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We review bosonization of conformal field theory (CFT) and show how it can be applied to the 
study of representations of Zamolodchikov-Faddeev (ZF) algebras. In the bosonic 
construction we obtain an explicit realization of the chiral vertex operators interpolating between 
irreducible representations of the deformed Virasoro algebra. The commutation relations of 
these operators are determined by the elliptic matrix of IRF type and their matrix elements are 
given as contour integrals of meromorphic functions. O 1996 American Institute of 
Physics. [S 1063-7761 (96)00306-XI 

1. INTRODUCTION 

The development of CFT was initiated in the fundamen- 
tal work1 by Belavin, Polyakov and Zarnolodchikov (BPZ) 
where the system of axioms describing CFT was proposed. 
The main idea of BPZ is that fields in CFT are classified by 
irreducible representations of the Virasoro algebra. From a 
mathematical point of view, studying of the CFT is equiva- 
lent to the description of representations of the Virasoro al- 
gebra and deriving the matrix elements of vertex operators 
interpolating between different irreducible representations of 
the Virasoro algebra Zh specified by the highest weight Ax.  
Among vertex operators there is a set of basic ones, called 
primary operators: 

@ X d " ( l ) : ~ ~ + 3 ~ @ c ( l ) l ~ ~ - ~ ~ .  
Matrix elements of these operators ("conformal blocks") are 
multivalued analytical functions. Knowing conformal blocks 
one can reconstruct physical correlation functions which sat- 
isfy the requirement of locality. The analytical properties of 
conformal blocks2 are dictated by the commutation relations 
in the algebra of the chiral vertex operators @kP(O: 

(1.1) 

This quadratic algebra is found to be associative, which fol- 
lows from the fact that the matrix WAlA2 satisfies the Yang- 
Baxter equation (YBE) in the IRF form.3 

It is important that CFT can be considered alternatively 
as the representation theory of this algebra495 which will be 
referred below as a Zamolodchikov-Faddeev (ZF) algebra of 
IRF type. In this way, Virasoro algebra can be considered as 
an algebra of transformations preserving the commutation 
relations. Under the appropriate choice of the set of irreduc- 
ible representations of the Virasoro algebra SA the represen- 
tations of the chiral vertex algebra (1.1) possess the realiza- 
tion in the direct sum eAZA. The ZF algebra of IRF type is 
deeply connected with another associative quadratic algebra 

where the matrix R:: is a solution of the Yang-Baxter equa- 
tion. We call (1.2) a Zamolodchikov-Faddeev algebra6y7 of 
vertex type. It can be realized in the extension of the space 

by taking irreducible representations of Virasoro al- 
gebra with proper multiplicities: 

where PA are some finite-dimensional vector spaces.* 
Thus, CFT can be described in terms of two algebras 

which have different forms and require, at first glance, dif- 
ferent approaches of investigation. The first one is infinite- 
dimensional Virasoro algebra, while the second is the asso- 
ciative quadratic algebra which is determined by some finite- 
dimensional matrices. However, both algebras are deeply 
interconnected and can be represented in the same space. The 
initial success of C l T  was based on the well developed rep- 
resentation theory of the Virasoro algebra? At the same time, 
the ZF algebra approach seems to be more general, since 
algebraic structures like (1.1), (1.2) with matrices R and W 
depending on 1 1 ~ ' ,  play a crucial role in the two- 
dimensional integrable models of both statistical 
 mechanic^'^-'^ and quantum field theory (see e.g. Ref. 15). 
In the hierarchy of the solutions of YBE the constant solu- 
tions corresponding to the algebras (1.1), (1.2) are the sim- 
plest ones. They might be obtained from trigonometric and 
elliptic R and W matrices as a result of the well-known 
limiting procedure. Conversely, one can regard more compli- 
cated solutions of YBE as parametric deformations of the 
constant ones. It is reasonable to expect that ZF algebras 
corresponding to the trigonometric and elliptic matrices R, 
W are deformations of the algebras of conformal vertex op- 
erators. In this way we run into the following questions: 

1. Is it possible to describe the representations of elliptic 
and trigonometric ZF algebras using the methods of CFI: or, 
more explicitly, can ZF algebras be realized in the direct sum 
of irreducible representations of some infinite-dimensional 
algebras generalizing the Virasoro algebra? 

2. What is the exact form of the commutation relations 
of these deformed Virasoro algebras and their geometrical 
and physical meaning? 

The present work is mainly devoted to studying the first 
problem. We construct the representation of the elliptic de- 
formation of the conformal vertex operator algebra (1.1). Our 
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main idea is to deform in an appropriate manner the 
bosonization procedure developed in Refs. 2 ,9,  16 for CFT. 
Let us recall that the central objects in the bosonization are 
screening operators. Indeed, to realize the irreducible repre- 
sentations of the Virasoro algebra in Fock space, one needs 
to know only the explicit bosonic realization of intertwining 
(screening) operators. It is remarkable that the explicit form 
of the commutation relations of the Virasoro algebra is not 
really used. We describe a generalization of the conformal 
bosonization based on deformed screening operators, pro- 
posed in Ref. 17. It allows one to get the explicit bosonic 
realization of the chiral vertex operators which satisfy the 
commutation relations of the form (1.1) with elliptic W ma- 
trices. Quadratic associative algebras obtained in this ap- 
proach seem to be deeply connected to algebras of vertex 
operators found in Ref. 18. In particular, we expect that the 
deformed Virasoro algebra is some reduction of the elliptic 
sf(2) algebra, just as ordinary Virasoro algebra is a result of 
quantum Hamiltonian reduction of the affine Kac-Moody al- 
gebra s^l(2).19 

The largest part of this work is devoted to bosonization 
of CFT. In the simplest cases we re-examine why and when 
bosonization is still working. The material from the first and 
the third sections seems to be known to experts and it is 
contained (but sometimes in obscure form) in the ~ o r k s . ~ , ~ , ' ~  
Our aim here is just to emphasize those subtle points which 
appear to be crucial in the generalization of bosonization.17 
When we understand and correctly formulate the conformal 
case, we will be able to construct the representation of the 
elliptic ZF algebra. In particular, we obtain an integral rep- 
resentation for matrix elements of vertex operators general- 
izing the Dotsenko-Fateev formulas for conformal blocks. 
For instance, in the simplest case of four-point function it is 
equivalent to the following integral representation of 
q-hypergeometric functions: 

Note, that matrix elements of deformed vertex operators are 
written in the form of ordinary contour integrals rather than 
Jackson's integrals in the bosonization scheme of Ref. 20. 
We also consider the trigonometric limit of elliptic construc- 
tion, which corresponds to the sin-Gordon In 
this limit we show how to reconstruct the ZF algebra of 
vertex type from the IRF ZF algebra.23 

Let us agree on some notational conventions. 
i) Throughout this work we will denote objects which 

have similar meaning by the same letter, distinguishing it by 
"prime" symbol. It should not be confused with the deriva- 
tion symbol d. 

ii) For technical reasons it is convenient for us to carry 
out the ordering procedure in exponential operators like ei$ 
in the final step. There is no difference between this prescrip- 

tion and the ordinary one in the conformal case, and it is not 
fundamental but is useful in the deformed case. It will be 
explained in Sec. 4. 

2. PRELIMINARIES 

2.1. Let R:;(t) be a numerical matrix depending on the 
complex parameter t . The indices a, b , c ,d take values in the 
set of integers. One can consider this matrix as an operator 
acting on the tensor product Y@Y, where Y is a finite 
dimensional linear space, in which vectors are specified by 
indices a. We will call the following algebraic equation a 
Yang-Baxter equation of vertex type:3 

This equation plays a fundamental role in 2D Integrable 
Models of both quantum field theory and statistical mechan- 
ics. At present many of its nontrivial solutions have been 
found (see e.g., Ref. 24). In this work we will be interested in 
the simplest one when the space Y h a s  dimension 2. We will 
label the basis vectors of Y by t. In 1972 Baxter found the 
following remarkable solution of (2.1):'~ 

where 

@,(s)= (q;q)w(s;q)m(qs-l;q)m, 

is the Jacobi elliptic function and we use the standard nota- 
tion: 

m 

The R-matrix depends on two additional parameters p ,  q. In 
this work we assume that the parameter q is real and Osq 
<1. At the same time p will be a complex number such that 
l p I 2 =  1. In this case the matrix elements are real numbers if 
1 tI2= 1. Together with the Yang-Baxter equation the matrix 
R:; also satisfies the so-called unitarity condition: 

As was pointed out by A. B. ~amolodchikov,6 Eqs. (2.1), 
(2.3) can be treated as self-consistency and associativity con- 
ditions respectively in the formal algebra 
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This algebra was also considered in the work of L. D. 
~addeev? and we will call it a ZF algebra. 

In the limit q-+O the matrix simplifies greatly since 
Oq(t)--' 1 - t ,  and the nontrivial elements of R;;f( t ,p)  read: 

We can also get a solution of the Yang-Baxter equation 
which does not depend on the spectral parameter t by the 
following limiting procedure: 

=pu12 lim e (a -c )uL /4  cd 
ab R a b ( e u L 3 ~ ) 9  

L + + m  
(2.6) 

where cr= +. The nonzero elements of the matrix R;;f(+ , p )  
are defined by the relations 

Note that the matrices R ( + , p )  and R( - , p )  are connected 
by the relation 

which can be regarded as an analogue of the unitarity con- 
dition for the constant solution of the Yang-Baxter equation. 
The matrix (2.7) coincides with the fundamental R matrix 
for quantum algebra ~ , ( s 1 ( 2 ) ) . ~ ~  We will need some facts 
concerning this algebra, so let us recall them here. 

2.2. The quantum universal enveloping algebra 
Up(s1(2))  is an algebra on generators X',T subject to the 
following relations: 

It is well known that (2.9) has Hopf algebra structure. In 
particular, the comultiplication A is defined by 

The parameter p is a complex number. The most relevant 
cases for us will be those with p=e'"(5+1)'t or e'n5/(tf ' ) ,  

where 5 is a real irrational number greater then 1. In these 
cases the algebra Up(s1(2 ) )  admits irreducible representa- 
tions in the finite dimensional spaces 9, with the dim Y1 = 1. 
Construction of such representations is quite similar to the 
construction of irreducible representations of s l (2)  Lie alge- 
bra with spin j= (1- The basis vectors ey E Fl of 
the representation are specified by the index m = - j ,  - j 
+ 1 ,. . . , j and the conditions 

The existence of Hopf structure means that the tensor prod- 
uct VII @ FI2 of two representations of Up(s1(2 ) )  would 

also carry the structure of a representation of this algebra. 
Moreover, if 6 is an irrational number, then this representa- 
tion turns to be completely reducible. Since the tensor prod- 
uct of two finite-dimensional irreducible representations can 
be represented as a direct sum of irreducible representations, 
one can write down a Clebsch-Gordan decomposition of the 
form: 

In present work we will need the explicit form of the follow- 
ing Clebsch-Gordan coefficients: 

here we use the notation [XI,= ( p X - p - X ) l ( p  - p - I ) .  

3. FREE-FERMION ZF ALGEBRA AND c=-2 VIRASORO 
ALGEBRA 

In this section we will discuss the ZF algebra generated 
by the operators Z , ( j ) ( a =  + , [ E  C ) ,  satisfying the simple 
commutation relations 

We consider its irreducible representations characterized by 
operator product expansions: 

Z , ( ~ Z ) Z ~ ( ~ I ) = O ( ~ ) ,  51+52.  
(3.2) 

This algebra is well known in the physical literature as the 
so-called b - c system (Z+  = b,Z-  = dc) .  Its representations 
admit decompositions into a direct sum of irreducible repre- 
sentations of the Virasoro algebra. Let us note now that the 
commutation relations (3.1) and operator product expansions 
(3.2) are invariant with respect to a linear transformation 

if the determinant of G is equal to unity. We will concentrate 
on the case when this symmetry is not broken and the rep- 
resentation space of the ZF algebra is classified by the SL(2) 
symmetry together with the Virasoro symmetry. In this case 
the Virasoro algebra has central charge equal to -2. We will 
try to analyze these well-known results in a form which 
leaves room for generalization. 
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3.1. Irreducible representations of the free-fermion algebra 

The algebra (3.1) possesses two different types of repre- 
sentation denoted by rrg (Ramond) and rrZNS (Neveu- 
Schwartz), according to the type of boundary conditions im- 
posed on the generators Z,(& 

R: Za(e2"'[) =Za(5), 

NS: Za(e2"'5) = -Z,(5). (3.3) 

For this reason, the Z, have the following decomposition in 
Laurent series: 

where r E Z for the R sector and r E Z+ 112 for the NS sector. 
It follows from (3.1), (3.2), that the modes Z,[r] obey the 
anticommutation relations 

~ z a [ r l ~ z b [ m l ~ + = 2 r a 8 a + b . ~ S r + m , ~ ~  (3.5) 

The spaces rr; and rrgS are defined as Fock modules of the 
fermionic algebra (3.5) created by the operators Z,[r], r<O 
under the action on the corresponding R and NS vacuum 
states. The vacuum states are specified by the condition that 
they are annihilated by any operator Z,[r] with r>O. We 
assume that R and NS vacuum states are scalars with respect 
to the SL(2) transformations. Then SL(2) structure of the 
spaces rrgSNS is uniquely determined by the condition that ZF 
operators are arranged in the fundamental SL(2) doublet. 

The next fact which we will need in what follows is that 
the dual space ?r$NS* also admits the structure of a represen- 
tation of the algebra (3.5). This is shown as follows. Given a 
linear space %, its dual rr; is the set of linear maps 
rrg : rrz+C determined by the action 

U* 

u ~ ( u * , u ) .  

Choose the dual basis by the canonical pairing (u;,uk)= qk. 
Since the algebra (3.5) admits the anti-involution 

the spaces rr$= T>~'* can be endowed with the structure of 
the representation of the ZF algebra through the formula 

3.2. Bosonization of fermionic ZF algebra 

Now we want to show how the representations of the ZF 
algebra (3.1), (3.2) can be realized in direct sums of boson 
Fock modules. We start with the space rrg. Let 
{b, , P ,Q 1 n E Z/{O}} be a set of operators satisfying the com- 
mutation relations: 

The bosonic Fock module Fp is generated by the action of 
creation operators b-, , n>O on the highest vector 
fp : b,fp=O, n>O; Pfp=pfp . In the direct sum of the Fock 
modules @ k s  Z9-k- the action of the following operators is 
well-defined: 

where the integration contours are around the origin and 

It is easy to see that the operator X' is nilpotent, xr2=0.  Let 
us define the following spaces: 

Since the operators X, X', P obey the commutation relations 

they act as 

In the simple case we are considering now, it is not hard to 
guess the expressions of Z,(O through the field 4. Finally, 
the bosonization of rr; is described by proposition 3.1. 

Proposition 3.1. The map $4 @ F, given by 
the identification of the R-vacuum state of 7$ with the vector 
f,, and the bosonization rules 

is an isomorphism of modules. 
Note that it follows from formulae (3.1 1) that the opera- 

tors X and H = P - 112 can be regarded as generators of the 
Bore1 subalgebra of the sl(2) algebra acting in the space 
rr;. 

By proposition 3.1, one can treat T: as a direct sum of 
Virasoro algebra modules. The crucial observation here is 
that the subspaces K ~ ~ ~ - , , J x ' ] ,  l > O  can be endowed with 

the structure of an irreducible representation of the Virasoro 
algebra. To explain this important property let us introduce 
the SL(2) scalar field T(O by the formula 

In terms of the bosonic field 4 it reads 

where f = id&([) - 1/25. It is easy to check that the 
L, : T([) = X,,Z~,[-n-2 generate the Virasoro algebra Vir, 

C 
[L, ,L,] = (n -m)Ln+,+ - (n3-n) 

12 
(3.16) 

with c=-2. Let us denote by Zl-,,, l>O the irreducible 
Verma module with highest weight 
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Irreducible 
f ~ , 2  A=O Virasoro algebra module 

FIG. 1. The Virasoro structure of the space @,,,.F :- ,,,. 

built on the highest vector vl-,, , .  If generators of the Vira- 
soro algebra are realized as (3.15) then any highest weight 
vector f I - 1 / 2  of Fock space turns to be the highest-weight 
vector of the Verma module of the Virasoro algebra with 
highest weight (3.17). Moreover, consider non-zero vectors 
in bosonic space mi  which can be obtained from f l -  ,,, by the 
action of operator xk, k=O, 1, ... . We claim that the genera- 
tors L, with n>O annihilate any such vector while Lo acts by 
multiplication on constant Al- This follows from the fact 
that generators (3.15) commute with the operator X as can be 
easily checked. 

Let us consider the formal tensor product of the irreduc- 
ible Virasoro algebra module Sl- and 1-dimensional sl(2) 
irreducible representation f l  with basis vectors e;"', where 
m = - j  ,..., j and1=2j+l ,  j=O,  112, 1 ,....We willdenoteit 
as 231_112@Z/;T. The meaning of the additional index ((+)) 
will be clarified later. Standard arguments [9,29] suffice to 
prove the following proposition describing the Virasoro 
structure of the space m; (Fig. 1): 

Proposition 3.2. The map m ~ - + @ ~ = l ~ l -  112@fl  given 
by the correspondence xivmfl- 112-+vl- 112@e;"+ ( 1  = 2 j +  1 ), 
and the bosonizaton rule (3.15) is an isomorphism of mod- 
ules of the Virasoro algebra with 
i) 

Ker& 1>0; 
1- 112 

(3.18) 

Notice, that such as operators L,  and X' commute, then the 
space Fi- ,,, has the similar Virasoro structure as *+ 

where we have denoted by e;"- the basis vectors in the 
1-dimensional space q. Note that the vector vl- l12@e;m,-, 
where v l -  112 is the highest vectors in the Virasoro module, is 
identified with the state from F 12m-  which is the pre- 
image of ~ ~ + ~ f - ~ + ~ , ~  with respect to the action of the op- 

erator X'.  In particular, v l -  ,,,@e;"- =f - 1 +  mod Ker X'. 
The difference which appears in this case is in the fact that 
irreducible Virasoro algebra modules are identified with fac- 
tor spaces rather than subspaces of Fock space. 

3.3. Scalar product in Fock space 

Now we turn to the bosonization of the dual representa- 
tion m;* of the ZF algebra. This problem is closely related to 
the proper choice of the scalar product in the direct sum of 
Fock spaces ekEZFk- The obvious guess is 

However, it does not conform to the conjugation condition 
(3.7) for the operators Z ,  . In thinking about this problem, it 
is rather natural to introduce an independent bosonic repre- 
sentation for m y  and then try to identify it with some sub- 
spaces in the Fock space ekEZ.Fk- TO do this, we define 
a new set of generators {b,* ,P*,Q*ln = +. 1,-t2,. ..) with the 
same commutation relations as in (3.8). Let the analogs of 
the integral operators (3.9) be 

2 miz 

Repeating the above analysis step by step, one can describe 
the bosonization of the representation IT? and introduce the 
Virasoro algebra structure in it. The formulae for this case 
are rather evident. In particular, m ~ * = = @ k , Z . ~ ?  112 ,  where 
we denote by f l z I l 2  the kernel of the operator 
XI*: s- ,,,-+s+ And any space f l I l I 2  turns to be 
isomorphic to a direct sum of irreducible Virasoro algebra 
modules: 

Here the states ~ * j - ~ f ; _  (I= 2 j+ 1) correspond to the 
states ~ ; - , , ~ @ e ; ~ .  Notice, that the symbol * in g-l12 is 
used in order to emphasize that the generators of Virasoro 
algebra are built from fields #* rather than from @s. To 
proceed further, let us note, that the decompositions (3.20), 
(3.23) of the spaces m y  and @ a Z F k  include identical 
sets of irreducible representations of the Virasoro algebra. 
Indeed, any two representations Sl- and x- are iso- 
morphic as c =  -2 Virasoro algebra representations, since 
they have the same highest weight Al-l12. In the bosonic 
realization this means that one can identify the Virasoro al- 
gebra generators.1) To extend the isomorphism of Virasoro 
algebra modules to an isomorphism of ?r,R* and 
@ k,ZF k- one needs to establish the correspondence be- 
tween vectors in 6 and V ; .  Let us identify the vectors 
e;"* E and c&e;".- E T I .  The constants c; can be fixed 
by the condition that the operators X ,  X* and H = - P -  112 
acting in the space ekEzF;- CB kGzfl_+1/2 generate the 
sl(2) Lie algebra: 
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Then we will have c',=(j-m)!(2j)!l(j+m)!. Hence we 
conclude that the representation m y  can be realized as fol- 
lows: 

@ k s ~ F k  (3.25) 

Note that by virtue of this identification, the action of the 
operator X* in the space @ k s  Z%- ,12 can be uniquely speci- 
fied by the condition that the following diagram is commu- 
tative: 

X* 1 X' 1 X*. (3.26) 

k+ 112 -' <+312 

Now we are able to describe the total symmetry algebra 
Symm which acts in the space s@ my. First, it includes an 
infinite-dimensional Virasoro algebra with central charge c 
=-2. Second, it contains an sl(2) subalgebra. Finally, the 
operators X' and XI* generate the Clifford subalgebra 

Note that the operators X',X1* commute with Virasoro gen- 
erators and X, X* but do not commute with H. The decom- 
position of the space m;@ m y  into a direct sum of irreduc- 
ible representations of the algebra Symm has the form 

where we have denoted the I-dimensional irreducible repre- 
sentation of the algebra su(2) as Pl, and V2 is a two- 
dimensional representation of the Clifford algebra (3.27). 
The decomposition (3.28) makes clear the symbolic nota- 
tions introduced earlier. Namely, the vectors e;"' are basis 
vectors in the irreducible 1-dimensional representations of 
sl(2) algebra with spin j= (1 - 1 )I2 and momentum projec- 
tion m. Any pair of vectors e;"- and e;"+ is arranged in a 
doublet of the Clifford algebra. 

Let us discuss now the Hilbert structure of the space 
rr; @ my. This space has a canonical scalar product (ul ,uJ 
induced by a condition (ul ,u2) = (u; ,u;) =0, 
(u; ,U2)=(ul ,u;)*=(u; ,U2) for any U1,2 E v;, u;,~ E my.  
From the other side, such a scalar product is equivalently 
described as follows: 

and the scalar product in the irreducible representations of 
the Virasoro algebra is defined by the conjugation conditions 

We will also assume that the scalar product of the highest 
Virasoro vectors has the form 

Notice that the scalar product (3.29), (3.30) is drastically 
different from (3.21). 

3.4. NS sector 

Now let us shortly describe the bosonization of the NS 
sector of the representation of the ZF algebra. The consider- 
ation here is quite similar to what has been done for R sector 
and we present only the results. The space mZNS can be real- 
ized as a following direct sum of Fock modules: 

where the NS-vacuum is identified with fo .  The expression 
for the operators Z,(n in terms of the bosonic field q5 is 
given by formula (3.13) again. The main difference here in 
comparison with the Ramond sector case is that the operator 
X' does not act in the NS sector. The reason for this is that 
the integration contour in the definition of X' is not closed. 

The states in the Fock module Fk can be classified with 
respect to the action of a direct product of the Virasoro and 
sl(2) algebras: 

where Zl,  1>0, denotes the irreducible modules of the Vi- 
rasoro algebra built on the highest vector vl with highest 
weight 

The vectors e;" are basis vectors in the 1-dimensional irreduc- 
ible representation of the sl(2)-algebra. Again, the corre- 
spondence between representations is given by the maps of 
the vectors ~ j - ~ f ~ + v ~ @ e ; "  and the bosonization rules for 
generators of the Virasoro algebra and the sl(2) algebra. The 
scalar product in the ~ ~ a c e m ~ ~  can be introduced by analogy 
with that for the R sector. Notice that in this case the space 
rrFS can be considered as a self-dual representation of the ZF 
algebra: 

NS- NS* mz - mz . 

3.5. Vertex operators for Vir-, algebra 

Now, we wish to find the exact meaning of the operators 
Z, in terms of the Symm algebra. Before going on, let us 
explain the subject on which we will focus. In the case under 
consideration the algebra Symm turns to be a direct product 
of infinite-dimensional Virasoro algebra and a finite algebra. 
We expect, that this statement is general, in the sense that it 
is possible to associate with any ZF algebra another algebra 
which would be a direct product of two parts, an infinite- 
dimensional one (like the Virasoro algebra) and finite ones. 
We will demonstrate by means of the simple example (3.1), 
(3.2) that these operators can be identified with vertex opera- 
tors for the total symmetry algebra Symm. If we keep in 
mind the decompositions (3.28), it is rather natural to study 
the action of the operators Zt  on the Virasoro states sepa- 
rately from the action on the finite-dimensional part of the 
representation space. The operators Z +  have spins 112 and 
momentum projections 5112 with respect to the sl(2) alge- 
bra. Then, if the e;" are basis vectors in the irreducible rep- 
resentations 9'; and v  e Z P ,  where p = 1 - 112, p = 1 - 1 re- 
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spectively for the R and NS sectors, the operators Za(n in 
the representations 4 and viS can be represented in the 
form 

where I = 2 j + 1 . The numerical coefficients in this formula 
coincide with the Clebsch-Gordan coefficients for the sl(2) 
algebra. At the same time the operators @,, act as follows: 

@21 

where C[l] denotes the Laurent series in 5. Using the opera- 
tors Z*E and (v!7NS* one can define the operators by 
similar expressions. It follows from the formula (3.7) that the 
operators @21 and @;, in (3.36) satisfy the relation 

where V;E% and v 2 ~ S P , , .  
We claim that the operators (3.36) are vertex operators 

for the Virasoro algebra. Indeed, using the bosonization 
(3.13) and conjugation condition (3.37) one can show that 
they satisfy the following commutation relations with the 
Virasoro algebra generators L,  : 

where AZ1= 1. Here and in what follows we will use the short 
notation for the operators qfl P .  

Thus, the ZF algebra appears to be naturally connected 
with the chiral primary operators of the Virasoro algebra. 
The last objects are of great importance for our next con- 
structions. It is well known132 that chiral primary operators 
are uniquely determined by the commutation relations with 
L,  , the intertwining property and conjugation condition. 
From now on in this section let us assume that the symbol 
SP denotes irreducible representation of the c = -2 Virasoro 
algebra with highest weight 

where p ER rather than just being integer or half-integer. 
This generalization is very useful, since, considering the gen- 
eral case we will be able separate the general features of the 
bosonic construction from the specific properties of the 
SL(2)-invariant fermion model (3. l), (3.2). 

Usually, special attention is paid to studying the proper- 
ties of the two chiral primary operators.172 The first of these 
operators is given by with the properties (3.36)-(3.38), 
while the second can be introduced by the following condi- 
tions: 

1. Intertwining properties, 

2. Conjugation conditions, 

3. Commutation relations with Virasoro algebra genera- 
tors, 

with A12= - 118. 
Again, the abbreviated notation @f2 stands for @fZpl2 

respectively. The properties (3.36)-(3.38) and (3.39)-(3.41) 
describe the chiral primary operators (PZ1 and a12 uniquely 
up to a constant multiplier. This means that by using only 
these formulae one can reconstruct the matrix elements of 
any combination of such operators. Indeed, as was shown by 
Belavin, Polyakov and ~amolodchikov,' by virtue of the for- 
mulae (3.38)-(3.41) the matrix elements of operators built 
from QZ1 and @12 turn to be solutions of certain linear dif- 
ferential equations. For instance, the functions 

where vp is the highest vector in the irreducible Virasoro 
module Sp , satisfy second-order ordinary differential equa- 
tions: 

The explicit form of the linear differential operator LA is 
given by: 

According to this formula the functions (3.42) have the fol- 
lowing asymptotics under 5 - 4 :  

To within normalization, the solutions of the equations 
(3.43) with the above boundary conditions can easily be ex- 
pressed in terms of hypergeometric functions F(a,b ,c; [ )  as 

Let us now choose indices pZO, 112, 1, ... . Knowing the 
explicit formulae (3.45) one can find the commutation rela- 
tions of the algebra of chiral primary operators. This can be 
done by using the relation 
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FIG. 2. Two contours C ,  for analytical continuations of the functions 
G;'(5). 

Straightforward calculation shows that the operators a,,, 
generate a ZF algebra of IRF type: 

The precise form of the nontrivial elements of the matrix W 
is the following: 

exp[- i n u (  1 5 4p)/4] 

~ 2 1 1 2  p sin n p  
(3.48) 

W[ ~ ~ ~ ~ ~ 1 ~ ] = + ~ - r i ,  cot r p .  
p-c 112 p 

The commutation relations (3.47) should be considered as 
the rule for analytical continuation of functions from the re- 
gion 15,1>1(21 to 15,1<15,1 along the paths Cu,2,a12 = -C (see 
Fig. 2). Thus, the dependence of the matrix W on z appears 
only in the choice of the contour used in analytical continu- 
ation. The commutation relations of the operators (DZ1 are 
simpler. It holds for any value of p:  

@;l(cl)@:I(lz)= -@:l(lz)@;I(ll). (3.49) 

If the index p is an integer or half-integer, then the commu- 
tation relations of the chiral primaries cD'f2 become undeter- 
mined and the algebra of chiral primaries would be meaning- 
less. The technical reason for this inconsistency is that for 
half-integer values of p the llypergeometric function in 

GL'(~) degenerates. This phenomena is well-known. It ap- 
pears when one studies degenerate modules of Virasoro al- 
gebra with rational central charge.') To avoid additional 
complications we omit such cases, considering either special 
values of central charge c and modules in generic position 
(further in this section and in Sec. 4), or degenerate modules 
but for general central charge (as in Sec. 5 below). 

In spite of its failure with the algebra of chiral primaries, 
the model with c= -2 and p =0, 112, 1, ... elaborated above 
has several attractive features. First, the algebra of the opera- 
tors @,, is still the same as for general p. The fermionic 
representation of these operators drastically simplifies the 
analysis of the construction. Second, in this model we have 
an explicit bosonic realization of a finite-dimensional subal- 
gebra in the symmetry algebra which is given by operators 
X, X' ,  P. And finally, such model gives us example how to 
find the bosonization of chiral primary operators. One ex- 
pects that the form of the bosonic realization of chiral opera- 
tors should be the same, regardless of whether the action of 
the intertwining operators X, X' is defined or not. 

3.6. Bosonization of vertex operators 

The definitions of the chiral primaries do not assume a 
bosonization procedure. However, we will find a bosonic 
realization of such operators because it admits direct gener- 
alization for less trivial cases. Since the chiral primary op- 
erators do not depend on the realization of Z P ,  its matrix 
elements are the same for any irreducible Virasoro module 
with given conformal dimension Ap. Let us consider at first 
the cases when p is positive integer or half-integer. It is 
convenient to realize the irreducible Virasoro modules Z', 
(.%) as subspaces (factorspaces) Kery [x'], .!F-plIm [x'] 
in the Fock modules, where l = p  + 112 for the R sector and 
I = p  + 1 for the NS sector. Then we have: 

Proposition 3.3. The following vertex operators of the 
representation % can be realized as bosonic operators in the 
Fock submodules 
i) 

where v E %, and v* E%. 
The counterclockwise integration contour C is chosen to 

begin and end at the origin of the complex z-plane. It en- 
closes all singularities whose positions are determined by the 
vector v*(v). Note, that because of this prescription the inte- 
grals are well defined. 

This proposition is rather evident since part i) is a direct 
consequence of Eq. (3.13) while the proof of part ii) is based 
on the following important property of the operator e-i4(g)'2: 
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Now we want to check our guess that Eqs. (3.50), (3.51) 
describe the bosonization of the chiral primaries for any 
p>O. Note, that the irreducible Virasoro algebra modules 
.53P(.53p,) in the case of general p are isomorphic to the Fock 
modules Fp(9-,).  Indeed, the action of the Virasoro alge- 
bra in 5 can be determined through the formulae (3.15), 
but there are no intertwining operators between Fock 
 module^.^) Therefore the operators (3.50), (3.51) act from an 
irreducible Virasoro algebra module into an irreducible one. 
Hence one needs to check only the commutation relations of 
these operators with the Virasoro algebra generators. But it is 
rather evident such as the integrals in (3.50), (3.51) are well 
defined in the general case too. Now straightforward compu- 
tation proves that proposition 3.3 is still true for the chiral 
primary operators in the case of general p. 

The bosonization prescription (3.50), (3.51) and the con- 
jugation condition (3.37), (3.40) allow us to work out the 
integral representation for any matrix element of the opera- 
tors @f2 and @,', . For instance, let us write down alternative 
derivation of the function G;'(L). It would seem at first 
glance that calculation of matrix elements using the scalar 
product (3.29), (3.30) is a very nontrivial problem. The es- 
sence of the bosonization method is in the fundamental fact 
that the scalar product (3.21) restricted to the submodules of 
the Fock modules i) ~ e r ~ > X ' ] ,  ~ - p l ~ m [ ~ ' ] ,  l = p  + 112 for 
R sector, l = p +  1 for NS sector; p is a positive integer or 
half-integer, ii) Sr, , 9-, , for general p, which are isomor- 
phic to irreducible modules of the Virasoro algebra, coin- 
cides with (3.30). Using this fact and (3.50), (3.51) we get 
the formula 

where the integration contour C is determined by the same 
prescription as in (3.51). The formula (3.53) leads to an in- 
tegral representation for the functions G L + ( ~ )  if we use the 
well-known rules for averaging exponential operators in the 
bosonic Fock space: 

Then the function (3.53) can be rewritten in term of hyper- 
geometric functions via the integral representation: 

(see Fig. 3). To find the function G;- we can use the relation 

FIG. 3. Integration contour for the hypergeometric function. 

which follows from the conjugation conditions (3.40). In this 
way we reproduce Eq. (3.45). 

4. DEFORMED VIRASORO ALGEBRA WITH c=-2 

In the previous section we have developed a bosoniza- 
tion procedure to study the representations of the ZF algebra. 
The important step there was the introduction of integral 
operators X, X' acting in the bosonic space @ k c  flkI2. In 
this space we introduced the action of the c=-2 Virasoro 

- n - 2  algebra by defining generators T(z) = XL,z as compos- 
ite operators constructed from Heisenberg generators b,. 
The property that Virasoro algebra generators commute with 
X and X' allowed us to classify the representation space of 
ZF algebra by the action of the Symm algebra. Moreover, we 
pointed out that the operators 2, themselves can be con- 
structed as linear combinations of the vertex operators aZ1 of 
the Virasoro algebra. We also determined another elementary 
chiral primary Q12, the commutation relations of which are 
defined by the constant R-matrix of IRF type. 

Of course, representations of the algebra (3.1), (3.2) 
could be investigated directly in the fermionic language. 
However, the bosonization procedure can be applied in con- 
structions where a fermionic description is lacking. One of 
the lessons we have learned above is that the ZF algebra, 
Virasoro algebra, algebras of chiral primary operators and 
algebras of screening operators are mutually related in the 
bosonic picture. We would like to examine further these in- 
terrelations, considering less trivial situations. 

It will be convenient to start with bosonic space and the 
deformed integral operators X and X'  rather than with ZF 
algebra. Indeed, the operators X and X' could be treated as 
completely specifying the construction. For instance, the uni- 
versal enveloping algebra of the Virasoro algebra could be 
considered as a subalgebra of operators from the Heisenberg 
algebra commuting with X and X ' ,  while the operators Qzl. 

a12 were specified with respect to the Virasoro algebra, etc. 
From this point of view, generalizations of the proposed con- 
struction are determined by appropriate deformations of the 
screening operators. 

The well-known generalization of the proposed bosonic 
construction originates in the deformation of the operators X 
and X' in a way which leads to the Virasoro algebra with 
central charge -2<c<l. This direction will be discussed 
later. 

There exists, however, another class of  deformation^'^ 
related to generalizations of the Virasoro algebra. These de- 
formations will be called hereafter x-deformations. Again, 
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x-deformation is determined by the appropriate continuous 
deformation of the screening operators. In contrast with the 
Virasoro algebra cases, x-deformation leads to more general 
associative algebras of the deformed vertex operators 
@12. 

In the present section we want to elaborate the simplest 
example of x-deformation corresponding to c = -2 Virasoro 
algebra. In this particular instance the deformation has a re- 
markably simple form. In working out this toy model we try 
to extract information on the essential properties of the gen- 
eral x-deformation. Namely, we argue that the whole Fock 
space can be decomposed under the action of operators X 
and X' into direct sum of irreducible representations of the 
deformed Virasoro algebra proposed in Ref. 3 1. This algebra 
is determined as the subalgebra of operators from the univer- 
sal enveloping algebra of the Heisenberg algebra which com- 
mute with X and X'. It should be clear that such commutants 
always generate an associative algebra. Indeed, the linear 
space of operators commuting with X and X' is closed under 
the operation of multiplication, while the associativity con- 
dition follows from the fact that T(0  are constructed from 
generators of the Heisenberg algebra. Hence, in the general 
case one can also expect that Fock space will be divided into 
direct a sum of representations of some infinite-dimensional 
algebra generalizing the Virasoro algebra. 

Another purpose of this example is to demonstrate how 
one can find the deformation of the chiral primary operators 
a12 and @,, , or more explicitly, how to obtain the bosonic 
realization for such operators. We will show that the com- 
mutation relations of operators Q12 are determined by an 
elliptic R matrix of IRF type. This justifies the proposed 
deformation. 

In what follows we will use the same notations as be- 
fore, pointing out only those definitions and formulae which 
contain significant distinctions. For instance, the symbol 23 
will mean the irreducible representation of the deformed 
c= -2 Virasoro algebra, Q12 will be the deformation of the 
correspondent chiral primary etc. 

4.1. Deformation of the Virasoro algebra with c=-2 

Let us start by considering of the bosonic space az = 

61 kcf lk-  which occurred in Sec. 3. The x-deformation of 
the construction given in the previous section is determined 
by the following redefinition of the operator X: 

where the deformation parameter is a real number satisfying 
O<x< 1. If the second operator X' remains unchanged, then 
it is not hard to see that formulae (3.10)-(3.12) are valid. Let 
us introduce new operators, the exact meaning of which will 
become transparent later: 

The integral in the definition of Z -  can be computed explic- 
itly: 

In accordance with the scheme of the previous section let us 
first describe the structure of the subspaces Kerc-  1 , ~ ~ ' ]  in 

Fock space. To do this one must find operators which gen- 
eralize (3.14). It can easily be verified that the action of the 
following operators in the Fock space .rrz commute with X 
and X': 

where V E  Z. Note that 

In the limit x-+l the operators TV(0 become the Virasoro 
algebra generators given by formula (3.15). Straightforward 
calculation confirms that modes of the Laurent expansion 
Tv(l) = xn , Z~,Yl-n-2 generate the so-called deformed Vi- 
rasoro algebra.31 

where 

We denote this algebra by Let us adjoin to the alge- 
bra (4.5) a derivation D with property [D,L,Y] =nL: for any 
v s  Z. In bosonic Fock spaces this operator can be realized as 
D = ~,,,b -,bm + p2/2- 118. It provides the universal en- 
veloping algebra of Vir-2J with structure of a Z-graded al- 
gebra. Then the triangular decomposition of V ~ T - , ~  is a de- 
composition into elements of positive (L,Y,n<O), zero 
(D,Li) and negative (L,Y,n<O) degrees for any VEZ. By 
definition, the Verma module of the deformed Virasoro al- 
gebra is a Z-graded module generated by the operators 
L,Y ,n < 0 acting on the unique highest weight vector v. The 
Verma module inherits the structure of the Z-graded space 
from the grading of the universal enveloping algebra. The 
vector v is the highest weight vector of the Verma module 
with weight A if it is annihilated by any operator L,Y,n>O, 
and when elements with zero grading act on it, it yields 
L ~ v  =Avv; Dv=Av. In the general situation the Verma mod- 
ule is degenerate, i.e., it contains invariant subspaces created 
by the action of the operators L,", n<O, on null vectors. Null 
vectors, by definition, obey the equation L,YvO=O, n>O; 
D vO= (A + N)V' for some integer N (the degeneration level). 

1 JETP 82 (6), June 1996 S. Lukyanov and Y. Pugai 1030 



In order to obtain an irreducible representation, we have to 
set all null-vectors together with the whole subspace gener- 
ated by it equal to zero; that is we have to factorize the 
Verma module over all invariant submodules. 

Although the operator X and its commutants in Fock 
space have been deformed, the description of the structure of 
the Fock space @k9k+_112 in terms of irreducible Vir-,, 
modules is almost the same as before. Indeed, let the genera- 
tors L,Y be realized through (4.4). Then one can demonstrate 
that the highest vectors fl-l12 of the Fock module are the 
highest vectors of the Verma modules of V i r ~ ~ , .  It is pos- 
sible to show that when generators L,V act on the highest 
vectors of ~ o c k  space fl- ~fl-  1 = 1, 2, ..., they create 
subspaces KerS [x'] which are isomorphic to the irreduc- 

1-112 

ible Vir-,, modules S l -u2 ,  respectively. Note, that the 
character of the irreducible module of Vir-,, coincides with 
that of the c = -2 Virasoro algebra: 

The numbers of the states on a given level will be conserved 
in a general x-deformation too. We recall that a similar situ- 
ation occurs in the representation theory of quantum 
gro~ps,26-28 where the characters of deformed irreducible 
modules remain the same as the undeformed ones if the de- 
formation parameter is not a primitive root of unity. 

The spaces fl- and 9;, can be decomposed into 
a direct sum of Vir-,, modules analogously to (3.23) and 
(3.20), where, we should, of course, bear in mind that the 
symbol S,-l12 now means the irreducible module of the 
deformed Virasoro algebra. 

Now the whole algebra Symm acting on the space 
w$@wy is the tensor product of the infinite-dimensional 
deformed Virasoro algebra with c = -2,O<x< 1 and a finite- 
dimensional part generated by the operators X, X*, X', XI* 
and P with commutation relations (3.24)-(3.27). For this 
reason, the decomposition of the space w$@ w$* into a direct 
sum of irreducible representation of the algebra Symm has 
the form (3.28). The scalar product in the space 
@ flk- is given by (3.29) and the conjugation condi- 
tions are (v1L,Y, vJ=(v,LY ", v,). Moreover, in calculations 
one can use the scalar product (3.21). The arguments here are 
practically the same as in Sec. 3.6. 

In the NS sector the finite-dimensional part of the Symm 
algebra is still given by the sl(2) algebra and as in the unde- 
formed situation we have the isomorphism Keryl X' = 3,. 
In addition, the decomposition of Fock spaces into a direct 
sum of irreducible modules of the deformed Virasoro algebra 
is described by the Eq. (3.33) again. The scalar product in 
the space wyS is the same as (3.29), (3.30), and the space 
myS can be treated as selfdual, wyS= w,NS*. 

4.2. Deformation of vertex operators 

Now we want to establish the x-deformation of chiral 
primary operators @2', and @:,. The construction of the first 
operator is rather evident. Indeed, it can be carried out in 
the Fock spaces in the same manner as (3.50): 

where we explicitly show the states on which such operators 
are well-defined. As before, we take contours in the integral 
a;:([) beginning and ending at the origin, and enclose all 
singularities whose positions are determined by the vector 
v*. Defining the conjugation properties of @fl(l) for Id= 1 as 

where U* E 3 and v E SP,, , one can easily obtain any ma- 
trix element of such operators. The bosonic realization (4.7) 
possesses to find that the commutation relations of these ver- 
tex operators with the deformed Virasoro algebra are given 
by the formula 

To define the deformed chiral primary operators @12 
(3.39), we recall that the crucial property in proving propo- 
sition 3.3 was the equation (3.52). We require that this basic 
relation be preserved in the deformed theory in the following 
sense. The second chiral primary has to be constructed in 
terms of a new field 4' such that lim,, 4' (z) = - ( 112) 4(z) 
and 

Let 4' be constructed from generators P, Q, b; as: 

then condition (4.10) is obviously satisfied if the new 
creation-annihilation operators are 

b;=(xn+x-")-I b,. (4.12) 

Notice, that, in consequence of this definition the formula 
expressing X' in terms of the field +I([) has the form 

Comparing this with Eq. (4.1) one sees that the integral op- 
erators X, X' are constructed from 4 and 4' respectively in a 
remarkably symmetrical form. We will see that this property 
allows direct generalization for an arbitrary x-deformation 
with O<x< I. Now the chiral primary operators intertwining 
the R and NS sectors c& be realized as 
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+ ~'(zx-')]}exp[i+'(f)]v, V E  Sp. 

The integral in @,(O is well defined if the contour is chosen 
as in (3.51). These bosonic prescriptions together with the 
conjugation condition 

where 14 = 1, completely specify the action of the operators 
@:2(43 in Fock space. The matrix elements of products of 
such operators can be derived by the standard bosonization 
technique. We leave the explicit calculations till Sec. 6, 
where it will be worked out as particular case t= 1 in the 
context of the general x-deformation. So let us just note, that 
by knowing the matrix elements one can obtain the commu- 
tation relations of these operators in the usual way. The es- 
sential difference between this case and undeformed one is 
that these commutation relations are determined by an ellip- 
tic R matrix of IRF type rather than constant R-matrix: 

x@fdf2)@;2(f1)1zp. (4.16) 

The nontrivial elements of the matrix W' are: 

where 

The associativity of the algebra (4.16) follows from the fact 
that the matrix W' is a solution of the Yang-Baxter equa- 
tion. This justifies the proposed deformation of the chiral 
primary operators a12. 

4.3. The x-deformation of fermlons ZF algebra 

Thus far we have been interested in the vertex operators 
of the Vir-2x algebra. To construct the vertex operators of 

Symm algebra, we must take into account the remaining 
finite-dimensional part of the symmetry algebra. 

Let er be basis vectors of an irreducible spin j=  ( 1  
- 1)/2 representation Fl of the algebra s1(2), with v €23, . 
Define the operators Z+(O acting on the spaces ?ri and 
?r,NS by Eq. (3.35). Straightforward computation shows that 
the operators Z,(O are generators of a ZF algebra given by 
the commutation relations 

and the operator product expansion 

It is quite evident now that the operators (4.2) introduced in 
the beginning of this section are just the generators of ZF 
algebra (4.18), (4.19). 

5. NONDEFORMED VIRASORO ALGEBRA WITH c<l 

In the present section we recall how to construct repre- 
sentations of a ZF algebra (more explicitly, a pair of ZF 
algebras) with constant R matrix corresponding to the quan- 
tum group U,(s1(2)). As before, the representation space of 
the ZF algebra can be realized as a direct sum of irreducible 
representations of the Virasoro algebra with central charge 
c< 1. The operators of the ZF algebras will be expressed in 
terms of vertex operators of the Virasoro algebra Vir, . Thus, 
the main objects of our investigation will be the irreducible 
representations of the Virasoro algebra and vertex operator 
algebra. To describe these objects we will use the bosoniza- 
tion method, examples of which were presented in the pre- 
vious sections. 

In the case under consideration the explicit realization of 
the Virasoro algebra generators L,  in the bosonic Fock space 
Fp is well known? Then the universal enveloping algebra 
U(Vir,) turn to be subalgebra in the universal enveloping 
algebra of the Heisenberg algebra. Moreover, any highest- 
weight vector in the Fock module will be the highest-weight 
vector of Verma module of Vir, . The original motivation for 
bosonization of the Virasoro algebra9 is that in Fock space 
one can explicitly construct the intertwining operators be- 
tween Verma modules. In the physical literature these opera- 
tors have been historically called screening operators? Ac- 
cording to the definition, the intertwining operators commute 
with any element of U(Vir,), hence it has to map singular 
vectors of a Verma module into singular ones. So the analy- 
sis of the structure of the reducible Verma modules becomes 
very simple. Indeed, to determine the singular vectors one 
needs to find such vectors in the Fock space which are 
mapped by the action of screening operators into the highest 
weight vectors, or such vectors which can be obtained from 
the highest weight vectors by the action of screening opera- 
tors. For this reason, knowledge of all possible intertwining 
operators is equivalent to the knowledge of the invariant sub- 
spaces in the Verma modules. This subject has been dis- 
cussed extensively in the literature. It is well known that the 
structure of the Verma modules of Vir, depends critically on 
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the arithmetical properties of the real number c.  Having in 
the mind x-deformation, we will omit the complicated cases 
of completely reducible Verma modules, just considering the 
general case, i.e., the case 2 in the Feigin-Fuks 
cla~sification.~ Our task is to recall the essential features 
which occur in the bosonization of representations of the 
Virasoro algebra and ZF algebra. (The analysis of more com- 
plicated cases can be found in Refs. 16 and 32.) In particular, 
we would like to clear up the idea that knowledge of the 
intertwining operators between the Verma modules of Vir, is 
sufficient to describe the irreducible representations of the 
Virasoro algebra and the algebra of the vertex operators 
without appealing to the commutation relations of the gen- 
erators L ,  . Another very important point we recall and con- 
stantly use in the construction is the existence of the remark- 
able discrete symmetry, which in our notations is just a 
replacement 6++-1-[ (a--a+ in that of the Dotsenko- 
Fateev work2). This symmetry, the origin of which is still 
hardly understood, seems to be essential not only in CFT~O 

but also in the general theory of integrable models.17718 
Our present treatment is based on a slightly different 

point of view on bosonization (see also Secs. 3 and 4). 
Namely, we consider the screening operators as the basic 
objects which completely determine the whole construction. 
In particular, the Virasoro algebra can be treated as an alge- 
bra of generators in the Fock space which commute with the 
corresponding screening operators. In this approach we can 
investigate the irreducible representations of the Virasoro al- 
gebra independently on what basis in U(Vir,) or what com- 
mutation relations are really involved. A similar idea was 
applied in the development of the theory of ~ - a l ~ e b r a . ~ ~  
Hence, the most important step is the introduction of cor- 
rectly defined screening operators. These operators have a 
remarkably simple form. They are given by powers of the 
operators X and X' which are deformations of (3.9). We 
explicitly list the subspaces in the Fock space where these 
integral operators are well defined. As soon as we determine 
the screening operators, we are able to describe the irreduc- 
ible representations of the Virasoro algebra as submodules 
(or factor modules) of the Fock modules. Our next step is the 
definition of the chiral vertex operators of the Virasoro alge- 
bra. To do this, we must specify a basis L, in U(Vir,) since, 
in general, knowledge of the intertwining operators is not 
enough to uniquely determine vertex operators. Our task is to 
extract the necessary properties of these operators which are 
determined by screening operators rather than by the choice 
of the basis L,. Defining the bosonization of the chiral pri- 
maries, we demonstrate that matrix elements of these opera- 
tors can easily be computed using the Wick theorem. Study 
of the analytical properties of four-point functions shows that 
the commutation relations of the chiral primary operators 
<Dl,, cP2, are determined by two different constant W matri- 
ces, which are solutions of the Yang-Baxter equation of IRF 
type. To construct the ZF algebras of "vertex typew8 one 
needs take into account the multiplicities of the irreducible 
representations of the Virasoro algebra. We argue that there 
are two ZF algebras associated with the algebras of the chiral 

primaries cP,, and @21 respectively. The R matrices of these 
ZF algebras correspond to the R matrices of the quantum 
groups U,(s1(2)) with different deformation parameters p.30 
These R matrices are connected by the transformation &-+ 
- 1-4 which arises in the symmetry between @,, and @,, 
(or 4'+++). The irreducible representation of a pair of ZF 
algebras coincides with the direct sum of Fock modules, so it 
admits classification by the representations of the Virasoro 
algebra. 

Bosonization is just a useful method to study the repre- 
sentations of the Virasoro and ZF algebras. Of course, the 
results do not depend on it. In particular, without any 
bosonization the irreducible representations of a pair of [&i 

- 1 -,$]-symmetrical ZF algebras are isomorphic to a direct 
sum of irreducible representations of the Virasoro algebra. 

This construction can be regarded as a case x =  l of the 
general two-parameter deformation with parameters x  and [. 
In the following section we will generalize the main state- 
ments for a x Z 1 deformation. 
3.1. Let us introduce the free bosonic field 

where the commutation relation of the null modes P, Q is 
defined by [ Q , P ]  = i ,  while the determining relation for the 
modes b ,  is 

Next, we will consider cases with deformation parameter 
1. Moreover, in order to avoid additional complications 

we assume that this number is irrational. Note that the case 
[= 1 corresponds to the example discussed in Sec. 3. To- 
gether with the field +, it is convenient to define another one: 

where 

As we will see below, there is a remarkable symmetry with 
respect to the transformation 6 ~ -  1-6. This is the reason 
why we introduce independent notation for field +'(z). In 
the case x =  1 the fields +'(z) and &z) are just proportional. 
However, in the x-deformed construction their connection 
turns to be more complicated. 

In the set of Fock modules 

one might introduce the following formal operators: 
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FIG. 4. The integration contours. 

Here we have used the Felder prescription'6 for the integra- 
tion contours (see Fig. 4). Namely, any contour C i ,  l S i < l  
- 1, has begins and ends at a point z l  chosen on the unit 
circle. It encloses the origin and all singularities depending 
on the variables zk (k< i ) .  The last integration over the vari- 
able zl  is performed along the circle C l .  In essential contrast 
with the case c=-2, the action of these operators is ill de- 
fined in the whole set of Fock modules, since the last inte- 
gration contour C l ( C l ~ )  in the definitions (5.5) is not closed. 
Hence, first of all, we must specify where the operators (5.5) 
act. 

Proposition 5.1. The action of the operator x'(x"') is 
defined only on the Fock modules Fl,k ( y k , l ' ) ,  k E Z  and I ,  
lr>O. Then 

We will call the integral operators (5.5) defined on the cor- 
responding spaces screening operators. Considering the 
screening operators as basic objects, one can define Virasoro 
algebra as follows: 

Definition. Let the operators P, Q, b,, n EZ satisfy the 
commutation relations (5.2) and screening operators be given 
by (5.5). Virasoro algebra is a subalgebra in the universal 
enveloping algebra of the Heisenberg algebra of operators b,  
and P. An element from rhe universal enveloping of Heisen- 
berg algebra belongs to Virasoro algebra if it commutes with 
the action of the screening operators. 

In the present case one can simply write down explicit 
expressions for the basic generators of the space of invariants 
in the universal enveloping of the Heisenberg algebra: 

The L ,  obey Virasoro commutation relations with the central 
charge c =  1 -6/a(+ 1). So, the Fock space is given the 
structure of the Virasoro module. The highest Fock state 
fk,k' = q ( t + , ) k - t k r l l ~ ~  will also be the highest weight 
vector of the Verma module of Vir with the conformal di- 
mension 

The most important property of the operators (5.5) is that 
they commute with generators of the form (5.7); i.e., they are 
intertwining operators between Verma modules of the Vira- 
soro algebra. Knowing intertwining operators one might 
study the structure of the Verma modules dffdk,k' of Vir, and 
construct the irreducible representations Zk,kr as subspaces 
or factor spaces of Fock spaces. Thus, introduce the follow- 
ing notations 

if k , k r 2  1; 
if k , k r s  - 1 ; (5.9) 
otherwise. 

We claim that the following proposition holds: 
Proposition 5.2. Let the generators of the Virasoro al- 

gebra are given by Eqs. (5.7) and the parameter e l  be an 
irrational number. Then 1. The space zk,kr for any integer 
numbers k ,  k' is an irreducible representation of the Vira- 
soro algebra with central charge c= l -6/[([+ l). The high- 
est weight vector of %k,k' coincides with the vector fk,kr and 
has the conformal dimensions (5.8). 2. For kkr<O or k ,  
kr<O, the Verma module A k , k '  constructed from the high- 
est weight vector f k , k r  coincides with the total Fock module 

Fk,k'. 
We would like now to comment propositions 5.1, 5.2.32 

As we have noted, any highest weight vector f k , k r  of the 
Fock module Fk,kl is found to be the highest weight vector 
of the Verma module ~ i ~ , ~ l  of the Virasoro algebra. Generi- 
cally speaking, Fock space Yk,kf does not coincide neither 
with the Verma module A k , k ' ,  nor with the irreducible 
module 9k,k~ of Vir,. It might contain some subspaces 
which are invariant with respect to the action of generators 
(5.7). Since the screening operators (5.5) commute with any 
generator from the universal enveloping of Vir, then they 
have to map an invariant subspace of the Vir into invariant 
one. In the case under consideration the structure of the em- 
bedding of the Verma modules given by the action of screen- 
ing operators is rather simple: 

(i) Consider first the Fock module Fl,lr, 1 ,  l l>O. Ac- 
cording to proposition 5.1 this module contains a vector 
qlr such that x'$,, = f - l , l ~ ( ~ r " ~ l ,  = f , , - , . ) .  This vector 
cannot be obtained by the action of the Virasoro algebra 
generators on the highest weight vector f l l l ~  and the Fock 
submodule constructed from the state tl, turns to be invari- 

1034 JETP 82 (6) ,  June 1996 S. Lukyanov and Y. Pugai 1034 



FIG. 5. The structure of spaces Fl,lf and 9- , , - , I .  

ant space under the action of the generators of the Virasoro 
algebra. Indeed, if $,, is produced by the action of any ele- 
ment from the universal enveloping of Vir, on the vector 
f,,,~, then the operator x'(x'") would map it into zero rather 
than into f-l,lt(fl,-lr), since x'(x"~) commutes with any 
generator of Vir, and ~ ' f ~ , ~ t = X " ~  fl,lr=O. Proposition 5.2 
means that the subspace KerFl,l,[~'] = KerFl,,[X1"] is an 
irreducible representation Sl,,1 of the Virasoro algebra. The 
modules F- r = Im4,,, X' and .Fl, - l r  = 1m4,, x"' coin- 
cide with the Verma modules Vir, and do not have any in- 
variant subspaces. Hence it can be identified with S1 , -p  and 
3'- ,,,I correspondingly. 

(ii) The Fock space F- ,, - 1 is a reducible Verma mod- 
ule of Virc with unique null-vector which is the im- 
age of the highest weight vector f,,- (f,,- r) under the action 
of the operator x'(x"') : 

The irreducible representation 23- of Vir turn to be iso- 
morphic to factor space F-I, -,, /Im4,- [X1] 

= F-, , . /Imfl_ ,,[x"~] of Fock space (see Fig. 5). 
The most important objects for us are the sets of irreduc- 

ible representations {S1,, 1 11,l' >0} and { q , ,  1 1,l ' > 0) 
where, by definition, q , ,  = S-l,-rl . These spaces can be 
endowed by the scalar product through the procedure which 
was explained in the section 3 on the example of Virasoro 
algebra with central charge c=-2 .  Namely, we introduce 
dual field +* and repeat analysis above for dual representa- 
tions. Then we identify dual modules of Virasoro algebra 
with subspaces (or factor spaces) of Fock space by demand- 
ing the condition T*(l) = T([). Again, choosing the field + 
as basic field and determining dual field via Riccati type 
equation, we destroy the symmetry between 4 and +*. For 
instance, Fock submodule gl, = K e r p  [x*'] will be iden- 

1.1' 

tified with factor module 2%- = F-,, - 1 r  IImyl ,-,, [x'] 
etc. Thus, we have: 

Proposition 5.3. Let irreducible representation S l , ~ r  and 
dual Verma module A:,, of Virasoro algebra are realized as 
bosonic modules Kergl,l,[~'] and K ,, - , 1 correspondingly, 

where 1=1,2, ... Then the scalar product (,),, (3.21) restricted 
on the vectors from Sl,lr  and A:,, coincides with the fol- 
lowing: 

Let us explain the meaning of this statement. Consider at first 
vectoru E Kerq,lr[~'] 2 Sl,rr . Then due to both scalarprod- 
ucts (,)o and (5.10) u has to be orthogonal to any vector 
~e.F-~,- , r .  Let now VEF-~,-~~. We know from the propo- 
sition 5.2 that .F-l,- s . It is clear that taking v 
E Imp [XI] we would find that this vector is orthogonal 

1,-I' 

to any vector from Kery ,[xl] s Zl,lt . The reason for this 
1.1 

is that subspace Im4.-l,[~'] is generated by null vector in 

the A:,, which is orthogonal to Sl,l 1 . So, the only vectors 
which have non-trivial scalar product are u E KerF1,,,[X1] 

and v E .F-l,-lr /1m .Fl,-lr[~'] = q , ,  . But scalar products 
(3.21) and (5.10) are the same in these spaces. It should be 
clear from explicit bosonic realization of generators L,  (5.7). 

Now let us turn to consideration of the vertex operator 
algebra acting on the set of irreducible representations of 
Vir,. It is easy to see that this algebra is generated by the 
following operators: 

The commutation relations of these operators with the Vira- 
soro generators are given by Eqs. (3.38), (3.41), where A,,2 
and A2,, are defined as in (5.8). In addition, the following 
conjugation conditions hold: 

whereu* E q l r  a " d ~ ~ S ~ + ~ ~ t ( 3 ' ~ , ~ r r l ) .  
Now we w~sh to use the example of the operators to 

explain how one can find the bosonic realization of such 
vertex operators. We introduce the formal operator 

where the integration contour C is chosen as in (3.50). The 
action of this operator is defined only in the Fock modules 
FkYkr with (a$+ 1)k- (k'<O and 

v- 
V-(l) : F k , k ' - ' . F k -  1.k' 

The chiral primary operator which increases value of k by 
unity can obviously be constructed as v+(L) = ei4(<): 

It is easy to see that the operators (5.14), (5.15), satisfy the 
same commutation relations with the Virasoro algebra as 
a,, . Moreover, the following proposition holds: 
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Proposition 5.4. Let 1 ,  1' be positive integers such that 
((+ 1)l- ( 1' <O. Then the following diagrams are commu- 
tative: 

i) 

ii) 

vr 
F-1.1' , y-lt l , l ' .  

(5.17) 
Propositions 5.1-5.4 ensure that V ,  maps one highest- 
weight representation of Vir, into another and provide all 
properties of the vertex operators. However, we can to iden- 
tify such bosonic operators with the vertex operators @21 
only on the states, where V ,  are defined, not in the whole 
Fock space. Let v and v* be vectors from Sl,ll and 3 L 1 ,  
respectively, then 

where we explicitly write down in the parentheses the re- 
strictions on the labels 1,l' of the spaces S l , l r  where the 
bosonic realization is defined correctly. The bosonization for 
vertex operators of another type (QI2 and @;z) can be carried 
out in similar fashion. The result is: 

where v E Bl,l 1 and v* E Z Ll1. The operators V i  ( 5 )  are 

and its properties are quite similar. 
The bosonization prescriptions (5.18), (5.19) together 

with the conjugation conditions (5.13) allow us to calculate 
any matrix element of the vertex operators aI2, @21.  Using 
the technique described in the previous sections, one can 
calculate the functions G,' , G;' (3.42) for any number ( 
and then find the commutation relations in the algebra of the 
vertex operators. We arrive at the following 

where p = ei"(5+1)15 and p' = ei"8(5+1).  As before, these 
formulae define the rule for analytical continuation of the 
matrix elements of the vertex operators from the region 
)511>1521 to 1521>1511 along the contours Ca12, uI2=+ de- 
picted in Fig. 2. The nontrivial elements of W read explic- 
itly: 

where [I ] ,=  ( p l - p - ' ) l ( p - p - l ) .  It is easy also to find the 
commutation relation 

@;1(ll)@tz(82) = a  b d(~I2)@;2(52)@;1(51).  (5.23) 

with 

Let us discuss the structure of the commutation relations. 
The algebra (5.21), (5.23) is self-consistent, since we have 
d ( ~ ~ ~ ) d ( u ~ ~ )  = 1 (uI2= -uZ1) and the matrices W ,  W '  sat- 
isfy the so-called unitarity condition: 

The associativity condition for this algebra is provided by the 
Yang-Baxter equation in IRF 

and analogously for W '  . 
3.3. We wish now to construct the representations of ZF 

algebras associated with algebras of the chiral primaries 
a2 , .*  It was explained in connection with the simple ex- 
ample ( = 1  (Sec. 3), that to describe the representations of 
ZF algebras one must take into consideration a finite- 
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dimensional algebra U together with Virasoro algebra. Then 
the irreducible representations of two ZF algebras are de- 
composed into a direct sum of irreducible representations of 
the whole symmetry algebra 

It will be shown that this procedure leads to ZF algebras in 
the general situation ( 5 2  1 )  too. The finite-dimensional sub- 
algebra U of the whole symmetry algebra for the ( f  1 case 
was considered in Ref. 30. It is found to be a direct product 
of two quantum algebras of the form (2.9). We refer to the 
concept of quantum algebras and their representations in the 
Sec. 2.2. 

Let us consider the direct product 
Up(s1(2))  @ U p #  ( s l ( 2 ) )  of two quantum algebras with gen- 
erators (x', T )  and (x", T' ) respectively. The cornmuta- 
tion relations of the two algebras are determined by (2.9), 
where the deformation parameters p ,  p' are given by 

We will concentrate on the situation when 5 is a real irratio- 
nal number greater then 1. In this case, as was noted in 
section 2, the representations of the quantum algebra (2.9) 
are similar to representations of an ordinary s l (2)  

For this reason, the algebra 
Up(s1(2 ) )  @ U p #  ( s l ( 2 ) )  admits a set of finite-dimensional 
irreducible representations parametrized by a pair of non- 
negative integers 1 ,  1'. We denote these representations as 
9'"l,l~. The basis vectors of the space Pl,l~ are given by 

m,mr  e l  = ey @ e:' , where the ey were described in (2.1 1). 
Let us consider now the whole symmetry algebra 

Symm = Vir, @ U p ( s l ( 2 ) )  @ Upt ( s1 (2 ) ) .  The irreducible 
representation of this algebra is given by the tensor product 

The scalar product in this space is induced by the scalar 
product in S l , l r  and in Fl,ll. We claim that .rr, has the 
structure of an irreducible representation of two ZF algebras. 
Indeed, let us define the action of the generators of ZF alge- 
bras on the space (5.29) by the formulae8: 

Here, as usual, 1 = 2 j + 1 ,  1' = 2 j' + 1. Using the precise ex- 
pressions (2.13) and (5.18), (5.19) one can find that for 
11#12 the operators (5.30), (5.31) satisfy the commutation 
relations: 

The meaning of the parameter u12=+ is the same as in 
(3.49). The explicit form of the matrix ~ ; ; f ( a , , , p )  is defined 
by the relations (2.7), (2.8). 

6. DEFORMED VIRASORO ALGEBRA AND ELLIPTIC ZF 
ALGEBRAS 

Now we want to consider the general case of the de- 
formed Virasoro algebra Vir,, with O<x<l and the central 
charge 

where PI is again an irrational number. Our method, vari- 
ous aspects of which were demonstrated above, is based on a 
very simple idea. The structure of representations of the de- 
formed Virasoro algebra is determined by the deformed in- 
tertwining operators. The problem of finding of proper de- 
formation of screening operators is not quite evident. Here 
we will use the deformation suggested in Ref. 17. Having the 
deformed screening operators depending on two continuous 
parameters x and 5, we claim that there is a corresponding 
two parameter algebra Vir,, which coincides with the Vira- 
soro algebra with central charge (6.1) in the limit x - l .  In- 
deed, for given parameters 5, x any operator constructed 
from annihilation-creation operators of Fock space belongs, 
by definition, to the universal enveloping algebra of the de- 
formed Virasoro algebra if it commutes with the screening 
operators. Unfortunately, at the present time, we do not 
know explicit expressions for a proper basis of the generators 
of the deformed Virasoro algebra. Therefore the generaliza- 
tion of a,', , @p2 will be based only on properties of the 
deformed screening operators. In this way, we obtain the 
bosonic representation of the elliptic ZF algebra of the de- 
formed vertex operators. We will show using examples how 
to carry out real computations of matrix elements of the ver- 
tex operators. The main point we wish to emphasize in this 
section is that the ideas and technique developed in CFT can 
be generalized for other integrable models. 

6.1. Screening operators for the Vir,, algebra 

Let the bosonic fields # z )  and +'(z)  be given by (5.1), 
(5.3). We assume that the modes b, satisfy the deformed 
commutation relations17 

and 

Here we use the notation [a],= ( ~ ~ - x - ~ ) l ( x - x -  I). One 
can treat these commutation relations as a two-parameter de- 
formation of the Heisenberg algebra (3.8) with real param- 
eters 1 and O<x< 1. The meaning of a deformation with 
parameter 5 was discussed in Sec. 5 ,  while the simple ex- 
ample of x-deformation was presented in Sec. 4. The Fock 
module 5r, for the algebra (6.2) can be constructed like an 
ordinary one. As a vector space it is isomorphic to the unde- 
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formed Fock space considered in the previous sections, be- 
cause Fp is still covered by vectors @ ;= lCb- , l . . .b - ,  f 

k P 
with ni>O. The module Fp can be endowed with the struc- 
ture of the Z-graded module if we introduce the grading 
operator by 

The x-deformation (6.2) does not change the number of 
states on every level, and the character of the Fock module 
will be the same as before. We note here that in choosing 
deformation parameter x as a real positive number, we are 
considering x-deformation at a generic point. As before, the 
main object of our consideration will be the set of the Fock 
space { y k , k t  = ~ ( 5 + l ) k - y t 1 , J 2 m ~ l k , k '  E Z}. Introduce 
the two-parameters family of formal operators 

Evidently, these integral operators are deformations of the 
operators (5.5). We have seen an example of such deforma- 
tion (4.1) in section 4. Note that X' and x'" are related by 
the transformation 5tt- 1-5 (or equivalently, 4++4', 
1-l',). The important fact is that, as in the case x=  1 ,  the 
operators X' and x'" obey: 

Proposition 6.1. The action of operator X' (x'") is de- 
fined only on the Fock modules Fll,k(gR,lt), ~ E Z  and I ,  
1' >O. Then 

Now we would like to give the: 
Definition. Let the operators P, Q, b,  , n $0 satisfy the 

commutation relations (6.2) and the screening operators be 
given by (6.5). The x-deformed Virasoro algebra Vir,, is a 
subalgebra in the universal enveloping algebra of the de- 
formed Heisenberg algebra of operators b,  and P. An ele- 
ment from the universal enveloping of the Heisenberg alge- 
bra belongs to the deformed Virasoro algebra if it commutes 
with the screening operators. 

An example of the deformed Virasoro algebra was given 
in Sec. 4. This algebra inherits Z grading from the algebra 
(6.2) of operators b , .  Due to the definition, the screening 
operators are intertwining operators for representations of the 
deformed Virasoro algebra. Using proposition 6.1 one can 
investigate the irreducible representations of Virc,x. Let the 
spaces S k , k t  be defined as in (5.9). We assume that at the 
general point of x-deformation the analogue of proposition 
5.2 is also correct. It can be rewritten now as: 

Conjecture 6.1. Let the parameter ( be irrational num- 
ber, 5> 1. Then 1 .  The space sk,kt for any integer number k, 
k' is an irreducible representation of the deformed Virasoro 
algebra with central charge defined by (3.16). The highest 
weight vector of z k , k t  coincides with the vector f i , l ~  and its 
weight is given by (5.8). 2. For kkl>O or k, kr<O, the 
Verma modules &k,k' constructed from highest vector f k , k t  

coincide with Fock modules Fkpkr. NOW we must make one 
more assumption concerning the conjugation condition for 
Virc,x. Such as in the Fock space there exists a natural scalar 
product then we expect that the following statement is true: 

Conjecture 6.2. Let irreducible representation B'l,l t and 
dual Verma module A;',, of the deformed Virasoro algebra 
Vir,,, be realized as the bosonic modules Ker9,,,,[xi] and 
K l , - , t  respectively, where 1 = 1,2 ,... . Then the scalar prod- 
uct (,)o given by (3.21), restricted to the vectors from Si,i~ 
and .A%;it, conforms with inner conjugation in the deformed 
Virasoro algebra. 

Unfortunately, at present we can not construct a proper 
basis of generators in the deformed Virasoro algebra and 
prove the above assumptions. Nevertheless, let us try to work 
out the consequences of these statements. We will see below 
that such a conjugation condition leads to the proper anti- 
involution in the algebras of chiral primaries. 

Consider now the generalization of the operators V , ( n  
and V i ( l )  introduced in Sec. 5. In the x-deformed case we 
will define it as follows: 

where the prescription for the integration contours is the 
same as before. The constant 17, q' will be specified later to 
provide a convenient normalization of the operators (6.7). 
Note that the action of the operator V-(VL)  is well defined 
only on the Fock modules yk,kt with ((+ 1)k-(k1<0 
(((+ 1)k- (k' >O).  One can prove: 

Proposition 6.2. Let (S+ 1 )1- (1' <0 and 1,  ll>O. Then 
the action of the operators V , ( n  is described by the commu- 
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tative diagrams (5.16), (5.17); the action of the operators 
Vi ( f )  is defined by the following commutative diagrams 
i) 

vI F-l , l l*l ,  F-1.11 + 

ii) 

Let us illustrate this proposition for a simple example. 

6.2. Example of calculations 

From proposition 6.1 follows that if the Fock module 
F-,,-, is regarded as a Vir,, module, then it contains a 
singular vector X'f-,,,. It is easy to show that this vector is 
proportional to the state d,{texp(-i[cPf(tx) 
+ q5'(tx-')]})lr=of- - b L According to proposition 
6.2, the operator V-(tl) acting on this state maps it into the 
null vector in the Verma module A-2,- =F-2,- ,. Due to 
our conjecture on the scalar product, such a null vector has to 
be orthogonal to all states from the irreducible module 9?2,1 
and, in particular, to the state V+(lJf,,,: 

Let us check this formula. As a consequence of the bosonic 
representation it can be represented in the form: 

where abbreviated notation &(z) and &'(z) is introduced for 
~ ( z x )  + ~ ( Z X - I )  and q5'(tx) + q5'(tx-') respectively. 

The technique for calculating of similar vacuum expec- 
tation values in a bosonic space was developed by Dotsenko 
and Fateev.' Let us recall how it works in the case of 
x-deformed operators. First of all, it is convenient to extract 
the contribution coming from the zero modes of operators in 
(6.1 1). Using the commutation relation for P, Q it is easy to 
find that ordering these operators results in the product of the 
form t$5-')1455;(5+3)14ez 'I5t- '. The ordering of the oscillator 
modes b,, as usual, means that annihilation operators have 
to stand on the right, while creation operators should be on 
the left. It is convenient to distinguish two cases here. In the 
first case one must carry out ordering of oscillators from 
different exponentials, while in the second from the same 
exponent. 

First we want to remind the reader the procedure in the 
first case. For instance, let us specify the ordering of the 
expression ei9(S2)ei4(Z1). Using Campbell-Baker-Hausdorff 

formula eAeB = eA+BelA.B1/2 one can find that contributions 

appearing from coupling of these exponentials are equal to 

where we denote by 4, the positive and negative frequency 
parts of the field respectively. Straightforward computa- 
tion using the commutation relations (6.2) leads to the fol- 
lowing representation of the function g(l1&'): 

The sum in this expression converges only for 1z1<1. Its 
analytical continuation over the whole complex plane is 
given by the following infinite product: 

The contributions coming from averaging other pairs of ex- 
ponents can be obtained in the same fashion. Slightly differ- 
ent procedure is required to order the oscillators in the same 
exponent. Proceeding as above, one finds formally that the 
ordering of ei4(11) gives constant p such that p2=g(l). How- 
ever, as is seen from (6.14), g(z) has a simple zero at z=1. 
We adopt the following conventions: 

1 -x2 
P2 = lim - g(z). 

z-+1 1-2 

Ordinary, one use exponential operators in the normal or- 
dered form from the very beginning. Then there is no need to 
order oscillators belonging to the same exponential. It is 
more convenient for us to cany out this ordering in the final 
step. Indeed, in the deformed case this step results in non- 
trivial constants depending on the deformation parameter, 
unlike the conformal case where renormalization has the 
similar form for every exponential. We introduce constants 
like p since they provide the natural normalization of opera- 
tors. Now we present the final expression for the averaging 
of the integrand in (6.1 1): 

Here g(z) is defined by (6.14), while the other functions 
yield 

As noted above, the constants p, 5, 5' are nontrivial func- 
tions of the deformation parameter x. They are given by 
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The integral from expression (6.16) can be expressed in 
terms of q-special functions. Let us introduce the necessary 
notations. We will need definitions of the q-gamma function 
l?,(a) and q-hypergeometric function F,(a,b ,c;z). They are 
usually defined by 

where (qa;q),= nil;( 1 - qa+P). There exists the following 
integral representation for q-hypergeometric function, gener- 
alizing formula (3.55): 

Notice, that in this remarkable formula we have an ordinary 
contour integral rather than Jackson's one. When this inte- 
gral representation is used the calculation becomes trivial 
and leads to the formula: 

In the special case under consideration we need the follow- 
ing particular expressions for hypergeometric functions: 

Substituting these expressions into (6.22), one finds that f(0 
is identically zero. That proves the orthogonality of the vec- 
tors V-(l1)X1f-,,, and V+(52)f1,1. Analogously, one can 
prove that the following matrix element is zero: 

The procedure here is similar to those carried out before. The 
only difference is that averaging the integrand leads to the 
expression 

We emphasize here that the function u( l )  
= exp[c,6:(12),6-(11)] in this expression is given by the same 
formula as before, although it arises from the ordering of 
other exponentials. This is consequence of the very special - -12 form of the proposed x-deformation. The functions h, p, p 
have been written in (6.17) and (6.18), while the others have 
the form 

6.3. Vertex operators for the deformed Virasoro algebra 

Proposition 6.2 means that the operators (6.7) are vertex 
operators which interpolate between irreducible representa- 
tions of the deformed Virasoro algebra. We assume that the 
bosonic operators V ,  can be identified with "quantum" ana- 
logues of the operators by the formulae 

Bosonic realization of operator @& is determined by similar 
expressions: 

If we adjoin the conjugation conditions 

(v;@;1+(lx2),v2)=(v;,@;?TI(5)v2), 
(6.29) 

( v ; @ ; ~ ' ( L x ~ ) ~ v ~ ) = ( v ; , @ ~ ~ ( c ) v ~ ) ,  

where v; E g,[,, V~E%, , , I  and Id= 1, then formulae (6.27), 
(6.28) uniquely specify the action of x-deformed vertex op- 
erators on irreducible representation of Virc,x. From the 
bosonic representation one can get all information on the 
vertex operators. In principle, our construction is very simi- 
lar to those known in CFT. The difference appears only in 
the explicit form of the vacuum averaging of exponentials. 
For instance, let us write down the matrix elements of the 
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product of two x-deformed vertex operators. It can be ob- 
tained by using the formula (6.21) and knowing the coupling 
of corresponding exponentials. If we specify the constants 77 
and 7' in the definition (6.7) by 

To calculate these matrix elements of the vertex operators 
together with the functions (6.14), (6.17), (6.26) we need 
know also the explicit form of the following averages: 

where 

then we easily find that x-deformation of the functions G: 
(3.42) has the form 

Carrying out the standard procedure which was explained 
above, it is not hard to obtain the formulae 

Both formulae here are described by the same function 
G,(c ,a;z )  taken with different parameters. It is given by the 
expression 

The bosonization technique allows one to represent the func- 
tions (6.34) in the form of contour integrals from meromor- 
phic f~nctions:~) 

If we choose the constants 7 ,  77' as in (6.30), then the con- 
stants C ,  C' will have the form 

This normalization of the vertex operators is convenient, 
since it provides the following normalization of the functions 
(6.33): 

In what follows we see that expressions (6.31) also deter- 
mine the commutation relations of the deformed operators as 
it was in the conformal case. For this reason, in order to 
describe arbitrary matrix element of operators @f2, it is 
enough to present explicit formulae for the functions 

Here we denote by the symbols fie+ GI((+ the func- 
tions representing the contributions of null modes in averag- 
ing of corresponding exponentials. Their explicit form is 
given by the relations: 
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The integration contours {Ci}T= and {Si)y= are shown in 
Fig. 6.  Note that any contour Ci encloses those singularities 
of integrand which depend on l k ( 2 n >  k 3 n  + i), zk(k>i ) .  
5 ; ( 2 n > k >  l ) , z ; ( n >  k >  l).AtthesametimeacontourSi 
encloses all singularities determined by l ; ( 2 m  2 k  > m + i), 
z ; (k>i ) .  

6.4. Elliptic ZF algebra of IRF type 

Now let us turn to consideration of the commutation 
relations for the vertex operators. They can be derived from 
the rules for analytical continuation of the functions (6.31) 
by using the following relations for the q-hypergeometric 
function:36 

FIG. 6. Integration contours. 

The function d ( z )  appearing at the formula above has the 
form: 

while the matrices W, W' can be represented in the form 

- b +  liqc+1-a-b z  - 1  1 
Here w denotes the following matrices: 

- a +  1;q c + l - a - b  - 1  z  1. (6.39) 
( , ,  @,(qa)@,(q"'l) 

We have: @,(qa~)@,(q'"')  ' 
Proposition 6.3. The vertex operators Q 1 2 ,  @21 obey the (6.43) 

following commutation relations: @ q ( q a ( ' l + l )  

W[ ' ': l l l , a , q ] =  - q z a 2 1 t - a  
~ ~ ( 5 )  

121 @,(q""')@,(qa5) ' 

c+d=a+b The matrices W, W' satisfy the unitarity condition and the 
Yang-Baxter equation in IRF f ~ r m . ~ , ~ ~  These properties en- 

x @ & ( L ~ ) @ ; I ( ~ I ) \ Z ~ , ~ ~  9 sure the self-consistency and associativity conditions, respec- 
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tively, for the algebra of vertex operators (6.40). In addition, 
the matrices W and W' also satisfy the crossing symmetry 
equation: 

where 

A similar equation holds for the matrix W. Using the com- 
mutation relation (6.40) and the property (6.44) one can 
show that the quadratic combination 
K , Y ' ( K I ~ - I @ : ~ ( ~ ) @ ~ ~ ( x ~ ~ ) +  ~ 1 1 + 1 @ 1 2 ( 5 ) @ L ( ~ ~ 5 - ) )  is a 
central element in the algebra of vertex operators. In the 
chosen normalization (6.33) we have: 

Note that the conjugation (6.29) conforms with the commu- 
tation relations (6.40) and condition (6.45). This justifies the 
proposed choice of the scalar product in the conjecture 4.2 
and the bosonization rules (6.27), (6.28). 

6.5. Trigonometric ZF algebra 

Now let us briefly discuss the limiting cases of 
x-deformed construction. The first obvious limit is the con- 
formal one. It can be obtained when the parameter x tends to 
1 while the variable In 5 remains finite and nonzero. The 
bosonization formulae for the matrix elements of the vertex 
operators in this limit are obviously equivalent to the 
Dotsenko-Fateev integral representation for conformal 
blocks in CFT.~ In particular, one can find that the compli- 
cated function g ( z ) ,  g ' ( z ) ,  w ( z ) ,  w ' ( z )  in the limit x+ 1 ,  
i In z-  1 become correspondingly ( 1 - z ) ( ~ +  
( 1  -z)5/2(5+l), ( 1  - z ) - (5+ ')It, ( 1  -z)-5/(6+ 1 )  

Another limiting case corresponds to the case when the 
elliptic matrices W transform into trigonometric ones.6938 It 
can be found as follows. Let us write down the variables x, 5 
in the form z=e-"p, x2= e-"' and then look at the limit 
€ 4 0 ,  assuming that p is finite. Note, that it is convenient to 
carry out the modular transformation = ei"r-e-i"lr of the 
theta functions @,(D first. Then the limits can be found 
straightforwardly. It is not hard to show that functions (6.37), 
as well as the commutation relations (6.40) are well defined 
in this limit. These expressions can be treated naturally as 
vacuum averages of certain operators 

which act in the set of spaces lim,31,~1.5) Using the 
bosonic realization of the ZF algebra of IRF type, one can 
construct in this limit representations of the ZF algebra of 
vertex type.23 Indeed, the finite-dimensional part of the total 
symmetry algebra Syrnrn will coincide with those considered 

in the conformal case, i.e., it is given by the direct product of 
two quantum groups U,(s1(2))@ Upt(s1(2)) .  Let us now 
introduce space IT, as 

where Fl,l~ is the 11 '-dimensional irreducible representation 
of the algebra Up(s1(2))@ U p #  ( s1(2) ) ,  and define the action 
of the operators Z , ( P ) ,  Z k ( a )  by a formula analog?us to 
(5.30), (5.31). It is convenient to consider the following 
simple redefinition of these operators 

Then one can show that the operators Za(P) ,  Zh(a) ,  gener- 
ate the ZF algebra of vertex type: 

The function d(P) is the limiting value of the function (6.41). 
Its explicit form is just d(P)=tan(1~/4+iP/2). The matrices 
s : ~ ( P ) ,  R:f(a)  have the following form: 

s ~ : ( P )  = s ( ~ ) ~ c d ( e - 2 P / 6 , e i " ( t +  1) /6  
ab 1, 

~ : f f ( ~ )  = r ( a ) ~ c d ( e - 2 f f l ( f +  a b l ) , e i f l e / ( c+  1 ) )  9 (6.50) 

where the nontrivial elements of the matrix ~ : i ( t , ~ )  are 
given by (2.7). The explicit forms of the functions r (a) ,  s(P) 
is complicated and it can be found in Ref. 17. The ZF alge- 
bra (6.49) was introduced in the context of the sine-Gordon 
model and its physical meaning was discussed in Refs. 17, 
21, and 22. 

7. OPEN PROBLEMS 

Now we run into the problem how to construct the rep- 
resentations of the elliptic ZF algebra of vertex type.39 Let us 
give an abstract definition of this object. It is a quadratic 
algebra of the form (6.49) where the matrices ~ : t ,  s:: have 
the following form: 

The nontrivial elements of the matrix ~ $ ( t , ~ )  are defined 
by (2.2). The function d(P)  coincides with (6.41) where, z is 
equal to e- iEB.  Note that the matrices (7.1) satisfy unitarity, 
crossing symmetry and the Yang-Baxter equation, and at the 
limit E+O they transform into (6.50). As we have seen in the 
example above, to construct the ZF algebra of vertex type 
from the IRF algebra of vertex operators, one must know the 
comultiplication in the finite-dimensional subalgebra of the 
symmetry algebra. This problem might be very nontrivial 
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since this subalgebra seems to be related to the Sklyanin 
algebra.'@ At the same time, we want to emphasize that the 
Sklyanin algebra itself is a deformation of Up(sl(2)), while 
we expect this new algebra to be a deformation of a tensor 
product of the quantum groups U,(s1(2))@ Up1(s1(2)), in 
order to give the limits which are consistent with our con- 
structions in the trigonometric and conformal cases. 
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9. NOTES ADDED IN PROOF 

When the work was completed we received a number of 
preprints devoted to deformed Virasoro algebra and related 
problems. In Ref. 41 the x-deformation for the classical Vi- 
rasoro algebra and classical W-algebras was proposed. The 
x-deformed Virasoro algebra with arbitrary central charge 
c = 1 -6/.f(5+ 1) was described in Ref. 42. Further generali- 
zation of the x-deformation for the case of W-algebras was 
provided in Refs. 43 and 44.@ 

10. APPENDIX 

In this Appendix we collect the explicit expressions for 
the functions and constants which are necessary to compute 
the matrix elements of the vertex operators in formula (6.37). 
The functions g ,  w ,  g ,  g' ,  w', g", h, u, h are defined as 

They are given by: 

1 
Wz)= (1 -zx)(l -zx-1). 

The constants p, p, p', p' defined by 

- 1 -x2 
(10.3) 

lim gl(z),  p r 2 =  lim - 
z + l  1-z 

g l (z )  
z-* 1 

have the following values: 

')~ecause of this identification one can regard the fields id&- 1/26 and 
id&*- 1/25 as different solutions of the quantum version of the Riccati 
equation (3.15)." 

')1n certain cases (minimal models) it is possible to reduce the space of 
states so that chiral primaries will be correctly defined and generate an 
associative algebra.30 

3 ) ~ o r  instance, the action of the integral operators like X, X' is not defined 
in these modules. 

4 ~ o r  convenience, we collect all the necessary averaging of the exponentials 
in the Appendix. 

')TO avoid introducing additional notation, we will denote such spaces by 
9,,,1 in this subsection. 

 he authors of Refs. 41-44 used the parameters p ,  q,  r which are con- 
nected with ( andx  by p=x-2,  q = ~ - ' ( ~ + ' ) ,  t = ~ - ' ~ ,  Ref. 45. 
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