
Quantum variational force measurement and the cancellation of nonlinear feedback 
S. P. Vyatchanin and A. 6. Matsko 

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia 
(Submitted 14 November 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 109, 1873-1888 (June 1996) 

- Based on a simplified optical displacement sensor, we consider a small-force quantum detection 
procedure incorporating cancellation of the back influence of fluctuations. We analyze 
constraints imposed by nonlinear terms of order - ( X I X ~ ) ~  ( x  is the position of the test mass and 
Xo is the laser wavelength), and we suggest a nonlinear scheme that yields improved sensitivity. 
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1. INTRODUCTION 

Quantum noise in the mechanical displacement sensor is 
a key problem in laser interferometer gravitational-wave de- 
tectors (as in the LIGO project) and in a number of other 
fundamental experiments. With continuous position tracking, 
the back effects of noise restrict measurement sensitivity to 
that imposed by the standard quantum limit.'-4 In the simple 
optical sensor of Fig. 1, the back influence of noise derives 
from fluctuations in the ponderomotive force due to light 
pressure, with the result that amplitude fluctuations in the 
incident wave E l  are transformed into phase fluctuations in 
the reflected wave E2, with the transformation coefficient 
increasing with the power in E l .  (We assume throughout that 
the sensor has no intrinsic mechanical noise.) 

It is normally assumed that the standard quantum limit 
determines the magnitude of the minimum detectable force. 
Thus, for a force that takes the form 

and acts on a free mass m for a time rF=2dw,,  the stan- 
dard quantum limit is F s Q L ' J w .  (All subsequent 
discussion concerns forces of known form.) 

In tracking displacement, it is theoretically possible to 
measure the force with an error less than FsQL if the noise 
generated by the measurement device is correlated in a spe- 
cial To exceed the standard quantum limit, one can 
also use a modulated signal source? or a source in a 
frequency-anticorrelated state6 or a squeezed state.7 In the 
latter case, the squeezing must be frequency-independent, 
and it is unclear how to bring this about experimentally. 

It has been showns that one can exceed the standard 
quantum limit even with an unmodulated coherent source, 
without the use of a squeezed, frequency-anticorrelated, or 
other nonclassical state. This requires that one measure not 
the phase (which is strongly perturbed by the back influence 
of noise), but a specially selected quadrature component 
B(0) of the reflected wave (Fig. 2). It is then precisely the 
ponderomotive nonlinearity (which is in fact the ponderomo- 
tive counterpart of the nonlinearity susceptibility X ( 3 ) )  re- 
sponsible for the back influence of noise that results in 
squeezing of the reflected light. Measurement of B(0) makes 
it possible to "see past" the noise effects. 

Significantly, the squeezing in the reflected wave special 
feature: the angle 0  depends on the frequency, 8= 0 ( R ) .  To 

measure the frequency-dependent squeezing over a wide 
bandwidth (i.e., with a short integration time T = t F ,  which is 
usually necessary in gravitational radiation detectors), it has 
been suggested that the phase of the local oscillator be spe- 
cially modulated during the integration time in a balanced 
homodyne scheme. The force-measurement error is then de- 
termined solely by the initial phase uncertainty in E l ,  which 
decreases with increasing optical power. 

Radiative damping, however, limits the amount of 
squeezing actually attainable, and sets the magnitude of the 
minimum detectable force: 

Here oo is the optical pump (laser) frequency and 5 is a 
numerical factor of order unity. This sensitivity can be 
achieved at the optimal pump power ~ ~ ~ ~ m c ~ l r ,  (c is the 
speed of light). An estimate shows that this is too high for 
experimental purposes: W,= 1 X 1019 W at m = 1 0 ~ ~  and 
tF= For a power wsQ;Q WQ Wept (Wsgc is the power 
required to reach the standard quantum limrt), we have 
F = = F S Q ! ~ ?  

Radrative damping derives from the Doppler effect: if 
the mirror is moving in the same direction as the incident 
wave, then the flux falling on it decreases as the path length 
of the wave increases. As a result, the radiation pressure 
depends on the velocity of the mirror. 

One more factor besides the back effect of noise limits 
measurement accuracy-the initial position and momentum 
uncertainties of the mechanical oscillator. To measure a 
force of order Fmi,, it is necessary, in addition to achieving 
pump power Wop,, that the measured quantity not contain 
information on the initial conditions. Below, we summarize 
the additional requirements for this to be the case. 

We stress that this procedure does not constitute a quan- 
tum nondemolition measurement, as it is not necessary here 
to identify an unperturbed variable of the mechanical oscil- 
lator. Indeed, little information about oscillator position, mo- 
mentum, or some combination of the two resides in the re- 
flected wave, so the instrument perturbs both strongly. One 
measures only variations in position resulting from the laser 
signal pressure. These could thus well be called quantum 
variational measurements. This further suggests that detect- 
ing some signal effect and making a quantum nondemolition 
measurement are different problems. Each calls for a specific 
strategy, 'and the latter generally differ from one another. 
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FIG. 1. Simplified optical displacement sensor that detects a change in 
position of a movable mirror induced by radiation pressure. The electromag- 
netic plane wave E ,  is normally incident upon the surface of a lossless 
mirror, the position of which varies according to the applied signal force 
Fs . A change in mirror position produces a phase shift in the reflected wave 
E,  that can be detected using a balanced homodyne layout. The difference 
photocurrent J is proportional to the quadrature amplitude B ( B ( t ) )  of the 
signal wave (B(r)  is determined by the phase of the local oscillator Ern). 
For fluctuations in ELO to be negligible, we must have IErnl* LIE, 1, where 
k> 1 is the squeezing factor of the signal wave. We assume that the local 
oscillator produces a field that is in a coherent state. For an optimal choice 
of B(t),  the limiting detectable force acting on the movable mirror can be 
less than FsQL. 

All of the foregoing ways of achieving sensitivity be- 
yond the standard quantum limit2-8 have been obtained in 
the linear approximation in woxlc and e l  lEo (where x is the 
position operator of the mirror, and Eo and e l  are the mean 
amplitude and fluctuations of the incident wave). It is only in 
this approximation that fluctuations of the reflected wave can 
be described by an orthodox ellipse in the phase diagram 

FIG. 2. Phase diagram of reflected-wave amplitude in the linear approxima- 
tion. If the incident wave is in a coherent state, its fluctuations can be 
described by a circle in the B ,B,  phase plane that revolves about the origin 
0 at a distance 6 (the uncertainties ( A B : )  and ( A B ~ )  in the quadrature 
amplitudes are equal). The ponderomotive nonlinearity due to light pressure 
results in phasdamplitude correlation in the reflected wave. The circle de- 
scribing fluctuations in the incident wave is transformed upon reflection into 
an (orthodox) ellipse in the linear approximation. The minimum detectable 
force will alter the phase of the reflected wave by AQ, such that the ellipse 
corresponding to the reflected wave fails to intersect that of the incident 
wave ( A Q = A Q , ~ .  Clearly, rather than the phase, one must then measure 
the well-defined quadrature component B?,, . It is then possible to improve 
upon the standard quantum limit of sensitivity. 

(Fig. 2). On the other hand, allowance for higher-order terms 
((ooxlc)2 and (el IE~)', etc.) induces curvature in the noise 
ellipse, with a consequent increase in the uncertainty of the 
quadrature amplitude (line segment CD in Fig. 3 lengthens 
with increasing curvature). Estimates show that this curva- 
ture cannot be neglected at powers much lower than WOp. 

When allowance is made for nonlinear terms, the uncer- 
tainty in the initial conditions gives rise to an additional con- 
tribution to the measurement errors. The reason is that the 
uncertainty enters into terms that contain x2, x3, etc. It thus 
becomes necessary to first prepare the mechanical system in 
such a way that positional uncertainties that derive from the 
initial conditions are negligible in comparison with the per- 
turbation due to the back influence of fluctuations. As we 
show below, this can be accomplished under far more re- 
laxed conditions than those prescribed by the quantum 
theory of measurement. 

It is well worth noting here that constraints due to cur- 
vature of the fluctuation ellipse are not fundamental in 
nature-they relate exclusively to the linear measurement 
procedure. In the present paper, we discuss the limitations of 
the linear scheme, and propose an alternative nonlinear 
scheme that makes it possible to discriminate among "bent 
ellipses." The basic idea is that the reflected wave must be 
transformed in such a way that the bent ellipse describes the 
state of the resulting amplitude- (photon number-) squeezed 
field.') Such squeezing can be measured relatively easily 
with a photodetector. To do so, one adds a reference wave 
(segment 00' in Fig. 3) to the reflected wave using abeam- 
splitter (Fig. 4), thereby altering the mean amplitude and 
phase of the combined wave as required (line segment O F  is 
transformed into O'F). The transmission coefficient Tsp of 
the splitter must be small enough that fluctuations in the 
reference wave can be neglected. 

Not only is the squeezing of the reflected wave 
"curved," it is frequency-dependent as well (which derives 
from the "memory" mechanism of the mechanical oscilla- 
tor). Geometrically, this means that fluctuations at different 
spectral frequencies are described by different "ellipses." 
We will show that for such squeezing to be observed, the 
reference wave must be specially modulated during the 
course of the measurement. 

We note immediately that this measurement procedure is 
not entirely optimal. The curved major axis of the ellipse 
does not lie exactly on a circle centered at O r ,  due to the 
presence of third- and higher-order noise terms. Neverthe- 
less, for certain values of the mirror mass m and frequency 
WF , these are minor restrictions, and the sensitivity (2) can 
be achieved with the nonlinear measurement setup. 

To completely negate the back influence of noise, we 
require some nonlinear transformation of the reflected wave 
that makes it revert to a state like that of the incident wave 
while preserving the phase shift of the laser signal. Theoreti- 
cally, we could pass the reflected wave through a nonlinear 
medium which, apart from a given constant overall X(3), has 
a frequency-dependent component ~ ( ~ ) ( f i ) ,  or we could re- 
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FIG. 3. Phase diagram for the spectral amplitude of the reflected wave. 
Allowance for nonlinear corrections leads to "curvature" of the fluctuation 
ellipse, which increase with increasing pump power. This curvature lies 
behind the additional measurement error in the quadrature component. The 
error results from the linear projection of all points on the "ellipse" in a 
selected direction: the line segment CD is longer than in the linear approxi- 
mation (Fig. 2). The sensitivity of the linear detection scheme is therefore 
limited. To identify "curved" ellipses, we propose counting photons in the 
shifted wave (a nonlinear measurement). Due to the addition of a low- 
amplitude fluctuating shifted field to E,, the origin 0 of the phase plane is 
translated to the center of curvature of the "ellipse" (i.e., of the curve 
AB)-to the point 0'.  and the field amplitude is measured relative to the 
new coordinate system (line segment O'F). This procedure makes it pos- 
sible to significantly reduce the influence of quadratic fluctuations on mea- 
surement accuracy. Sensitivity is then limited by the fact that the curve 
AB is not a proper circle. 

flect E2 from a mirror with negative mass. Experimentally, 
these are probably not feasible 

But to enhance sensitivity, the back influence of noise 
needn't be canceled completely. We can cancel only the non- 
linear part due to curvature of the ellipse (for example, by 
adding nonlinearity to the sensor). The homodyne system 
could then be modified to actually detect the force, yielding 
the same measurement accuracy that one would get by com- 

FIG. 4. Photon-counting measurement setup for the shifted wave. The 
beamsplitter is used to add the shifted field EN= FF t E ,  (T,, is the 
transmission coefficient of the beamsplitter). Let &: 1; (k> 1 is the 
squeezing cocfficicnt of noise in the rcflccted wave); then fluctuations in the 
shifted field can be neglectcd. The dctectcd photocurrent J is then propor- 
tional to the nurnher of photons in thc wave E,+EN . 

pletely suppressing the back influence of the noise. We do 
not address this possibility in the present paper, examining in 
detail only the approach described above. 

We assume that the incident wave E l  can be in a phase- 
(or amplitude-) squeezed state (where we have in mind con- 
ventional frequency-independent squeezing). This is of inter- 
est because when the back influence of noise is completely 
cancelled (in the linear approximation), the sensitivity is 
higher for the phase-squeezed state, although the "curvature 
of the ellipse" is also greater, and there ought to exist an 
optimum value at which the sensitivity peaks. 

2. BASIC EQUATIONS 

Writing the incident and reflected fields as 
E l  exp ( - i w o t ) + ~ :  exp ( i q t )  and E2 exp ( - h o t )  
+E; exp (iw,,t), respectively, representing E  I = Eo + el  as a 
sum of a mean amplitude Eo (assuming Eo= E $ )  and a fluc- 
tuating component e ,, and likewise taking 
E2 = - (Eo+ e 2 ) ,  the boundary conditions yield a relation- 
ship between e l  and e2:  

where At.= d m ,  and a ( w )  is the photon annihilation 
operator (the commutator [ a ( w ) a + ( w l ) ]  = S(w-  w I ) ) .  
Fluctuations in the incident wave are squeezed according to 

where p is the (real) squeezing coefficient, and c and c+ are 
vacuum operators, for which ( c ( w ) c + ( o r ) )  = S(w-  w ' ) .  

These equations must be supplemented by the equation 
of motion of the mechanical oscillator, which describes the 
motion of the mirror: 

Here 6, = 2  wlrnc2 is the radiative damping coefficient, 
W =  S C E : / ~ T  is the mean incident power, S is the area of the 
mirror, and F s  is the force induced by the laser signal. We 
assume that the system is mass-controlled, with w M 4  W F  . A 
numerical demonstration of the smallness of the omitted 
terms is given in Appendix B. 

3. LINEAR SCHEME: MEASUREMENT OF QUADRATURE 
COMPONENT 

A modified homodyne design makes it possible to com- 
pletely suppress the effects of both the back influence of 
fluctuations and noise due to initial position and momentum 
uncertainties of the mirror on the measured value of the lin- 
ear part of the noise. It is well known that the homodyne 
detector (Fig. I )  can be used to measure the quadrature com- 
ponent of an electromagnetic wave. The difference photocur- 
rent is J = E , ~ ( ~ ) E , + ( ~ ) + H .  c. (E,,o(t)  and E 2 ( t )  are the 
complex electric field amplitudes of the reference-the local 

1009 JETP 82 (6), J u n e  1996 S. P. Vyatchanin and A. 8. Matsko 1009 



oscillator-and signal, respectively). For fluctuations in 
ELO(t) not to make a palpable contribution to the measure- 
ments, the LO power needs to be high: ~ E L o ~ ~ k ~ ~ 2 ~  (k> 1 
is the squeezing coefficient of the signal field E2, and it is 
assumed that ELo is in a coherent state). The photocurrent 
J ( t )  can then be assumed proportional to the quadrature 
component B ( 0,t) : 

B(B,t)=E2(t) exp ( - i e ) + ~ ; ( t )  exp (ie), (6) 

where 0 is governed by the phase of ELo. Over some finite 
integration time T, rather than the quadrature component, we 
detect some mean value 

The substance of the modification to the homodyne 
scheme consists of requiring that the local oscillator be phase 
modulated. The averaging function @(t) and the LO phase- 
modulation function O(t) can be selected that such that BT 
preserves no information about the linear part of the noise 
derived from the back influence of fluctuations. In essence, 
measurement of BT amounts to a linear approximation to the 
optimal signal detection algorithm described above. 

Let gs(t) = &(t) sin 8(t) and gc(t) = @(t)cos qt). Noise 
due to the back influence of fluctuations and noise due to 
initial uncertainties in the mirror position and momentum 
will be suppressed when (see Appendix A) 

Here 

K(t) = - Jrn K ( 0 )  exp ( - i0 t )dQ 
297 - m  

is the kernel of the differential equation (5), 
K(R)=4woaR / z ( a ) ,  and ~ ( f i ) = w L -  0'- 2 iaR0 .  

The function gs(t) can be determined using the methods 
of optimal filtering theory. We seek to maximize the signal- 
to-noise ratio under the constraints given by (8) and (9). 
Recall that if (9) need not be satsified, the optimum filter can 
be written in the form gs(t) = hxs(t), where h is an arbitrary 
constant and xs(t) is the response of the mirror position to 
the incoming signal. In the present case, the filter function 
can be cast in the form g s ( t ) = h ( ~ s ( t ) + ~ l t + ~ 2 ) ,  where 
the constants cul  and a 2  come from (9). To detect a force of 
the form (1) acting upon a free mass, 

In the linear approximation, the signal-to-noise ratio can then 
be put in the form S I N - V ( F / F ~ ~ ~ ) I K ( W ~ ) I ~ / ~ ;  from here 
on, v is a constant of order 1. Due to radiative damping, the 
magnitude of IK(wF)l is bounded by the constant wo/wF. 
IK(wF)I has it maximum at the peak of the measurement 
sensitivity (2). 

The equations (9) can significantly limit sensitivity. If 
we formally ignore them, we can obtain a signal-to-noise 
ratio for the force (1) approximately nine times as high. With 
a force of a different form acting over the time interval 
0 6  t 6  2 ~ l  mF, for example Fs= F cos(oFt), this number is 
somewhat lower, - 6. 

We emphasize that (8) and (9) imply suppression of the 
back influence of fluctuations only in the linear approxima- 
tion: Eq. (3) is expanded in a power series, and only terms 
-xoolc are retained. We can write the signal-to-noise ratio 
with higher-order terms - (xoo lc)' in the form (the terms in 
square brackets comes from the nonlinear terms-i.e., the 
' 'curvature of the ellipse' ') 

+ I ~ ( w F ) l ~ l ) - ~ ~  

where 

AxsQL is the standard quantum limit on the position mea- 
surement of a free mass in time t = 2 ?TI OF, and A. = c/ wo is 
the laser pump wavelength. 

For an incident wave in a coherent state, the sensitivity 
peaks when IK(wF)I = (16.rr6-lI5, and the minimum detect- 
able force is 

The incident wave can be in a squeezed state, whereupon 
IK(wF)I = 1 and 2,ulin== ( 8 6 -  'I6% 1 yield a minimum de- 
tectable force of less than 

This leads us to conclude that upon measurement of the 
quadrature component, an initial phase shift in the incident 
wave yields an improvement. Here the pump power is 
Wo= W ~ Q ~ I K ( O ~ ) I .  Note that both F ; ; ~  and F;,9,U are much 
less than Fmin,  which points up the suboptimality of this 
detection method. 

Noting that gs(t) plays the role of a filter function and 
that its form is governed by the form of the force Fs(t), we 
see that Eqs. (8) and (9) and gc(t) and gs(t) yield expres- 
sions for the averaging function and the phase-modulation 
function: 

tan 8= -gs(t)lgc(t). (14) 

Figure 5 shows the form taken by t9 and @ given a force of 
the form (I). 

When (9) holds in the linear approximation, the uncer- 
tainty Axini in the initial conditions does not affect sensitiv- 
ity. The initial conditions can be neglected when there are 
nonlinear corrections if 
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5 Axo'~xsQLI K ( ~ ~ ) I  - 'I4, and the momentum to within 
F' A P ~ ' A x ~ ~ ~ I  K(oF)I '141rn~ (for example, by twice measur- 

ing the position in time 7). These errors correspond to the 
Fl2. standard quantum limit attainable with integration time T and 

0 .  power Wo. Hence, it can easily be shown that 
Axhi=A~saLI~(~F)11'4,  and (15) holds. This procedure can 

-F/2 . be invoked as needed to obtain sequentially sampled mea- 
surements of the force. Information on initial conditions can 

-F - 
-8 

be obtained by recording the photocurrent for a time r at the 
b end of the preceding measurement (it is clear from Fig. 5 that 

it is precisely the phase of the reflected wave that is recorded 
at the end of the time interval [O,T]). 

4. NONLINEAR SCHEME: PHOTON COUNTING 

FIG. 5. For a force Fs with the form shown in (a) and an integration time 
T = 2 r I w F ,  we plot the phase B ( r )  (b) and averaging function &( I )  (c) for 
4 ~ ~ 8 ~  lug= 5 (solid curves) and 4 ~ ~ 6 ~  lo;= 20 (dashed curves). 

a 

where Axdist is the position perturbation due to fluctuations 
in the light pressure. For an integration time T-- tF , we have 

8 - 

6' 

4-  

2- 

0 

We can write Axjni in terms of the initial uncertainties in 
position (Axo) and momentum (Ape): 

,'-'\ / -  C In the nonlinear scheme of Fig. 4, one measures 
I \\\\ 

; '\ 

t' \ 
\ 

t' '! /' \\ NT= loT@l(t)[~:(t)+~$(t)~[~2(t)+~N(t)~dt, (16) ' 
i : 

'\. 
where @,(t) is the averaging function, ELo is the reference 

' 'i I # field, and EN= E ~ E ~ ~  is the field to be added to the re- 
flected field E2. We assume that the transmission coefficient 

i 

Here EO characterizes the initial uncertainty in the energy of 
the mirror, which is governed by noise in the device used to 
prepare the system for measurement. The minimum value, 
eo= ?i oF , corresponds to the standard quantum limit for po- 
sition measurement on a free mass in time T. We see by 
comparing Axmi, and Axdist that (15) can be satisfied even 
when E ~ %  hwF. 

Without going so far as to specify an optimized setup 
procedure, we now examine one that is more easily imple- 
mented experimentally, namely using the same measurement 
wave, and not requiring that it be either amplitude- or phase- 
modulated. Assume that the incident wave is in a coherent 
state for a long time prior to the measurement, and that its 
power is kept at approximately Wo; then the mirror position 
will be substantially perturbed, and (15) will not be satisfied. 
We now show that this perturbation can be measured, and 
thus compensated. By continuously tracking the mirror posi- 
tion via the phase of the reflected wave over an integration 
time r= TI d m ,  the position can be measured to within 

a m ~ t  2a of the beamsplitter is small, T s p 4  1, so that we can neglect 
fluctuations in the field EN.  We further assume that the wave 
EN(t) can be amplitude- and phase-modulated. Finally, we 
adopt the notation Eo+EN=Q2(t) exp [iqt)], @l(t)@z(t) 
= @(t),  Gs(t)=@(t) sin qt),  and Gc(t) = @ ( r )  cos qt). 
Then when 

the noise due to the back influence of fluctuations will be 
compensated up to terms - woxlc (17) and - ( ~ ~ x l c ) ~  (18), 
and measurement sensitivity will be dominated by third- 
order noise -(ooxlc)3 and the initial uncertainty in the 
phase of incident wave (see Appendix B). Here f(t) is an 
arbitrary small function, smooth over the interval [O,T], that 
satisfies sup1 f (t)] 4 ( o o  lc)suplx(r)(. Gs(t) is obtained ac- 
cording to the dictates of optimal filtering theory (in the 
same way as gs(t)). Obviously (17) is consistent with (8) 
and (9). The signal-to-noise ratio can be written in the form 

Here the term in square brackets accounts for third-order 
fed-back noise. If E l  is in a coherent state ( p =  0),  then (19) 
will be at a maximum when IK(oF) I = (46-'I2. The least 
detectable force will then be 
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If on the other hand the incident wave is in a squeezed 
state, the sensitivity will be unaltered. The signal-to-noise 
ratio in (19) will peak when (K(w,)(( + ,u12 - ( 4 6 -  'I2, and 

Clearly, as the phase-squeezing rises (,u>O), the re- 
quired pump power decreases (wo= wsQLI ~ ( o , ) l ) .  The 
nonlinear scheme is more sensitive than the linear, but it 
does not completely cancel the back influence of fluctuations 
(as we noted in the Introduction). Even with imperfect can- 
cellation, however, it is possible to achieve the optimal sen- 
sitivity (2) if the optimum value of IK(wF)I, for which (19) 
is at a maximum, is at least equal to I ~ ( w ~ ) l ~ ~ ~ = w ~ l w ~ ,  
which value is a consequence of radiative damping. 

In finding the optimum sensitivity, we have omitted ini- 
tial conditions. Inasmuch as the measurement-induced posi- 
tion disturbance Axdist in the nonlinear filtering scheme can 
be greater than in the linear scheme, constraints on the value 
of EO at which this is a legitimate approximation will be less 
stringent than for linear filtering. 

We now examine the feasbility of the measurement 
scheme. We know that B(t) is given by (14). Thus, 

There is a certain amount of leeway in choosing f(t). If 
we choose f (t) = 0 (essentially perfect cancellation of qua- 
dratic noise in the fed-back effects of fluctuations), then mea- 
surement of a force of the form (1) requires that @ , ( t ) - + ~  
at the initial time (t+O). But this then means that the refer- 
ence power must be infinite at the initial time. To avoid this, 
we can, for example, choose f(t) to be PGs(t) ( P  is a con- 
stant with P<<AxIAo). The quadratic part of the fed-back 
noise will then be small, and it can be neglected at finite 
values of @, (t). 

5. DISCUSSION 

Let us now assess the potential improvement provided 
by the foregoing methods, and the conditions necessary to 
achieve that sensitivity. We adopt the following parameters 
for the displacement sensor: wo= 1015s-', w,= 10~s-  ', 
w,= 103s-', and m = 103g. Plugging these into Eq. (1 l) ,  we 
obtain The required pump power is 
w;gh= 1 0 - 8 ~ 0 p t  (WOpt was defined in the Introduction). If 
the incident wave is in a squeezed state, then (12) yields 
~ s q u -  i n - l ~ 4 ~ s L ,  requiring a pump power of 

WsiP,U-- 5 X 10- 3 ~ 0 p t  and squeezing of ,utin-- lo4. Note that 
both F;gh and Fir are much greater than Fmin. 

For the nonlinear scheme, Eq. (20) tells us that 
~ g ! ~ ~ ~ =  10-6~sQL at a pump power  WE^,,^,,= W, . For the 
given system parameters, we then achieve the opt~mal sensi- 
tivity (2): ~gh,~,= Fmh. If phase-squeezing is initially 
present (,u> 0), we can get essentially the same sensitivity 
0%. (21)) at lower pump power: 
~",%lin=~:9nU( -+ ~nonlin)-~. 

The required power is too high, so actual experiments 
(LIGO, for example) must use an interferometric sensor 
(Fabry-Perot resonator), in which an additional high- 
reflectance mirror (T,4 1) precedes the scazming mirror. 
This sort of sensor, with a coherent pump working at optical 
resonance (exp(iLowolc)= 1, Lo is the mirror separation in 
the loaded resonator, wo is the pump laser frequency), was 
previously in the linear approximation, the re- 
sult being that it required a factor 16/[~&,+ 4 2 ( ~ F ) ]  less 
pump power than the conventional displacement sensor dis- 
cussed above. The parameter = 4LOwF I c e  1 comes 
from dispersion in the resonator. 

Analysis of an interferometric sensor with a resonant 
pump-but one that takes second- and third-order correc- 
tions into account-shows that along with improved power 
consumption comes a loss of peak measurement sensitivity 
as measured via the methods described above. The underly- 
ing reason for this degradation is the increase in system non- 
linearity that results from the enhanced reaction of the sensor 
to changes in mirror position. In fact, whereas a displace- 
ment of magnitude x in a conventional sensor leads to a 
phase shift = 2xlAo in the reflected wave, the corresponding 
shift in an interferometric sensor is =2xI(AoTFp). Thus, 
nonlinear terms involving the back influence of fluctuations 
grow, resulting in a loss of sensitivity. 

It must also be mentioned that dispersion will alter the 
conditions required to cancel the initial uncertainties in mir- 
ror position and momentum. Dispersion can be considered 
small when +(wF) T, , and all that is required to obtain 
expressions for the least detectable force is to replace 
E = A X ~ ~ ~ I A ;  with ~ = A X ~ ~ ~ / ( A ~ T ~ ~ )  in the equations de- 
rived above. The consequences of reversing the inequality 
require more detailed study. 

The sensitivity of an interferometric sensor must be en- 
hanced if its nonlinearity is to be reduced. This can probably 
be achieved by adding frequency-dependent mechanical non- 
linearity to the measurement system. 

We close with sincere thanks to V. B. BraginskiI, D. N. 
Klyshko, and F. Ya. Khalili for detailed discussion of these 
results. This work was supported by the National Science 
Foundation of the United States (grant PHY-9503642). 

APPENDIX A 

Substituting (3) into (6) and expanding the resulting ex- 
pression in x/Ao and e l  lEo, to second order in small quan- 
tities we obtain 

(Al) 

where 
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APPENDIX C 

Here x s ( t )  is the mirror displacement induced by the inci- 
dent signal beam. 

To analyze the feasibility of suppressing the linear com- 
ponent of fed-back fluctuations, let g c ( t )  satisfy (8). Then in 
the linear approximation (dropping B E )  

This means that if g s ( t )  is chosen so that g c ( T )  = 0 and 
g c ( T )  = 0, B T  in the linear approximation will not depend on 
either the initial position and momentum uncertainties of the 
mirror or on the back influence of fluctuations. 

To assess the limitations stemming from inclusion of the 
nonlinear term B  n ,  we assume that the sensor is a mass- 
controlled oscillator. We are then able to treat the noise at- 
tributable to Bn as being white over the frequency range of 
interest, and independent of the noise due to B I .  Making use 
of optimal filtering theory and (8), we easily derive the 
signal-to-noise ratio (10). 

APPENDIX B 

We represent NT in a form analogous to (Al): 

Given (17) and (18), we have 

N s = B s ,  N I = B I ,  

When (17) holds, measurement sensitivity will clearly be 
dominated by the initial state of the pump field ( N I )  and 
third-order nonlinear noise in the fed-back fluctuations 
( N m ) .  As in Appendix A, we treat this noise as being white 
over the frequency range of interest, and hence immediately 
obtain (19). 

A number of terms were omitted from Eqs. (3) and (5). 
Here we justify the approximations entailed. 

The exact boundary condition for the incident and re- 
flected waves can be written in the form (relative to a coor- 
dinate system attached to the mirror) 

In going from (Cl) to (3), we neglect terms 

The exact equation for a mechanical oscillator takes the form 

Here ( . . . ) denotes averaging over states. In going to Eq. 
( 9 ,  we neglect terms 

on the right-hand side of (C3). 
It is not immediately apparent which of the terms in (C2) 

and (C4) can be neglected, as they are subsequently multi- 
plied by the considerably different functions g s ( t )  and 
g c ( t ) .  

Substitute (C2) and (C4) into (6), and then into (6). We 
then find that the term BIr  in (Al) must also incorporate the 
terms 

To cancel the linear part of the fed-back fluctuations, we 
must then have gs( t )EoxlAo=gc( t ) (e  + e : ) .  Furthermore, 
given that 

we find that with the previously adopted parameters, 
x l ~ ~ > ( e ~ + e ~ ) ~ ~ ~ , i l c .  We now adopt the system param- 
eters quoted in Sec. 5, taking the numerical values for the 
free parameters (pump power, squeezing). We can then eas- 
ily show that all omitted small quantities are less than the 
dominant term B ,  (= 4 E o g c ( r ) ( ~ l  h o ) 2 )  for linear detection, 
and are less than the dominant term B ,  
( = g s ( r ) ~ o ( x l ~ o ) 3 )  for nonlinear detection. Hence, these 
can legitimately be neglected in the measurement schemes 
considered above. 
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