important for experimentally 
disentangling CT effects in A(e,elp) scattering. Obviously, 
the definitive conclusions regarding CT can only be drawn if 
the experimental nuclear transparency is compared to the 
matching Glauber-model calculation for the same acceptance 
domain D. The sensitivity nuclear transparency to the accep- 
tance domain D in the definition (3) is clearly demonstrated 
by the numerical results shown in Figs. 9 and 10. Here we 
present the results for the full Glauber model with the terms 
r*I' (solid lines) for four different windows in the missing 
momentum. For the reference, we also show the inclusive 
and exclusive integral nuclear transparency computed using 
uh(pN) (long-dashed lines) and u,,(pN) (dot-and-dash 
lines). The results for the LDA one-body density matrix (32), 
shown in Figs. 9 and 10 by the dot-and-dash line, illustrate 
the sensitivity of the Glauber-model predictions to parametri- 
zation~ of the one-body density matrix. We find quite a 
strong difference between predictions from the shell model 
and LDA parametrization, which varies with the missing- 
momentum window. As one can see from Figs. 9 and 10, for 
these acceptance windows the Glauber theory results with 
full shell model density matrix do differ considerably from 
both integral nuclear transparencies, TP and r. An im- 
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I-- ~ ~ 2 5 0  MeVIc : p,< 250 MeVIc 
0.4 

pmL<lOO MeVlc pnl<lOO MeVlc 

2 4 6 8 2 4 6 8 10 

Q'. (Ge~lcf  

FIG. 9. The Q'-dependence of 
nuclear transparency for '6~(e,e 'p) 
scattering at different windows D in 
the transverse p,, and longitudinal 
p,,, missing momentum compared 
with the inclusive transparency T? 
(the long-dashed curve) and the ex- 
clusive transparency (the dot-and- 
dash curve). The solid curve shows 
transparency T A ( D )  calculated with 
full treatment of FSI (r*T terms in- 
cluded) for the (p,,,p,,,)-window 
D as shown in the corresponding 
box. The short-dashed curve is the 
same as the solid curve, but for the 
local density approximation for the 
one-body density matrix. 

portant finding is that despite the increase of ain(pN) in all The results shown in Figs. 9 and 10 clearly demonstrate that 
kinematical domains considered, the nuclear transparency the quantum-mechanical distortion effects do not amount to 
rises slightly with Q ~ .  We wish e ~ p ~ i a l l ~  to emphasize the a simple attenuation. Namely, even at small p ,  where inco- 
=nsitivity of T ~ ( D )  to the rmssing-momentum window: the herent elastic rescattering effects are still small, one can eas- 
nuclear transparency varies by about ten percent even for ily find the counterintuitive T A ( D )  > T p .  
moderate variations of the missing-momentum window. One 

The kinematical region = ( p m ,  c250, b,,,l<50 MeV, 
would expect that intranuclear attenuation can neither be 
stronger than that given by a,,, nor weaker than that given by c )  approximately corresponds to the kinematical conditions 

ain , so naively of the recent NE18 experimente8 In Fig. 11 we compare the 
experimental data8 for I2c and 5 6 ~ e  with the Glauber-model 

T?> T ~ ( D )  > TY. predictions. I2c and 5 6 ~ e  are not closed-shell nuclei, T A ( D )  

-------_ --------____ 

lpmj < 150 MeVIc 

pd< 100 MeVlc 

2 4 6 8 2 4 6 8 10 

Q ~ ,  (Ge~lcf  

FIG. 10. ?he same as in Fig. 9, but 
for Q~a(e ,e 'p)  scattering. 
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FIG. 11.  Predictions of nuclear transparency for a missing-momentum win- 
dow ( ~ , , < 2 5 0  Mevlc, lp,,,1<50 Mevlc) in comparison with the NE18 
determinations for "C (solid curve) and '6Fe (dot-and-dash curve) nuclei. 
For the nucleus we also show the effect of color transparency (dashed 
curve) as evaluated in Ref. 17. 

for these nuclei were calculated assuming that they interpo- 
late between r and T? as for the closed-shell 160 and 
%a nuclei, respectively. We calculated T? and r for 12c 

using the parametrization of the nuclear density as a sum of 
~ a u s s i a n s . ~ ~  In the case of 56Fe the three-parameter Gaussian 

was used. The difference between the charge- 
density distribution and the proton-density distribution was 
taken into account. The strong dependence of TA(D) on the 
missing-momentum window D (see Figs. 9 and 10) makes 
the full quantum-mechanical treatment of distortions impera- 
tive for a quantitative comparison between the theory and 
experiment. This full analysis of distortions has not been 
performed in the previous calculations of TA, which were 
reviewed in great detail by Makins and ~ i l n e r . ~ '  The only 
exception is Ref. 17, which discussed how TA(DNE18) inter- 
polates between r and T?, but the analysis of Ref. 17 
only included the simplest distortions of the transverse mo- 
mentum distribution from the incoherent rescattering. In Fig. 
11 we also show the estimate7 for CT effects. 

Our values of TA(DNElS) are somewhat below the NE18 
determinations. To this end, we recall that the NE18 
analysiss uses certain model calculations of the denominator 
in Eq. (3). One of the key assumptions is that, modulo the 
overall normalization, the nuclear spectral function is identi- 
cal to the PWIA spectral function. Our results show that this 
cannot be correct for the FSI effects, but the accuracy of the 
NE18 experiment is not sufficiently high to resolve the size 
of distortions found in our analysis. Furthermore, the NE18 
analysis introduces renormalization of TA by the factor 1.1 1 
20.03 for 12c and 1.2220.06 for 56Fe nuclei, which renor- 
malization is meant to account for the missing strength asso- 
ciated with the large-p, component of the spectral function 
coming from short-range NN correlations. Similar correction 
for the missing strength must be included, both in the nu- 
merator and denominator of Eq. (3), in our analysis too. One 
must bear in mind, though, that the SRC and FSI effects 
cannot easily be separated. For instance, the recent workI4 on 
the 4 ~ e ( e , e r p )  reaction found a strong interference between 
the FSI and short-range correlation effects, which is stronger 
than the SRC effect and which makes the corrections for the 

NN correlations to the numerator and denominator different. 
For this reason, those renormalization effects must be re- 
garded as an indication of the accuracy of the shell-model 
calculations of TA(DNE1$. More sophisticated calculations 
which include NN correlations and correct treatment of FSI 
simultaneously are required for the theory to confront the 
higher accuracy experimental data on TA . 

The difference between the predictions from the full- 
shell model and the LDA one-body density matrices shown 
in Figs. 9 and 10 illustrates a substantial sensitivity of FSI 
distortions of the three-dimensional missing-momentum dis- 
tribution to the off-diagonal elements of one-body density 
matrix. To gain more insight into the sensitivity to the one- 
body density matrix, in Fig. 12 we compare the results for 
the p,,,-integrated nuclear transparency as a function of p, 
for the full-shell model and LDA one-body density matrices 
(the solid and long-dashed curves, respectively) at e 2 = 2  
Gev2. The difference is very large at small p,, , reaching 
-20% for nucleus, the full-shell model also predicts 
much a deeper minimum in the transparency at p,,-225 
MeVlc, beyond the crossover at p,, - 150 MeVlc. The dif- 
ference between the full-shell model and LDA results be- 
comes even more striking if one compares the nonintegrated 
nuclear transparencies. In Figs. 13 and 14 we present such a 
comparison for the transverse kinematics. The results for the 
parallel kinematics are presented in Figs. 15 and 16. As one 
can see from Figs. 13-16, the LDA (32) underestimates 
nuclear transparency at small p, and overestimates in the 
high-p, region. For p,-0, predictions from the full-shell 
model and LDA density matrices differ by 220%. 

One might have expected the LDA (32) to become more 
reliable with increasing A; this expectation is not born out by 
our calculations, the difference between the full-shell model 
and LDA predictions does not reveal any tendency to disap- 
pear with increasing nucleus mass number. This is one more 
reminder that quantum interference effects play an important 
role in the FSI of the struck proton in the nuclear medium. 
The qualitative failure of the LDA even for the heavy 
nucleus can be explained by the large contribution to the 
cross section for A (e ,e 'p) scattering from the events corre- 
sponding to the proton ejecting from the nucleus surface. 
Evidently there are no good reasons to expect LDA to be 
reliable in the surface region. 

7. CONCLUSIONS 

The purpose of this work has been to develop the 
Glauber-theory description of the missing-momentum distri- 
bution in quasielastic A(e,erp) scattering in the region of 
moderate missing momenta, pm5300 MeVIc. Such a de- 
scription is applicable at high energy, e2-2-10 Gev2. We 
have found a novel effect of interaction between two trajec- 
tories which enter the calculation of the FSI-modified one- 
body density matrix and originates in the incoherent elastic 
rescattering of the struck proton, and have presented for the 
first time a consistent treatment of this effect in a realistic 
model. 

Our numerical results show that the missing-momentum 
distribution in A (e ,e 'p) scattering is substantially affected 
by FSI effects compared to the PWIA case for both the in- 
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FIG. 12. The transverse missing- 
momentum dependence of the 
nuclear transparency integrated over 
the longitudinal missing momentum 
p,,, for the full-shell model calcula- 
tion with the T*T terms included 
(solid curve) and not included (long- 
dashed curve), and for the local- 
density approximation with the T*T 
terns included (short-dashed curve) 
and not included (dot-dashed curve). 
e 2 = 2  G ~ v ~ .  The bottom boxes 
show the same curves on a blown-up 
scale. 

0 100 200 0 100 0 300 
pd, MeVlc 

clusive and exclusive conditions. At large e2 the difference 
between the integrated nuclear transparencies T? (the 
r*I' terms included) and (only the o: F*+T terms in- 
cluded) becomes relatively weak, and small values of TA are 
mostly due to attenuation from the o: I'*+T terms. In the 
missing-momentum distribution, the distortion effects from 
the incoherent rescattering (o: r*r terms) takes over for 
pm>200 MeVlc. The distortion effects connected with co- 
herent rescatterings (m r+r* terms) of the struck proton 
dominate at p m s 2 0 0  MeVIc, but even' in this region the 
corrections due to incoherent rescattering are not negligible. 
Our important finding is that, apart from the transverse 
missing-momentum distribution, incoherent rescattering also 
substantially affects the longitudinal momentum distributions 

FIG. 13. Nuclear transparency in L60(e ,e 'p)  scattering in transverse kine- 
matics p,,,=O for the full-shell model calculation with the T*T terms in- 
cluded (solid curve) and not included (long-dashed curve), and for the local- 
density approximation with the T*T terms included (short-dashed curve) 
and not included (dot-dashed curve); e 2 = 2  GeV. 

at high missing momentum. This distortion of the longitudi- 
nal momentum distribution is of a purely quantum- 
mechanical origin. 

Our calculations show that the forward-backward asym- 
metry connected with the elastic (diagonal) rescattering of 
the struck proton on the spectator nucleons is larger than 
expected from the CT effects by the factor about 2-4 for 
e2 -5 -10  G~v'. In the region e2 -2 -3  G ~ V ~  the expected 
role of the CT effects is negligible. This casts a doubt on the 
use for the forward-backward asymmetry as a clean signal of 
the onset of CT in the CEBAF kinematical region. 

Using the calculated three-dimensional missing- 
momentum distribution, we studied the energy dependence 
of the nuclear transparency for a few kinematical domains. 
Our results show that despite the rise of a h ( p N ) ,  reducing 
the integral nuclear transparency, the nuclear transparency 
for the kinematical domains with ~ ~ 5 2 5 0  MeVlc even 
slightly increases with e2. We have compared for the first 

FIG. 14. The same as Fig. 13, but for 40Ca(e,e'p) scattering. 
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FIG. 15. Nuclear transparency in '60(e,e'p)  scattering in parallel kinemat- 
ics p,, =0  for the full-shell model calculation with the T*T terms included 
(solid curve) and not included (long-dashed curve), and for the local-density 
approximation with the I'*T terms included (short-dashed curve) and not 
included (dot-and-dash curve); e 2 = 2  G~v'. 

time the Glauber-model prediction with the recent data from 
NE18 experiments accurately taking into account the kine- 
matical restrictions in the missing momentum. The energy 
dependence obtained in the present paper is close to that 
observed in Ref. 8. Our detailed calculations of distortion 
effects also highlight the limited applicability of treatments 
of FSI effects based on the conventional DWIA and local- 
density approximations. 

Our important observation is that in the case of 
A ( e , e ' p )  reaction the Glauber formalism is incomplete at 
sufficiently high longitudinal missing momenta. We have 
shown that the standard Glauber-model ansatz for the attenu- 
ation factor causes an anomalously slow decrease 
( a ( ~ , , , l - ~ )  of the missing-momentum distribution at high 
longitudinal missing momenta. Such a tail is an artifact of 
neglecting the finite longitudinal size of the region where the 
struck proton interacts with the spectator nucleon. Allowance 
for the finite interaction size must drastically change the 
Glauber-model predictions at l p m , , l  2500 MeVlc . We 
checked that corrections to the predictions of the standard 
Glauber approach are still negligible at l p , , , l  5300 MeVlc. 
It is important that the same incompleteness is inherent and 
persistent also in the color transparency regime at high e2, 

0.2 .! I 
-300 0 300 

, MeVlc 
pm.z 

FIG. 16. The same as in Fig. 15, but for 4 0 ~ a ( e , e ' p )  scattering. 

where the Glauber theory must be complemented by the off- 
diagonal transitions. 

The sensitivity of the FSI effects to the finite longitudi- 
nal size of the interaction zone for pN collision has impor- 
tant implications for the interpretation of the experimental 
data on A ( e , e r p )  scattering in terms of the short-range NN 
correlations in nuclei. Specifically, it makes clear that be- 
sides the short-range NN correlation the measured missing- 
momentum distribution becomes sensitive at high missing 
momenta to the spatial extension of the nucleon as well. The 
results of the detailed analysis of the influence of finite 
nucleon size on the missing-momentum distribution at high 
missing momenta will be presented elsewhere. 
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