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The magnetic-field dependence of the real and imaginary parts of the high-frequency (9.5 GHz) 
conductivity of a two-dimensional electron gas in a AlGaAslGaAs heterostructure at 
temperatures from 1.5 to 7 K is measured. We find that in weak magnetic fields at reduced 
temperatures under conditions such that the frequency of the electromagnetic field is much lower 
than the frequency of electron collisions, there is appreciable enhancement of the magnetic- 
field dependence of the imaginary part of the conductivity, which becomes comparable to 
variations in the real part of the conductivity in the magnetic field. Both the real and 
imaginary parts of the conductivity are described well by the weak-localization theory at finite 
frequency. The diffusion coefficient DHF and the phase coherence time f are found 
directly from the high-frequency response and are consistent with DLF and determined from 
low-frequency measurements using the Einstein relation for the diffusion coefficient. 
O 1996 American Institute of Physics. [S 1063-7761 (96)02305-01 

I. INTRODUCTION 

The discovery of quantum corrections to the conductiv- 
ity due to localization and interaction effects'-3 greatly ad- 
vanced the understanding of the phenomena occurring in dis- 
ordered Fermi systems. Experimental work in this area has 
been concerned mainly with the influence of quantum cor- 
rections to the low-frequency response of disordered conduc- 
tors. Thus, the temperature and magnetic-field dependences 
of the interference correction to the dc conductivity have 
been studied thoroughly and extensively. The situation has 
been totally different in the area of the high-frequency prop- 
erties of disordered conductors, where experimental investi- 
gations of quantum corrections to the conductivity have only 
been ~tarted.~ The results of investigations of the high- 
frequency properties of a two-electron gas under weak- 
localization conditions are presented in this paper below. 

In the semiclassical theory, the conductivity of metals is 
described by the Dmde equation and does not depend on the 
frequency w of the electromagnetic field as long as o is 
much lower than the frequency of electron collisions l/rp : 
w r p 4  1, where rp is the momentum relaxation time. Appre- 
ciable frequency dispersion of the response (i.e., a delay be- 
tween the current and the field) appears when the field fre- 
quency o approaches 117,. In the weak-localization theory, 
additional interference corrections appear in the conductivity 
of disordered conductors. The magnitude of these quantum 
corrections depends on r, , i.e., the phase coherence time of 
the electronic wave function for electron scattering in the 
conductor. Under weak-localization conditions, frequency 
dispersion of the linear response should appear when 
07,- 1. 

of the clamped contacts and the electrodynamics near them 
are fairly unpredictable, additional calibration of the pickup 
system is required. Calibration is possible when the varia- 
tions in the conductivity of the sample are small and well 
defined. Inexact knowledge of the behavior of the conductiv- 
ity during calibration will result in errors. Another restrictive 
factor for the two-contact method is that the measurement of 
small variations in the conductivity of the sample requires 
very high stability of the resistance of the clamped contacts 
under variations in the temperature and magnetic field 
needed during the experiment, i.e., monitoring of the resis- 
tance of the contacts is actually required. 

These restrictions do not plague the contactless tech- 
nique used here, which is similar to the standard microwave 
technique and can therefore be widely employed. This paper 
presents the results of an investigation of the frequency dis- 
persion of the conductivity of two-dimensional electrons in 
AlGaAsIGaAs heterostructures at a frequency of 9.5 GHz 
under weak-localization conditions, and a comparison with 
the two-dimensional quantum interference correction in a 
magnetic field. 

Some emphasis should also be placed on the difference 
between investigations of the frequency dispersion of the 
quantum correction and investigations of the dynamic sup- 
pression of weak localization by an alternating electric 
field?-" where the alternating field destroys the time reversal 
symmetry of the system and thereby causes a decrease in the 
phase coherence time of the electronic wave function. This 
effect is quadratic in the amplitude of the alternating field 
E ,  , unlike the response investigated in this work, which is 
linear in E ,  . 

'The pioneering work4 on the detection of frequency dis- 2. 
persion in the quantum correction to the conductivity of one- 
dimensional Ag filaments at a frequency of 1 GHz employed A two-dimensional electron gas in an AlGaAsIGaAs het- 
a contact measurement technique: two elastic electrical con- erostructure is an ideal system for investigating weak local- 
tacts were clamped against the sample. Since the resistance ization. First, because of the simple band structure of GaAs, 
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FIG. 1. Schematic representation of the experimental apparatus: I-high- 
frequency generator; 2-attenuator; 3-phase shifter, 4 d o u b l e  T bridge; 
5-heterodyne receiver; &sample. 

it has a well defined two-dimensional density of states 
N ~ =  m * I d 2 ,  and there are no complications associated 
with intervalley scattering. Second, in this system the spin- 
orbit coupling is negligibly small. Finally, GaAs is a nonsu- 
perconducting material; therefore, there are no corrections to 
the conductivity,due to superconducting fluctuations, and the 
experiment can be carried out over a broad temperature 
range. 

The AIGaAslGaAs heterostructures were fabricated by 
molecular-beam epitaxy and had the following parameters at 
T= 4.2 K, which were determined from low-frequency mea- 
surements: sample No. l--electron concentration 
N, = 8 X 10" ~ r n - ~ ,  mobility p = 48 900 crn2/v. s; sample 
No.,2- Ne=7.9X 10" cmP2, p= 19 700 cm2/v.s. 

The high-frequency conductivity of the heterostructures 
was determined from the reflection of an electromagnetic 
field from the samples, which measured 7 X 15 mm2 and 
were placed in a holder across a copper microwave wave- 
guide at an antinode of the electric field. Figure 1 is a block 
diagram of the apparatus. High-frequency radiation with a 
frequency of 9.5 GHz was supplied from generator 1 to the 
E arm of double-T bridge 4. Then half of the microwave 
radiation was directed into the arm of the T bridge where 
sample 6 was located. The other half of the microwave ra- 
diation entered the compensation arm of the T bridge. The 
compensation arm contained phase shifter 3 and attenuator 2 
and was shorted by a reflecting piston. The electromagnetic 
radiation reflected from the sample and that reflected from 
the compensation arm entered the H arm of the T bridge, 
where the mixer diode of heterodyne receiver 5 was located. 
The compensation channel can be used to compensate the 
amplitude of the electromagnetic field reflected from the 
sample. The pickup system can be tuned to measure the 
variations in the real (imaginary) part of the reflection coef- 
ficient r from the sample by introducing additional damping 
(a phase shift) into the compensation arm. 

Relationship between the conductivlty 6 and the reflection 
coefficient I' of the sample 

Let us find the relationship between the reflection coef- 
ficient r and the conductivity of the sample, which we shall 

describe by the tensor & = a i j ,  where i=x,y and j=x,y. We 
consider a thin metal film of thickness d placed in the wave- 
guide at a distance L from the plane of the reflecting end of 
the waveguide. We introduce a rectangular coordinate sys- 
tem: the x axis is parallel to the short wall of the waveguide, 
the y axis is parallel to the wide wall of the waveguide, and 
the z axis points in the direction of propagation of the elec- 
tromagnetic wave. We shall consider the principal wave 
mode: TElo. The space O<z<L is filled by an insulator 
with dielectric constant E .  The wave Ex with polarization of 
the electric field along x propagates along the waveguide 
(TE,o mode). At O <  z <  L the field is 

where kl is the wave vector in the waveguide at O < z <  L. 
This satisfies the boundary condition E,(z = 0)  = 0 at the to- 
tally reflecting end of the waveguide. At z>L the electric 
field E, is described by two traveling waves: the wave inci- 
dent on the sample Erexp(ik2z) and the reflected wave 
E'exp(ik2z). The continuity equation of the electric field at 
z = L gives 

A similar expression is obtained for E,. However, in this 
case we have two waves damped in both directions from the 
sample, since the waveguide is cut off for y polarization. At 
O<z<L the field E, equals Ayexp[+k3(z-L)], and at z>L 
it equals ~,"e-~4(~- ' ) ,  where k3, k4>0 are the correspond- 
ing wave vectors for y polarization. The continuity equation 
of E, near the sample gives 

The equation for the derivatives dEldz is easily obtained 
from the standard wave equation for E: 

which describes the propagation of an electromagnetic wave 
in a medium with dielectric tensor 2. Since the thickness of 
the sample d- 100 A is much smaller than the characteristic 
scale field variations in the sample (the depth of the skin 
layer is -0.5 pm), it can be assumed that the field in the 
sample does not depend on z. Integrating the wave equation 
across the thickness of the sample, for the field component 
Ei we easily obtain 

Here we utilized the fact that EId=i(4.rr&l~)d 
= i (4mS2*1 w). * Substituting the functional dependence 
Ei(z) into (3) we obtain a system of four linear algebraic 
equations (1)-(3). From this system we can easily obtain the 
reflection coefficient 

of the sample at z = L: 
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where 

In the experiment the sample was positioned at z= ?r/2k1, 
i.e., an antinode of the electric field. In this case 

In zero magnetic field the conductivity tensor becomes 
diagonal: ax, = - a,,= 0 .  If H = 0 ,  the quantity 

is a positive real number when w r p 4  1 ,  since in this case 
@ZD- xx - ~ , e ~ ~ , l r n  is real with a relative accuracy 

orp-0.04. With this degree of accuracy it can be assumed 
that the reflection coefficient r ( H  = 0 )  is real, according to 
(5). 

When a mag~etic field is introduced, off-diagonal com- 
ponents a,, , a, , -H appear, as does a magnetic-field de- 
pendence of the diagonal conductivity components. The con- 
ductivity tensor consists of two parts: the classical 
conductivity eCI, and the conductivity due to the weak lo- 
calization of the quantum correction eW1, which is diagonal. 
When a magnetic field is introduced, both parts begin to 
vary. 

Let us now consider the classical behavior. The contri- 
bution of the quantum correction in the conductivity to the 
reflection coefficient will be considered below. The conduc- 
tivity for a one-valley isotropic conductor in a magnetic field 
is9 

where po is the resistance per square of the sample when 
H=O,  and p l  = HIN,ec. For classically weak fields 
(O,rP4 1 ,  where O ,  is the cyclotron frequency) the conduc- 
tivity variations in a magnetic field are small compared with 
d D ( ~  = 0 ) .  In this case the variation of the reflection coef- 
ficient (5) in a magnetic field can be represented in the form 

Here y= 4.rrolpoc2 and K = k3 + k4. It is seen that the varia- 
tions in the real and imaginary parts of the reflection coeffi- 
cient are proportional to the square of the magnetic field. As 
can easily be seen from (4), in the case of arbitrary position- 
ing of the sample and small variations in 6, the functional 
dependence of the real and imaginary parts of SF on the 
magnetic field remains unchanged and proportional to H ~ :  
6 r c h = a ~ 2 ,  where the complex coefficient cu depends 
on L. 

Let us evaluate the influence of the quantum correction 
on the reflection coefficient r for the purpose of determining 
the requirements imposed on the characteristics of the ex- 

perimental apparatus. The resistance per square of the het- 
erostructures investigated was R ~ ~ -  200-400 Cl . The mag- 
nitude of the quantum correction to the conductivity is of the 
order of 6uw1- O-' (Ref. 2). It follows from (5) that 
variations in the reflection coefficient due to the quantum 
correction are of the order of ST- The measurement 
of such variations with a relative accuracy of 0.01 requires 
an accuracy for the measurement of the reflection coefficient 
of about The amplitude fluctuations of the high- 
frequency generator (a GUM diode was used) were insignifi- 
cant for measuring variations in the real part of the reflection 
coefficient with the required accuracy, since the reflected sig- 
nal from the sample was compensated by the reflected signal 
from the compensation channel and the amplitude fluctua- 
tions of the field were then also compensated. To measure 
variations in the imaginary part of the reflection coefficient 
with an accuracy of the frequency of the generator was 
stabilized by a high-Q resonator with 2-4 H z  bandwidth. 
As the external magnetic field varied during the experiment, 
the conductivity of the sample also varied. This variation 
caused an imbalance in the T bridge and was detected by the 
pickup system. 

To vary and monitor the temperature, the sample was 
placed in a teflon holder along with a resistance thermometer 
and a heating element, which were in thermal contact with 
the sample through a heat-transferring sapphire rod. The 
thermometer and the heating element were placed outside the 
waveguide. They neither responded to the microwave field, 
which is important for correct monitoring of the temperature, 
nor did they make a spurious contribution to the microwave 
reflection. The waveguide with the sample was placed in a 
thermally insulated metal tube and immersed in an atrno- 
sphere of gaseous 4 ~ e .  The entire structure was placed in a 
c~yostat with the solenoid. The accuracy of the temperature 
stabilization was better than 0.05 K over the entire tempera- 
ture range investigated. After the high-frequency measure- 
ments, indium contacts were prepared on the samples, and 
low-frequency conductivity investigations were performed at 
a frequency of 215 Hz by the four-probe method. 

3. QUANTUM CORRECTION TO THE CONDUCTIVITY AT 
FINITE FREQUENCY w 

In the case of temporal dispersion the linear response at 
time t is determined by the integral of the response function 
over all preceding times (Ref. 8). In the case of weak local- 
ization the correction to the current jWl at time t is 

The quantity A(t)  in (9) describes the temporal evolu- 
tion of the electronic wave function when an electron moves 
along random interfering trajectories. The function A(t)  also 
takes into account the influence of a magnetic field on the 
electron interference. The term e-'"~ in square brackets de- 
scribes the damping of phase correlations of the wave func- 
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FIG. 2. Theoretical dependence on the magnetic field of the real and imagi- 
nary part of the quantum interference correction to the conductivity of a 
two-dimensional electron gas (in units of e2 /mh)  for various values of 

. 0 T e .  

tion. The second term in square brackets stems from the 
requirement that a quantum correction appear at times 
greater than T ~ .  Performing some algebraic transformations 
in (8) and utilizing the periodicity of E,( t )=~,e- '~ ' ,  we 
can easily establish that the quantum correction to the con- 
ductivity at finite frequency and with orp9 1 is 

Thus, the expression for the correction to the conductiv- 
ity at finite frequency reduces to the expression for the quan- 
tum correction to the dc conductivity, but  IT, must be re- 
placed by l/r,* = 1 1 ~ ~ -  i o .  If oTp is small, additional 
corrections to 117; of order o2 T~ appear. They can be im- 
portant when or, a 1, but they are negligible in our work. 
Using the known expression for the correction to the conduc- 
tivity of a two-dimensional electron gas in a magnetic field1' 
and replacing 117, by 11~; = 1 1 ~ ~ -  io, we obtain 

where +(z) is the digamma function of the complex argu- 
ment z. Figure 2 presents theoretical plots constructed ac- 
cording to Eq. (1 1) of the magnetic-field dependence of the 
real and imaginary parts of the quantum interference correc- 
tion for different values of or,. 

4. RESULTS AND DISCUSSION 

Figure 3 presents the real part of the reflection coeffi- 
cient Rear of AlGaAsIGaAs heterostructure at an 9.5 GHz 
and the reciprocal of the resistance per square R~~ of a film 
measured at 217 Hz as functions of the external magnetic 
field H. Figure 3 shows the difference in the behavior of the 

FIG. 3. Magnetic-field dependence of the real part of the reflection coeffi- 
cient at 9.5 GHz (solid curve) in relative units, and magnetic-field depen- 
dence of the reciprocal of the resistance of two-dimensional electrons at 217 
Hz (symbols). AlGaAsIGaAs heternstructure at T =  4.2 K, sample No. I. 

linear response at high and low frequencies in strong mag- 
netic fields. The difference in behavior stems from the fact 
that at high frequencies the linear response is measured in a 
given electric field E,, i.e., the conductivity (conductance) 
of the sample a is measured according to (5). At low fre- 
quencies the amplitude of the current through the sample is 
fixed, and the voltage on the potential contacts is measured, 
i.e., the resistance R of the sample is measured. Classical 
magnetoresistance is not observed in a one-valley 
conductor? This is because the additional current along the 
sample due to the Hall voltage exactly compensates the cur- 
rent decrease caused by the deviation of the electron trajec- 
tory produced by the magnetic field. Therefore, at low fre- 
quencies only the variation of the quantum localization 
correction is measured, and an approximately constant resis- 
tance is observed in strong magnetic fields (Fig. 3), in which 
the quantum correction to the conductivity is essentially 
completely suppressed. 

In the high-frequency case the variation of both the 
quantum correction to the conductivity and the classical 
magnetoconductivity are measured. The change in the reflec- 
tion coefficient (5) in a magnetic field due to the variation of 
the quantum correction to the conductivity is 

Srwl=A Sawl, (12) 

where A = - 8 rrk2wl[c2(k2 + y)2 ]  is a real number. The to- 
tal change ST(H) in the reflection coefficient in a magnetic 
field equals the sum of the contributions (12) and (7): 

In strong magnetic fields the quantum correction is sup- 
pressed, and the contribution of the classical dependence 
Srcl,(H) remains. 

To isolate the magnetic-field-dependent behavior of the 
quantum correction from the measured magnetic-field depen- 
dence of the reflection coefficient, the latter was approxi- 
mated by the classical expression (7) T(H> 600 Oe) = CYH~ 
in magnetic fields from 600 to 1600 Oe, at which the quan- 
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FIG. 4. Magnetic-field dependence of the real part of the reflection coeffi- 
cient at 9.5 GHz in relative units (symbols), and approximation of this 
dependence in strong magnetic fields by the classical expression (7) (solid 
curve). The inset shows the result of subtracting the classical magnetic-field 
dependence of the reflection coefficient (7) from the experimental curve: 
upper curve-magnetic-field dependence of the quantum interference cor- 
rection to the reflection coefficient in relative units. T =  1.49 K; sample 
No. 2. 

tum correction is essentially completely suppressed, and the 
coefficient a, which assigns the classical magnetic-field de- 
pendence, was determined (Fig. 4). Subtracting the depen- 
dence Sr,,,(H) = all2 from the experimental curves, we 
obtain the dependence ST, , (H) ,  which, according to (12), is 
proportional to the changes in the quantum correction to the 
conductivity in a magnetic field (Fig. 4). The dependence of 
the quantum correction to the conductivity on the magnetic 
field obtained as a result of this procedure was used for com- 
parison with theory. 

The magnetic-field dependence of the real and imaginary 
part of the quantum correction to the conductivity of a two- 
dimensional electron gas in a AlGaAdGaAs heterostructure 
at T =  1.5 K is presented in Fig. 5. The difference in the 
behavior of the real and imaginary parts of the conductivity 
is seen from Fig. 5: the imaginary part of the conductivity is 
suppressed in weak magnetic fields relative to the real part. 
Such behavior is due to the imaginary part of the quantum 
correction to the conductivity being formed by trajectories 
having a length I ,  2 VFIW, over which an electron moves 
within a time at least comparable to the period of the elec- 
tromagnetic field ( V ,  is the Fermi velocity of an electron). 
The real part of the quantum correction is produced by all 
trajectories whose length exceeds the mean free path V F r p .  
Since urp4 1, 1,s V F r P .  In the two-dimensional case the 
area S covered by a random trajectory is proportional to the 
length of that trajectory. Since the interference is sensitive to 
the magnetic flux (P = H S  enclosed by a closed trajectory, 
the interference is clearly more sensitive to the magnetic 
field on long trajectories with a length I ,  3 V F  I w than on 
short trajectories with a length greater than V F ~ p  and is 
therefore destroyed in weak magnetic fields. 

The solid lines in Fig. 5 show the results of a comparison 
with the weak-localization theory (1 1). Three fitting param- 

FIG. 5. Magnetic-field dependence of the real and imaginary (upper curve) 
part of the conductivity of a two-dimensional electron gas in a 
AlGaAsIGaAs heterostructure at w/27r= 9.5 GHz and temperature T =  1.5 K 
in relative units. The solid lines depict the results of a comparison with the 
theoretical equation (1 1). Parameters obtained: D ~ ~ ( T =  1.5K) = 499 cm2/s 
and F(T= i.5K) = 2.5X 10- " s. The rms deviation S between the experi- 
mental and theoretical curves for various fitting parameters N is shown in 
the inset. Sample No. 2. 

eters were used for each pair (Re and Im) of theoretical 
curves. One of the fitting parameters, viz., K,= (Pow/4.rrD, 
where ( P o  is the flux quantum and D is the diffusion coeffi- 
cient, specified the magnetic-field scale. The other fitting pa- 
rameter Ky specified the scale of variations in the high- 
frequency conductivity (the relative variation of the 
conductivity was measured in the experiment). The phase 
coherence time T ,  served as the third fitting parameter for 
finding the best correspondence of the real and imaginary 
parts of the conductivity to the theory. The real and imagi- 
nary parts of the theoretical and experimental curves could 
not be compared at first. Each experimental curve was ap- 
proximated by a corresponding theoretical curve, and the fit- 
ting parameters K? , K F ,  K Y ,  and K,'m for the real and 
imaginary parts of the conductivity at each value of w r , ,  
which varied discretely with intervals equal to 0.25 over the 
range 0- 1.75, were determined by the least-squares method. 

An example of such fitting is shown in the inset in Fig. 
5, where the disparity between the theoretical and experi- 
mental curves S is plotted along the y axis, and the number 
N of the trial, which is uniquely related to K, and K,, is 
plotted along the x axis. Then, interpolating the values of 
K?, K?, K?, and K? with respect to W T ,  , we deter- 
mined the value of W T ,  at which the disparity between the 
fitting parameters 

x = (K?- K:)~+ (KF-  ~ y I m ) ~  

is minimal by the least-squares method. The best-fit values 
for all the curves were 1.820.2 for K? and K: and 
29.523 for K? and K?. At the same time, W T ,  varied by 
a factor of 7.5 upon passage from T= 1.5 K to T= 6.6 K. 

Figure 6 presents plots of the magnetic-field dependence 
of the real and imaginary part of the high-frequency conduc- 
tivity of a two-dimensional electron gas in a AlGaAdGaAs 
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FIG. 6. Dependence of the real (a) and imaginary (b) part of the conductivity of two-dimensional electrons at 9.5 GHz on the magnetic field at various 
temperatures. Solid cuwestheoretical behavior of the quantum interference correction to the conductivity according to (1 I). AU the experimental c w e s  are 
scaled along the y axis by a factor of 1129.5, so that the conductivity is measured in units of e21.rrh. The theoretical curves are scaled along the x axis by a 
factor K, from the range 1.820.2 for comparison with experiment. Sample No. 2. 

heterostructure at various temperatures. The solid lines show 
the theoretical behavior of the quantum correction to the con- 
ductivity according to (1 1). All the experimental curves in 
the figures were scaled along the y axis by the mean coeffi- 
cient llK?= 1129.5 for all the curves, which was obtained as 
a result of comparison with the theory (11). Each pair (Re 
and Im) of theoretical curves corresponding to a definite 
value of ur+, was scaled along the x axis by K, from the 
range 1.820.2. Thus, all the curves at different temperatures 
are accurately approximated by the theory when only two 
scale fitting parameters, viz., K:' along the x axis and K,fi' 
along the y axis, are used and the corresponding value of 
W T ~  is selected. The small spread of the values of K ,  and 
K, attests to the stability of the procedure used for compari- 
son with theory. At the same time, the small variation of the 
optimum scale factor K:= @ o o / 4 ~ D  with temperature at- 
tests to the weak temperature variation of the diffusion coef- 
ficient D ,  as it should be in a degenerate Fermi gas. The 
scale factor K,fi'=29.5 specifies the conversion of the varia- 
tion of the reflection coefficient 6rwl into the magnitude of 
the variation of the conductivity a w l  expressed in units of 
e21.rrh. Using this factor in (7) and (12), we can determine 
the magnitude of the variation of the classical conductivity 
Gclas in the magnetic field, which is also expressed in units of 
e21.rrh. Using the value of the resistance per square of the 
sample at H=O, ~ ~ ~ = 4 0 3  0, for the carrier concentration 
and mobility we obtain ~ y = 6 . 7 ~  10" cm-2 and 
,uHF= 23 100 cm2/v. s. These values correlate with the val- 
ues obtained from the low-frequency measurements: 
N,= 7.9X 10" cm-2 and p= 19 700 cm2/v. s. 

Figure 7 presents the dependence of the reciprocal of the 
resistance of two-dimensional electrons in a AlGaAsIGaAs 
heterostructure on the magnetic field at 4.2 K. The solid 

RZD=403 IR. This value correlates well with the diffusion 
coefficient obtained from the high-frequency data: 
D ~ ~ =  @0u/4.rr~,fit= 5542 60 cm2/s. Comparing the experi- 
mental and theoretical dependences of the quantum correc- 
tion and using the value of D~', for the phase coherence time 
we find f =  0 . 8 6 ~  10- l1 s. This value is close to the phase 
coherence time obtained from the high-frequency measure- 
ments at T =  4.16 K: r = 0 . 8 4 ~  10- " s. 

Thus, the technique employed makes it possible to de- 
termine the diffusion coefficient of a conductor by a contact- 
less technique, and apparently to reasonable accuracy, with- 
out using the Einstein relation. After determining the 
conductivity, the density of states of a disordered conductor 
can be determined by a contactless technique using the Ein- 
stein relation. 

curve is the theoretical dependence of the quantum correc- 
FIG. 7. Dependence of the reciprocal of the resistance per square of a film 

tion to the conductivity at low frequency. Using the Einstein of two-dimensional elections units of e21.rrh) on the magnetic field at 
Itlation, We find D ~ ~ =  550 cm2/s for the diffusion coefficient 215 ~z and T= 4.2 K. Solid cuw-&eoretical dependence of the auantum 
from the value of the resistance per square of the structure correction to the conductivity on the magnetic fieid. Sample No. 2.- 
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FIG. 8. Imaginary part of the quantum correction to the conductivity (in 
units of e21ah) at H =  0 Oe as a fuqtion of 07 , .  Points-imaginary part 
of the conductivity difference u(H=O) -u(H=300 Oe); solid curve-the 
theoretical dependence (1 I). 

Figure 8 presents the dependence of the imaginary part 
of the quantum correction to the conductivity on for 
H=O Oe. The symbols denote the difference between the 
imaginary parts of the conductivities for H=O Oe and for 
H=300 Oe, at which the imaginary part of the quantum 
correction is essentially fully suppressed. The solid curve is 
the theoretical dependence of the imaginary part of the quan- 
tum correction on 07, for H = 0 Oe. 

Figure 9 presents the temperature dependence of the 
phase coherence time T ,  obtained from high-frequency mea- 
surements. The scale of the variations in T ,  with temperature 
corresponds to the theoretical values for the temperature de- 
pendence of T ,  in Ref. 12 and correlates with the tempera- 
ture dependence of T ,  obtained in Ref. 13 for samples of 
AlGaAdGaAs. The value of T, obtained from the low- 
frequency data is denoted in Fig. 9 by a different symbol. 

5. CONCLUSIONS 

The real and imaginary parts of the high-frequency (9.5 
GHz) conductivity of a two-dimensional electron gas in a 
AlGaAdGaAs heterostructure in a magnetic field have been 
measured in the present work by a contactless technique at 
temperatures from 1.5 to 7 K. It has been found at wr,G 1, 
but sufficiently low temperatures, that a significant magnetic- 
field dependence of the imaginary part of the conductivity, 
which is comparable to the variations in the real part of the 
conductivity in a magnetic field, appears in weak magnetic 
fields. Both dependences result from the variation of the 
quantum interference correction to the conductivity for the 
finite frequency of two-dimensional electrons in a magnetic 
field. The experimental results have been compared with the 
weak-localization theory for w r P 4  1 and wr,- 1, and the 
phase coherence time T? and the diffusion coefficient 
DHF, as well as their temperature dependences, have been 
determined directly. The experimental dependences are de- 
scribed well by the weak-localization theory. The values of 
DHF and rHF at T=4.2 K are consistent with the values of 
DLF and obtained from low-frequency measurements. 

FIG. 9. Temperature dependence of the phase coherence time obtained 
from conductivity measurements at 9.5 GHz (0). The filled box denotes the 
value of < obtained from measurements of the magnetic-field dependence 
of the conductivity at a low frequency of 215 Hz and T=4.2 K. Sample 
No. 2. 

The experimental technique used in the present work can be 
employed in the contactless determination of the diffusion 
coefficient and the density of states of disordered conductors, 
as well as investigations of the dynamic properties of disor- 
dered systems. 
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