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Normal ordering has been used to determine the energy-momentum tensor of particles created in 
a Minkowski space after an external field has been turned on. The method used does not 
require regularization, as it yields a finite result directly. The expectation value ( o ' " I : T , , :  10'") is 
treated on an equal footing with other obse~ables, such as the current density and the 
mean number of particles created, i.e., it makes physical sense only after the quantity in question 
has actually come into being. As it applies to particles created by a mirror that is accelerated 
over a finite interval of time in (1 + 1) spacetime, (OinI:  T,,: 10'") is not the same as the regularized 
quantity (o*(: T,, : 1 oin),, , although when integrated over all space, the 00-components of 
these tensors yield the same total energy for the particles created. O 1996 American Institute of 
Physics. [S 1063-776 1 (96)00206-51 

I. INTRODUCTION operators, and exactly which operators are to be normal- 
ordered is a problem whose solution is suggested either by 

The energy-momentum tensor is a source of the gravi- examination of the structure of the mathematical machinery 
tational field, so there is ample justification for studying it (see ~ ~ f .  7 and further references therein) or by trial and 
closely (see, e.g.9 Refs. 1-31. One by-product of a plethora error, Here, in a word, we take the latter approach. 
of such research has been the elevation of the energy- 
momentum tensor to the rank of an especially important 
quantity, with a considerably wider range of applicability 
than, say, the particle concept (see Ref. 4 for an extreme 2. ENERGY-MOMENTUM TENSOR OF PARTICLES 

view). CREATED BY AN ELECTROMAGNETIC FIELD 

Nevertheless, in the present paper, we wish to revert to 
the original setting of the problem in order to discuss the 
feasibility of a more cautious approach: perhaps, despite its 
(probably only seeming) locality, the energy-momentum 
tensor in fact depends on global conditions, and therefore 
requires some finite domain in which to come into being, as 
is the case, for instance, in particle creation. Indeed, the op- 
erator for the energy-momentum tensor is defined in terms 
of a field operator W, which depends on a complete set of 
solutions of the wave equation and particle creation and an- 
nihilation operators. The sense of the latter operators de- 
pends on the sign of the frequency of the solutions, and can 
only be determined in a region in which the particle creation 
process (or in any event, the creation process for those par- 
ticles with the same quantum numbers as the solution) has 
already come to an 

Thus, there is reason to believe that the energy- 
momentum tensor can only be defined when certain condi- 
tions are satisfied. It is useful, in any case, to compare the 
vacuum mean of the normal-ordered energy-momentum ten- 
sor after turning off the field with the vacuum mean of the 
regularized energy-momentum tensor. This we shall do in 
Sec. 3 for the situation of greatest interest (due to its connec- 
tion with the Hawking evaporation of black holes), that of 
radiation by an accelerated mirror. But first, to develop the 
intuition required for the subsequent discussion, we consider 
in Sec. 2 a more clearcut case, in which an electromagnetic 
field acting over some finite time interval t engenders a non- 
vanishing expectation value (Oh[  : T,, : loin) and particle den- 
sity, which we examine as t 4 w .  Even in this simple situa- 
tion there are in and out particle creation and annihilation 

In general, the total energy-momentum tensor of the 
field consists of more than just the energy-momentum tensor 
of created particles. Below we shall see that after some nec- 
essary averaging over time and/or space, the energy- 
momentum tensors of the field and created particles coincide. 

For simplicity, let the complete sets of in and out solu- 
tions of the wave equation. 9; and $yt be characterized by 
the single set of quantum numbers k, i.e., 

Superscript + and - here denote the sign of the frequency 
of the solution. Then the in and out creation and annihilation 
operators for particles, a: and a k ,  and antiparticles, b: and 
bk , are related by6 

* b + i n  +out- * +inTpkbF, a r t = a k a r g P k  , ak - a k a k  

bk+out=pk a ; +ak *b+in k , b r t = P k  + ak +'"+,b in  (2) k k '  

The upper sign corresponds to spin-112 particles, and the 
lower, to spin 0 .  

In the field operator 

a; and b l i n  are the particle annihilation and antiparticle cre- 
ation operators as t+ - w ,  at which time the external field 
has yet to turn on. As t + ~ ,  the external field has already 
turned off, and (3) naturally takes the form 
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To represent 'P at intermediate times, we need to know 
+$') in the range when particles are being created. But in the 
particle formation range (a range that depends on the set of 
quantum numbers k), there is no sensible way to distinguish 
solutions at ( + ) and (- ) frequencies.5 We therefore refrain 
from consideration of the intermediate time range, and take * in the form (4) as t -m.  

We shall concern ourselves below with the conse- 
quences of this course of action. A different, widely adopted 
approach is reviewed in Ref. 7. 

Note that means over the out vacuum of the normal- 
ordered operators for the energy-momentum tensor or cur- 
rent tensor, expressed in terms of the creation and annihila- 
tion out operators, vanish as expected. We shall be working 
in the Heisenberg picture, and will be interested in means 
over the in vacuum. 

2.1. Spin-IR particles 

The energy-momentum tensor operator takes the formls2 

The symbol (v,p)  denotes symmetrization over p and v: 

For simplicity, we assume that both the field and the poten- 
tial vanish as t-+ + m. Noting that 

and making use of (2) and (4), we obtain the mean over the 
in vacuum of one of the terms in (5): 

* -(- )outy *(+)out 
- & k P k  *k v k ,p  

- cYk*Pk&poutY  v ,,+(;)ou k p  3. (7) 

As usual, a pair of colons denotes normal ordering, and we 
denote the simple derivative a,%P by * , ,  . Some simple in- 
dex arithmetic then yields all of the remaining terms in the 
expression for 

We refer to terms proportional to akP: and a?Pk as 
interference terms. These vanish when averaged over an in- 
terval longer than the Compton time hlmc2. Measurements 
cannot be made over a time interval -hlmc2 due to atten- 
dant pair creation. 

Apart from the interference terms, one can say that (8) 
comprises contributions from each of the modes k. The con- 
tribution of positive-frequency modes can be obtained from 
(5) by making the substitution *-+ $(+)Out. It should be clear 
from (7) that the weight of this mode is given by the prob- 
ability / /?&I2  of its creation. The contribution of antiparticle 

modes equals that of particle modes: the minus sign of the 
second term in square brackets in (7) is balanced by the fact 
that we take the derivative of $i-) with respect to xp,  while 
in the first term we take the derivative of $r) [see Eq. (9)]. 

In the case at hand, it can be assumed that 

and s is the two-valued spin index. 
Integrating (8) over all space for v=p=O yields the 

total energy 

where 2po is the energy of state k. This should not be sur- 
prising, as the amplitude for pair creation from the vacuum 
with quantum numbers k is Pk . 

It is useful to compare the expression (8) for the energy- 
momentum tensor with the corresponding expression for the 
current, which can be obtained from (7) by premultiplying 
by i and omitting the differentiation. Although the resulting 
expression vanishes (because the first and second terms in 
square brackets in (7) now cancel), the number density of 
particles alone (or pairs) is well-defined, and is given by the 
analog of the first of the terms in square brackets in (7) when 
v=O. The total number of particles is determined by inte- 
grating the density over all space, i.e., by taking the sum in 
(10) without the factor 2po. 

If one can reasonably speak of a number density of par- 
ticles only after the field has turned off, then the same ap- 
plies to the energy-momentum tensor. 

2.2 Spin-0 particles 

Instead of ( 9 ,  we now have for the energy-momentum 
tensor operator'-3 

Instead of (7), we have 

The remaining terms can be obtained from this expression 
via straightforward index manipulations. In particular, for the 
term containing m2 in (1 l), indices p and v must be omitted. 
Disregarding the interference terms, we can state as before 
that the expression for (8) consists of a sum of terms in 
which each mode is weighted by IPkl2. The contribution of 
mode k is obtained from (1 1) by letting *-+ fii+) for par- 
ticles and *+ *$-) for antiparticles. As expected, these con- 
tributions are equal. 

The current operator is of the form 
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The vacuum mean can once again be obtained from Eq. 
(12) by omitting one of the differentiation indices. The re- 
sults are analogous to the spinor case. 

3. MOVING MIRRORS 

Attempts to understand the evaporation of black 
holes--or even just to reconcile it with prevailing physical 
notions-unleashed a torrent of work on modeling the vari- 
ous aspects of the problem. References to early work can be 
found in Ref. 2; later studies are listed, for example, in Refs. 
9 and 10. The simplest of these models is that of the emis- 
sion of massless scalar particles by an accelerated mirror in 
( I + 1 ) -spacetime. 

One remarkable achievement of this model is the simple 
expression that it gives for the regularized energy- 
momentum tensor. In particular, if u = f(u) is the mirror's 
equation of motion in coordinates u = t + X, u = t- X, then the 
components of the regularized energy-momentum tensor 
are2 

i.e., for any motion f(u), they are determined by just the first 
three derivatives of f (u) . 

In many ways, pair creation by a field is analogous to 
particle creation by a mirror. In the latter case, however, 
there is one complicating factor: no matter how large the 
value of the time t, the out wave2 

1 
[exp(- iwg(u)) -exp(- iwu)] (15) 

contains an incoming wave exp[-iwg(u)] along with the out- 
going wave exp(-iwu). It is precisely the presence of this 
wave that ensures satisfaction of the boundary condition-in 
the present case, the vanishing of the wave at the mirror. 
Here g(u) is the inverse function off (u), i.e., g(f (u)) = u. 
In our previous example, $(+)Out consisted of just a single 
wave [see (9)]. 

If we now write the in wave as 

we find that the amplitude for the creation of an out wave is 
given by a relation analogous to (1): 

The fact that a,,, and P,,, have off-diagonal elements is 
merely a minor technical complication. It is somewhat un- 
pleasant, however, that the interpretation of (17) must be 
modified slightly. In contrast to (I), we can no longer claim 
that Pol, is the creation amplitude for the wave $(-)Out as 
t+ + w ,  given that there were initially no particles in the 
state w. Instead, P,r, is the creation amplitude for a 
negative-frequency outgoing wave, - exp(iwu)l (see 
(15)), where L is the size of the system under consideration. 

Of course, if we look upon the solution (15) as the limiting 
case of waves described by packets, then everything is the 
same as before: for large enough t, the incoming wave is 
completely transformed into an outgoing wave. 

With this new slant on a theory with emission from a 
mirror in mind, we now present for the first time an intuitive 
derivation of the expression for the energy-momentum ten- 
sor. Due to the simple structure of the waves (15) and (16), 
we can adopt the more compact notation 

= *L-'=*;. (18) 

Thus, if the vacuum was in the state w at t-. -m,  the 
amplitude of the negative-frequency wave is 

The contribution of this wave to component Too of the 
energy-momentum tensor is1 

(20) 

As expected from physical considerations, Eq. (20) depends 
solely on u: the emitted energy departs from the mirror. This 
constitutes an argument supporting Eq. (19). 

If we now sum (20) over w, we obtain the component of 
interest: 

Notice that even if Eq. (19) diverges in the infrared 
when we sum over o r ,  the derivative in (20) still exists. 

By definition, PmI, cc L-  I ,  where L is the size of the 
given system. For the sake of compactness, we write the 
sums over states as integrals: 

Since 
p= T ~ ~ = ~ ~ = T I O ( ~ ) ,  u=t -x  (23) 

and all components of T,, depend only on u, we have the 
conservation law 

doTO0+ dlTO1=O. (24) 

Integrating Too over all x in (21), we obtain 

This is the total energy of created particles. Since we are 
modeling a strictly neutral field, antiparticles make no con- 
tribution to (25). 
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Equations (23) and (24) also hold for the regularized 
energy-momentum tensor (14). It can be shown13 that Eq. 
(14) can be written as a sum of two terms, the first being 
associated with the energy of the emitted particles, and the 
other with a "shot noise" energy: 

It might be supposed that Too in (21) is the same as 
tgd Examination of so-called quasihyperbolic motion of a 
mirror, which is substantially different from hyperbolic mo- 
tion only at very large times Itl, shows that (21) differs both 
from (14) and t i d  in (26) (see Appendix). Thus, the feasibil- 
ity of an instantaneous determination of Too(u) at any u 
assumed in (14) is at variance with (21), even at t-+ + w .  

We now show that the intuitively derived Eq. (21) for 
the energy-momentum tensor also follows, neglecting inter- 
ference terms, from the procedure detailed in Sec. 2, if by the 
negative-frequency out wave we mean only the outgoing 
wave - exp(iou)lJ5ii$C (see (1 5)). 

We begin by considering the operator of the strictly neu- 
tral field1 

Here we use the notation of (18). The energy-momentum 
tensor operator is'' 

a dot denotes differentiation with respect to t, and a prime 
denotes differentiation with respect to x. In place of (2), we 
have 

Substituting (27) into (28) and calculating (8), we obtain 

Dropping interference terms and letting $Out represent only 
the outgoing wave, we obtain (21). The sum over 6 in (30) is 
a sum over primordial vacuum states with quantum numbers 
6. Sums over o and or yield the contributions of the 
energy-momentum tensors constructed out of secondary 
nonquantized states $oI and $, : 

(see (28), where q is a quantized hermitian operator, and 
there is thus'' an extra factor of 112). The factor PWr,,,/3Z,- 
incorporates the probability of occurrence of the quantity 
(31). 

We can now write the analog of the particle flux. For a 
strictly neutral field, the vector current density operator takes 
the form14 

d = j [ q ( - )q (+ ) -q ( - )q (+ ) ] ,  
P ,P .P 

where, according to (27), 

Simple calculations involving (32) and (6) then yield 

The total number of particles is given by the integral of the 
0-component of (34) with respect to x, which then yields the 
right-hand side of (25) without the factor o' under the sum- 
mation sign. 

This work was carried out during the author's stay at the 
Isaac Newton Institute, Cambridge, England, under the 
"Granitsy" program supported by the Russian Fund for 
Fundamental Research (Grant No. 95-02-04219-a). The au- 
thor thanks Prof. M. V. Berry and the Institute staff for their 
exceptional kindness and hospitality. He also thanks V. I. 
Ritus for productive discussions. 

APPENDIX 

In view of the importance of the lack of identity between 
the regularized and normal-ordered energy-momentum ten- 
sors, we wish to compare their asymptotic behavior over the 
in vacuum at u = t-x-+ + for the special ("quasihyper- 
bolic") motion of the mirror 

x(t)=p[B- dm]], P< 1. (Al) 

In u,v coordinates, the motion is given by 

From (A2) we find 

l + p 2  2 p  u+PB 
f l ( u ) =  ---7- 7 

1 - p  1 - p  Ju2+2pBu+B2' 
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As u-+ 2 co, the derivative f '  ( u )  tends to a constant limit 
that depends on the sign of u:  

From (26) ,  (A4) ,  and (A5 ) ,  we then have the following be- 
havior as u 4  + m : 

We show below that the mean of the energy-momentum 
tensor (21)  over in states as U +  2 m  is independent of the 
sign of u ,  and it decrease more gradually with lul (as 
24-21. 

From (A17) we have 

Inserting the expression for f ( u )  from (A2 ) ,  we obtain 

where the integral can be evaluated by differentiating expres- 
sion (2.3.17.13) in Ref. 15. The result is 

Here K l ( y )  is the modified Bessel function of the second 
kind. Making use of (19)  and (A9 ) ,  we have 

a + i - ) ( ~ )  - i~ rn x - dx& exp i - u  pxz 
dl 2 7 ~ f i ~ ~ ~ ~ ( 0  ( ' B  ) 

where the variable z' has been called x ,  and uIB + P =  7 .  
The squared modulus of this expression, which enters into 
T,, (see (21)) ,  is independent of the sign of 7 ;  in other 
words, at large [ = d B ,  it does not depend on the sign of 
U .  

We now find the asymptotic behavior of (21)  as 
u 4  ?m,  i.e., as 7 7 4 ~ 0 .  In this case, x e f r  1/q+ 1,  and as 
will shortly be apparent, zef fG 1 .  Then 

x1 -- E l ( i w 1 ) ,  P I .  
x2-x1 

(A1 1 )  

Here 

To continue, it is necessary to square the absolute value 
of (A10) and integrate with respect to z from 0 to a; see (21)  
and (A10) .  With this and (A1 1 )  in mind, we make use of the 
following indefinite integral p = P -  a : 

2 In z 
- ~ [ e ' z E l ( a ~ ) + e - ' z E I ( - o z ) -  P f f  - f f P  

+ P - ~ [ E I ( P ~ ) E ~ ( - P Z ) + E I ( -  ~ z ) E I ( ~ z ) I .  6413) 

This expression can be checked by differentiation. The other 
required integral can be obtained from this one by taking the 
limit u+O, i.e., a--+P. The final result is 

As expected, this expression tends to zero as P+O, i.e., for 
a stationary mirror. 

In the integral with respect to z ,  the dominant values are 
located near z 7 -  l ,  so that y eff4 1 and the approximation 
( A l l )  is justified at large enough 7 .  Thus, Too u - 2  in 
(A14) ,  and it differs from both expressions in (A6 ) .  
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Note added in proof (26 March 1996): It can easily be 
shown that the vacuum means of the normal-ordered 
energy-momentum tensors obtained in Sec. 2 are exactly the 
same as the corresponding quantities obtained by means of 
regularization. Furthermore, due to the fact that *'" at 
t - - ,  - co and #Out at t - ,  + w are the same, no expansions are 
necessary to separate the divergent part, as we are only in- 
terested in values of the energy-momentum tensor at 
t - - ,+@J.  
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