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1. INTRODUCTION 

The suggestion1 that there is a strong electron-phonon 
interaction (with a BCS constant h =2.6) in the compound 
Lu(N~B)~C is at variance with the quadratic temperature de- 
pendence of the resistivity observed in Ref. 2. The alterna- 
tive suggestion of a weak electron-electron interaction U 
contradicts the estimates in Ref. 3, according to which the 
value of U for nickel 3d compounds is 20 eV. This exceeds 
the value of the transfer integral between nickel and boron, 
t=2 eV, whence it can be concluded that U is the largest 
energy parameter, which will be considered infinite below. 
Similar arguments are applicable to the boron 2p states with 
the same crystal indices, enabling us to single out the lowest 
two-particle states on the basis of Hund's rule and to neglect 
transitions to singlet states. 

In the Lu(N~B)~C compounds studied the boron and car- 
bon 2s states are filled, while the nickel 4s states are un- 
filled, so that the mean occupation numbers of the boron 
2p subshell (&) and of the nickel 3d subshell (Fd) are 
related to one another by the chargeneutrality equation 

where np= 6 - q ,  nd= 10- & is the mean number of holes 
in the boron and nickel 2p6 and 3d1° subshells, and Q is the 
total charge of the complex LuC: Q = QL,+ Qc . According 
to the calculations in Ref. 1, the carbon 2p  subshell contains 
no more than two electrons, i.e., O< Qc S + 2. When the Lu 
4f subshell is filled, the maximum number of Lu 5d elec- 
trons does not exceed four, i.e., 3 Q Lu> - 1. Therefore, 
- 1 < Q  G 5, and our task is to consider the filling range 
0<nd<4 with simultaneous filling of the p , ,  hole levels in 
the range 4>np>0. The ranges 4<nd<912, 1/2>np>0, 
4 < np< 912, and 112> nd> 0 are not considered, since super- 
conductivity does not exist within them due to the small 
number of both p and d  excitation^.^ 

Nickel cations form a square planar lattice with the sec- 
ond cation located at the center of the square at a distance of 
2.45 A from the first. Two boron layers, which also form a 
square lattice are at small distances above and below the 
nickel lattice, so that the closest distance between nickel and 

boron atoms (2.11 A) is smaller than the distance between 
nickel cations and the distance between boron anions (3.46 
A), which is equal to the lattice constant. 

2. EQUATIONS OF STATE 

Thus, in writing the Harniltonian it is sufficient to take 
into account only the transitions between neighboring Ni and 
B planar sublattices: 

+ x &d2~u(~)ara(A)  + x ~p$:~( u)firU( v). (2) 
rah ruv 

Here &(x), @L(v), &,(A), and fira(v) are the creation 
and annihilation operators of holes in the nickel or boron d 
and p subshells. The indices A and v label the layers, as well 
as the atomic states, which are degenerate. The energies E, 

and ed  do not depend on the spin index a, on the crystal 
index of the p,,, states, or on the number of the sublattice. 

Note that the matrix elements of the p, states are non- 
zero only for transitions in the xz plane, since the boron p, 
states are orthogonal to the (x2 - y 2, or (3 z2 - r2) states of 
the nickel cations, which are displaced relative to boron in 
the yz plane. 

We first consider the filling of the lowest (x2 - y 2, level. 
Here the transition matrix between the nickel a and b sub- 
lattices and the upper and lower boron layers is proportional 
to the following matrix: 

Here vk= 1 - exp(iqk). The first and second rows correspond 
to atoms in the nickel a and b sublattices, and the first and 
third (second and fourth) columns correspond to x and y 
states belonging to the upper (lower) boron layer. 

For the filling of the Ni (3z2- r2) level, we have the 
same matrix, but with the opposite sign in the last two col- 
umns. 
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When transitions between the states 10) with a filled 
shell and the states ;:lo) or $LIo) with one hole are con- 
sidered, the creation and annihilation operators are equal to 
the corresponding X operator: 

*+ - *(u.O) 2 =ikO,u) *(ko,O) 
dru-Xr ru 9 i;(k)=yr 9 

* (om $r,(k)= Y r  (4) 

Transitions between unoccupied and one-particle 
(x2- y42) states in terms of holes are transitions between two- 
hole ( d ~ ~ ~ 1 0 ) )  and one-hole states (here and in the follow- 
ing a= -a= +- 1): 

When the (3z2-r2) level is filled, we have the same 
relations, but with the replacement of 2 by 2. 

In the case of 1 <np<2, transitions between the four 
one-hole states in the p , ,  subshell $,+,lo) (k=x,y; a= 5) 

*+  *+ and the three two-hole states pxupy,~O) (S= 1, 
A+ *+ A+ *+ S ,=a=  2 1) and ( p x u p y , - + p x ~ p y u ) l ~ ~ ~ )  (S= I, S,=O). 

As a result we have 

There is no need to write out the relations refemng to 
the range 2<np<4, since the final results are invariant with 
respect to the particle-hole symmetry transformation 
nd+2-nd. np+4-n,. 

A comparison of the expansions (4) and (6) reveals that 
in the range 1 < np< 2 all the one-particle p operators ac- 
quire a second index, which corresponds to transitions to a 
state with zero spin projection IS= 1,O). 

The one-particle Green's function is defined by the fol- 
lowing matrix inverse: 

* A 

where Od=(io-  ed)l is a two-component unit matrix be- 
longing to two identical Ni cations, and hp= (io- ep)f is a 
four-component matrix belonging to a layer of boron atoms, 
each of which is found in a p, or p, state, above or below the 
Ni layer. The quantity t is the matrix element for a transition 
between nearest neighbor nickel and boron atoms. The fac- 
tors fp and fd are the so-called end multipliers? which are 
linear functions of the mean occupation numbers np or nd in 
the case of an infinite Hubbard energy. At the boundary of 

each of the integer ranges, the value of the end multiplier is 
equal to the reciprocal of the degeneracy of the multiplicity 
of the lower level. Accordingly, 

1-nd/2 for O<nd<l, 

fd=[ nd/2 for 1 <.,<I, 

1-3nd/4 for O<np<l, 

f p= (  (2+nd)/12 for l<np<2. 

We find the multipliers fp for the range 2<np<4 using 
the particle-hole symmetry transformation n p 4  4 - np . 

The multipliers b y )  are the so-called parentage coeffi- 
cients, which, according to (4)-(6), can be used to expand 
the creation and annihilation operations in Hubbard i opera- 
tors: 

b k = l  for O<n,<l and 3<np<4, (9) 

b ~ ) = ( l , l l f i ) ,  bF)=(-1,- l l f i )  for l<np<3.  

After calculating the determinant of the inverse Green's 
function (7), we find the excitation spectrum, which has four- 
fold degeneracy (with respect to the spin, as well as replace- 
ment of the a and b sublattices): 

where r=Ep-Ed, p=-(ep+ed)I2, and the other two 
branches of the spectrum remain localized at the level of 
ep ; J(p)  =2(2- cospx-cosp,), b i =  1 for O<np< 1 and 
3<np<4; bi=3/2 for l<np<3.  

After calculating the diagonal matrix elements of the 
one-particle Green's function 6 in terms of the inverse ma- 
trix (7) and multiplying by the corresponding end multiplier 
(8), we find the equations of state: 

The end multipliers and the excitation spectrum are deter- 
mined from (8) and (10); the normal coordinates a f )  have 
the following form: 

The remaining equations of state for the range 4 > np> 2 can 
be obtained using the particle-hole symmetry transformation 
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nd+ 2 - nd , nP+ 4 - np . The equations of state in the case 
of filling of the (3z2-r2)  level are obtained from (8) and 
(1 1) using the replacement n d - + n d -  2. 

3. SUPERCONDUCTIVITY CRITERIA 

To find the conditions for Cooper instability! we repre- 
sent the system of ladder equations for the two-particle ver- 
tex part written for zero total momentum and spin in the 
form 

where T is the temperature. The vertex part i'ri;AG(p') is 
the sum of the diagrams which are irreducible with respect to 
cutting along two electron lines in the same direction. The 
indices without a bar (and with a bar) label transitions with 
an assigned positive (and negative) sign for the change in 
spin projection. Restricting ourselves to logarithmic accu- 
racy, we determine the vertex part rfi;;8i in the simplest 
Born approximation. According to Refs. 5,7, and 8, the Born 
amplitude rf;; ,;(p)  is determined in terms of the caffi- 
cients of the operators i h d  ivl after calculating the 

A -  * 
double commutation relation { ~ " , [ X P , H ] ) .  

The tunneling Hamiltonian (2) can be represented as a 
sum of two terms 

after which the commutator can be expressed in terms of the 
tunneling transition matrix t"P(r,r1) = bqtik(r- r' ) bf and 
the structure constants N:; of the corresponding superalge- 
bra: 

Finally, after calculating the anticommutator { x ~ , [ x F , H ] }  
and going to the Fourier representation, we find 

Substituting this expression instead of To into (13), we 
find that the left-hand side of the corresponding homo- 
geneous system of equations does not depend on the relative 
momentum p. After the substitution of (15) into the homo- 
geneous system of equations corresponding to (13), we carry 
out the summation over the internal indices v and Fusing the 
Dyson equation, which has been used already to find the 
inverse Green's function (7): 

Multiplying the first relation by GPO(-p)  and the sec- 
ond relation by G,(p) and neglecting the nonlogarithmic 
terms containing the first powers of the Green's functions, 
we obtain the following homogeneous system 

Here the coefficients g,,-,,,- no longer depend on the mo- 
mentum and are defined in terms of T(O)(p) in (15): 

The inverse zeroth Green's function (6:))-' has only diag- 
onal matrix elements, so that the end multipliers f,+F-.,- and 
f,-+,-,  are sums of the occupation numbers of the Initial 
and final states for the v and F transitions. 

Note that the matrix elements of the one-particle Green's 
functions G,(p) *or a given value of the crystal index k 
depend on the number of the transition only through the 
product of the parentage coefficients b t  

Substituting (19) into (17), we obtain the equations for 
the functions rks=  b f b f r ,  ,-, which do not depend on the 
number of the transition: 

where we now have 

In the range 0 < np< 1 all the parentage coefficients are 
equal to unity, and the problem reduces to solving a system 
of equations for two parameters, viz., T,,= T,, = rp and - - r d .  In this case g ,,,,, =g,,,,,= - 20,  If,. According to 
(9), for the range 1 <np<2 we have four coefficients for the 
transitions to states with the maximum spin projection 
b::;= 2 1, while for the transitions to a state with a zero spin 
projection b E =  5 I/&. For a given index 
=837;27'82~;37'01 and 827;27'g32;37= -g35;35 
= - 2Rp 1 fp , so that after summation according to Eq. (21), 
we obtain g,,,= g,,,,, = - 3nP/2fp. The analogous calcu- 
lations for the scattering amplitude of the d excitations give - 
gddidd= ? 2Adlfd, where the upper sign (-) is taken for 
occupation numbers in the range O<nd< 1, and the lower 
sign (+) is taken for occupation numbers in the range 
1 < n,< 2. 

The off-diagonal components of the Green's functions 
GS,"(p) on the right-hand side of Eq. (20) are determined 
using (19): 
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For the diagonal components ~ k , ~ ( p )  the representation (19) 
is valid when A 4 0  and S1 f 0,  i.e., when the ((p') subbands 
are filled, but E, # 0: 

Substitution of these functions and integration of the ex- 
pressions obtained near one of the Fermi surfaces give the 
following system: 

The overbar denotes multiplication by T'~A,A,~-~ and 
further summation over all momenta and frequencies o. 
Taking into account that the integration over the momenta is 
carried out in the region where A-tO and E, # 0, we must 
replace the expression J(p) = [I vXl2 + 1 v, 1'1 by 
R p f i d ~ b p ~ d ,  and we must replace a, and f id  by - E, and 
- E ~ ,  respectively. As a result, we obtain 

1 for O<nd<l, 
gd=2c, where yd= ( 

f d  -1 for l<nd<2;  

E P ~ ?  
1 for O<np<l, 

gp=2-, where yP=( 
f d  314 for l<np<2. 

(24b) 

As a result of some simple transformations, we obtain 
the following solvability condition: 

Using the density of states p* = x ~(((p')), we can trans- 
form the condition (25) into a relation of the BCS form 
T,- t*exp(- 11A *), where 

The value of t* is of the order of the transfer integral t, but 
it cannot be calculated within the logarithmic approximation 
used. It can easily be shown that the product E ~ E ~  has a 
positive sign when the 5:) or (k - )  subband is filled, so that 
the condition for the existence of superconductivity is as 
follows: 

TABLE I. 

Range YP Yd f p  f d  b; 

O<nd< I ,  O<np< 1 1 1 1 -3np14 1 -nd/2 I 
O<nd< 1, l<np<2 314 1 (2+np)112 1 -nd12 312 
1<nd<2,0<n,<1 1 - 1  1-3n,l4 nd/2 1 
l<nd<2, l<n,<2 314 1 (2+nD)112 nd12 312 

The equality sign corresponds to the boundary for the 
appearance of the superconducting state. Combining (27) 
with the equations of state, we find the region where the 
superconducting phase exists in the variables np and nd (see 
Fig. 1). 

The parameters in the basic relations (26) and (27) are 
listed in Table I. 

4. PHASE DIAGRAM 

In the first two cases, in which both scattering ampli- 
tudes yp and yd are positive, the condition for the appear- 
ance of superconductivity must be satisfied for negative E, 

and ed ,  i.e., when the upper c) subband is filled. Using the 
equations of state (1 l), we find two regions: 

For the upper Hubbard band of ep holes, where 1 <nd<2, 
when the lower (k-) subband is filled, superconductivity ex- 
ists owing to the pairing of d electrons. For the range 
43<nd<2 and r>O superconductivity appears at any de- 
gree of filling of the ((-) subband. According to the equa- 
tions of state, this condition corresponds to the following 
regions: 

These two regions are adjoined on the sides of the range 
1 < nd<4/3 by two more regions corresponding to K O ,  
whose boundary is defined when the density of the p excita- 
tions is finite. They have a positive scattering amplitude, 
which results in a decrease in the effective constant A and 
further disappearance of the Cooper instability as the density 
of the p states increases. The superconducting regions are 
defined implicitly by the condition that the corresponding 
BCS constants vanish. Combining these conditions with the 
equation of state, we find the regions for the existence of 
superconductivity for 0 <  nd< 4 3  
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FIG. 1 .  Phase diagram for the exist- 
1.2 ence of a superconducting state at 

T= 0. The superconducting regions 
are shaded; I--chargeneutrality line 

0.8 for LuNiBC; 2--chargeneutrality 
line for Lu(NiB),C. The calculations 
were performed in the flat-band 

0.4 model. 
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Accofdtng to numerical calculations in the flat-band 
model, the function Gl(nd) has maximum value 0.56 when 
nd= 1.26. The function a2 also has maximum value 1.23 
when nd= 1.23. 

When the upper 6:) subband is filled, superconductivity 
results mainly from the appearance of a negative p-p scat- 
tering amplitude. For 4/5< np< 1 and E,< ed< 0 supercon- 
ductivity appears from the very onset of the filling of the 
6:) subband: 

Here the region (31b) corresponds to filling of the 56+) sub- 
band when O> E ~ >  ed ,  and Q3 is specified by the condition 
g=O, which corresponds to an increase in the role of d-d 
scattering with a positive scattering amplitude as the number 
of (2 - nd)-electron d excitations increases. 

Superconductivity originating from p excitations also 
exists in the range 10/7< np<2. This region is defined in the 
variables nd and np by the following equalities: 

2(1 +2nd)l(4nd- l)<nP<Q4(nd) for 4/3<nd<2. (32) 

The function Q4 is specified by the condition g=O and by 
the equations of state for E ~ < E ~ < O .  When nd= 413, for 
which n,= 2 2 1 1 3 ~  1.69, <Pq is also equal to 22/13. The func- 
tion a4 decreases in the range 4/3<nd<1.43, and when 
nd= 1.43, it has its minimum value, which equals 1.66, and 
then increases to a value of 2. 

The remainder of the phase diagram for 2< np< 4 can 
be obtained from the region np<2 using the particle-hole 
symmetry transition formation np-, 4 - np , nd+ 2 - nd (see 
Fig. 1). The second half of the phase diagram 2<nd<4, 
where filling of the (32'- r2) subband occurs, is found using 
the shift operation nd-'nd- 2. 

As follows from Fig. 1, in the region np< 1, O<nd<2 
the phase diagram does not differ qualitatively from the 
phase diagrams of compounds containing Cu02 layers? 
However, superconductivity cannot exist for the analogous 

compounds with Ni02 layers due to the small number of 
excitations at the small values 2 - nd and n p 4  1, i.e. in the 
region where the chargeneutrality line passes for 
L n 2 - , ~ ; + ~ i o 4 .  

In the case of a filled carbon 2p, level (c') and an 
empty lutetium 5d subshell (Lu3+), we have np+nd=7/2 
for the chargeneutrality line. 

Thus, when the nickel 3z2-r2 level is filled, supercon- 
ductivity exists mainly due to hole pairing of d electron ex- 
citations. The p hole excitations have a positive scattering 
amplitude, which leads to restriction of the region where the 
superconducting state exists when np>0.4 (see Fig. 1). An- 
other possibility appears in the region 2 < nd< 3, n,> 415, 
which is also intersected by the chargeneutrality line. Here 
the possibility of superconductivity is also due to negative 
d-d and p-p scattering amplitudes. 

When the (x'-~') level is filled and, according to the 
chargeneutrality condition, 3/2<np<2, the electronic p , ,  
subshell is almost half filled, superconductivity appears 
mainly because of a negative p-p scattering amplitude. 
Thus, the suggestion that the carbon p, level is completely 
filled and the shell of the Lu3+ cations is maximally stable 
makes it possible to account for nonphonon superconductiv- 
ity of the same type as in Cu02 layers. 

As is seen from Fig. 1, the chargeneutrality line 
np+nd=2, which corresponds to the compound LuNiBC, 
does not intersect any superconducting region. The electron- 
hole symmetry transformation np+ 4 - n, , nd+ 2 - nd 
transforms the chargeneutrality conditions into 6 + &= 512 
and %+rid= 4 for Lu(N~B)~C and LuNiBC, respectively. It 
can again be seen that in the electronic variables 6 and iid 
the chargeneutrality line for LuNiBC does not pass through 
the superconductivity regions at all, while the line for 
LU(N~B)~C passes through three superconducting regions. 
This is consistent with the experimentally observed lack of 
superconductivity in LuNiBC. 
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