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The value (six-dimensional) of the natural strain tensor is proposed as a measure of the strain at 
a point in a body. Since the expression for the strain energy in terms of this variable is 
very simple and since the isotropic compression and shear are independent of one another at any 
value of the strain, a description in its terms is very convenient in thermodynamic 
investigations, the treatment of phase diagrams, etc., even under high hydrostatic compressions, 
while the generally used nonlinear strain tensor is more suitable for calculations of a 
stressed equilibrium state. The possibility of studying the equation of state of an isotropic body 
on the basis of an experiment involving uniaxial extension of a sample under a hydrostatic 
pressure is considered. The deformation of rubber is considered in these terms as an illustrative 
example. O 1996 American Institute of Physics. [S 1063-7761 (96)02205-61 

1. INTRODUCTION 

Several corollaries of the formulation of the theory of 
finite strains of an isotropic body using the natural strain 
tensor in the general form proposed in Ref. 1 are considered 
in this paper. This tensor was considered for the first time in 
the principal axes by ~ e n c k ~ ~  (for a further discussion of 
this question, see Ref. 3), but, as it appears, proper attention 
was not focused on this question in the theory. This is ap- 
parently because two aspects of deformation, viz., a large 
isotropic compression, which can be studied in high-pressure 
physics and can be theoretically modeled in the thermody- 
namics of hydrostatic compression, and a small (for a solid) 
arbitrary strain-induced distortion under the action of small 
loads, which can be studied in the theory of elasticity, were 
developed independently of one another to a considerable 
extent. In addition, in the theory of elasticity, emphasis has 
been placed mainly on calculations of the stressed state (with 
the use of a nonlinear theory to possibly take into account the 
corresponding corrections). Also, it is simplest to calculate 
these corrections in terms of ordinary strains (see Sec. 8 
below), because passage to the natural strain tensor and cal- 
culations of its representations require additional computa- 
tional efforts. 

However, as it turns out (and this is partially demon- 
strated by the present work), it is simplest to study questions 
of thermodynamics, such as the overall equation of state or 
phase diagrams of a solid under pressure, specifically in the 
variables of the natural strain tensor, although in concrete 
cases involving specific materials the choice of representa- 
tion might be dictated by considerations of simplicity in re- 
cording the experimental facts. 

For example, we write the equation of state in four 
equivalent forms: in two in terms of a natural strain tensor 
[see (10) and (42)] (which differ with respect to the choice of 
the independent invariants, i.e., the strain variables in the 
free energy) and in terms of an ordinary strain [(36) and 
(49a)l. Equation (10) is more suitable for considering a solid 
body when the shearing strains are known to be small, and 

Eqs. (42) and (49a) are more appropriate for describing the 
specific case of unfilled vulcanized rubber. As for the repre- 
sentation (36), it is proposed as the most convenient form for 
writing the equation of state in calculations of elastic equi- 
librium. All this, of course, presumes some skill in going 
from representation to representation, i.e., a problem which 
is solved in the form necessary for this work in Appendix B. 

Since the moduli of elasticity of a solid can be studied 
only in a small (with respect to the shear) vicinity of an 
arbitrary hydrostatic compression, to illustrate their possible 
behavior in a broader range of shear the deformation of rub- 
ber is also considered from the proposed standpoint in Secs. 
8 and 9 and in Appendix D. 

2. BASIC ASSUMPTIONS UNDERLYING THE THEORY OF 
THE NATURAL STRAIN TENSOR 

The main results in Ref. 1, in which the machinery for 
employing the natural strain tensor in the theory of finite 
strains in an isotropic body is proposed, are concisely pre- 
sented in this section and Appendix A. 

We assume that a point with the coordinates ti acquires 
the coordinates xi following displacement by the vector ui as 
a result of deformation: 

Small variations axi of the coordinates of a point require 
the performance of work: 

Here uij is the strain tensor, and the vector ui is assumed to 
depend on the current coordinates xk (Euler variables) of the 
point. Accordingly, the integration in (2) is carried out over 
the real volume of the strained body. 

It was shown in Ref. 1 that if u satisfies the equilibrium 
equations 
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so that only the last term remains in (2), it can be brought 
into the form 

where the natural strain tensor s is specified by the relations 

Bij= dujldxi is the distortion tensor, and u= (j?+pT 
- ppT)/2 is the ordinary nonlinear (see Ref. 4) strain tensor 
(in Euler variables). We use (ab) to denote Tr(ab), which, 
in fact, has the meaning of a scalar product in the space 
SymE(3)@E(3) of symmetric second-rank tensors over the 
three-dimensional Euclidean space; expressions of the form 
(a) =(aE), where E={Sij} is a unit operator of three- 
dimensional space, are allowed. 

This makes it possible to write an expression for the 
free-energy increment f of a unit mass of the material (so 
that F=JpdVf is the total free energy of the body) in the 
form5 

whence it follows that 

The function s can be expressed in terms of its deviator 
[see (A4)]: 

The superscript s on the deviator and the invariants of the 
natural strain tensor s will henceforth be omitted in view of 
its decisive role. 

As the basis invariants of the tensor s we choose the 
quantities 

in terms of which its other invariants can be expressed (see 
Appendix A). 

It was shown in Ref. 1 that 

where p is the density at the point under consideration in the 
body and po is the initial (uniform) density before deforma- 
tion. 

The free energy f of an isotropic body depends on s only 
through its invariants. It is easily seen using (A5)-(A5c) and 
(A6) that 

therefore, it follows from (6) that 

are functions of the invariants I1 , k2, and kg. This is noth- 
ing but the tensor equation of state of an arbitrary strained 
isotropic body. The invariants were specially chosen so that 
under small strains, under which s-u [see (4)], the expres- 
sion for a would become the familiar expression from the 
linear theory with p having the meaning of the ordinary 
shear mod~ lus .~  We call A 2  the second shear, and we call 
v the second shear modulus. 

3. DEPENDENCE OF ELASTIC MODULI ON THE STRAIN 

We assume that the free energy of a hydrostatically 
loaded body fo(ll)  = f(1, ,0,0) is known. If we introduce the 
function po( l l )=p( l l  ,O,O), the equation of state of a body 
under the pressure P is written in the form [see (10) and 
( l0a)I 

po(11) = p ,  (1 1) 

which, with consideration of (8), is equivalent to the usually 
used expression q (P  ,p ,T)  = 0 (we write only the strain vari- 
ables, but, as is clear from (5) and (6), the temperature is 
present everywhere). 

Since plastic flow or, alternatively, fracture begins in a 
solid when A - rc / p -  10-2-10-4 (7, is the yield point or, 
in the case of brittle materials, the ultimate strength), k2 can- 
not exceed values of the order of ( T ~ / / A ) ~ ,  and k3 cannot 
exceed values of the order of ( T ~ / / A ) ~ .  In addition, as is clear 
from (A36) and (A56), the condition ki =S 4kg/27 always 
holds. Therefore, in the case of general loading the free en- 
ergy f can be expanded in powers of the shear invariants 
k2 and k3: 

The summation over n and m is carried out here from unity 
to infinity, and it is convenient to treat the An, as functions 
of the variable [see (8)] 

Now, using (10a) and taking into account the obvious 
identity 

we obtain 

and for the ordinary isothermal bulk compressibility modulus 

ap JP K=-V-=--=- 
dV dl, where 
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after defining the function KO = - dpo /dl l  , we have 

Here the primes denote differentiation with respect to [. 
We shall not perform the expansion in the invariant II , 

which, however, is quite trivial (see Ref. 1). In the linear 
theory (i-e., under small, including volumetric, strains, under 
which 1,6 1) 

(Koo is the bulk modulus of the unstrained body), whence 

Under strains in a solid body of order unity, u reaches 
values of the order of the elastic moduli, and it should gen- 
erally be assumed that they are all of the same order of 
magnitude (in the absence of a special factor, such as the 
character of the interatomic interaction, proximity to a phase 
transition or a critical point, etc.). Stability of a hydrostati- 
cally compressed body (see Refs. 4 and 5) requires satisfac- 
tion of the inequalities K>O and p > O ,  while the value of 
the modulus v can influence the stability only when p is 
anomalously small [since A S T, l p ,  when p and v are of the 
same order of magnitude, the last term in (10) is smaller than 
the second term by a factor of at least ~ , l p ] .  Moreover, 
since k g  can take either sign, so can V: when A is replaced by 
- A  in the linear theory, the shearing stress T [the traceless 
part of u in (lo)] is replaced by the reverse stress, although 
it is clear, especially if a strained cube is properly depicted, 
that this does not follow from anything; the sign of v is 
fixed, for example, in the case of uniaxial deformation, in 
which the absolute value of T is large in the case of extension 
or compression. 

4. DEFORMATION OF A BODY UNDER PRESSURE 

Let the point ti in a body obtain the coordinates 
xi= t i l a +  u,! as a result of uniform compression by a factor 
of a followed by displacement by the vector uj  [with the 
total displacement vector ui= (1 - a)xi+ au;], SO that 

ti= a(xi-u;). 

Therefore, 

and consequently s and s' differ only with respect to the 
spherical part, i.e., they lead to the same value of the shear 
(see Ref. 1): 

However, it hence follows at once that all mechanical 
tests (for the purpose of determining elastic properties) of 
samples under pressure should involve measurement of the 

real changes in the real linear dimensions, which give the 
values of the elastic coefficients under pressure (for detailed 
explanations see Sec. 5). 

More specifically, the stress tensor (10) is written by 
virtue of (17) in the form 

where the functions p, p, and v marked with primes refer to 
the point {- 3lna+l; ,k; ,k;) and can be expanded in the vi- 
cinity of the hydrostatic strain so= - E In a in powers of the 
invariants of the primed (i.e., observed under pressure as a 
result of the application of an additional load) strain. 

The material presented shows that in the natural-strain 
representation the shear and the isotropic compression are 
completely separated (more precisely, their mutual influence 
is manifested only through the equilibrium equation). This 
cannot be said for the nonlinear strain tensor u: the magni- 
tude of the shear component for the latter is directly depen- 
dent on the magnitude of the isotropic compression. 

In addition, if the hydrostatic equation of state is known, 
a (whose value is not needed when measurements are per- 
formed) can be determined, in principle, from the known 
pressure P using either of the relations [see (1 l)] 

5. UNIAXIAL EXTENSION OF A SOLID BODY 

Let us consider the problem of the uniaxial extension of 
a sample under the pressure P as an example. Since we shall 
henceforth encounter only values of all the dimensions, in- 
crements of dimensions, and tensors specifying strains under 
pressure, we shall omit the primes on them [like those used 
in (16)-(18)], bearing in mind only the need to add 
- E In a to the total strain. The z axis is parallel to the axis 
of the sample. 

The tensors P,  y, s ,  and u, are clearly diagonal; there- 
fore, we shall mark their components with one subscript: for 
example, a,,= a, etc. In the spirit of the theory formulated 
in Euler variables, the strain is defined as the ratio of the 
linear displacement to the current length: 

however, experimentalists usually use the "Lagrange" val- 
ues 

(the quotation marks refer to the fact that the zero lengths are 
the lengths measured under pressure before the beginning of 
uniaxial deformation, rather than the initial lengths). The re- 
lationship between them is quite obvious: 

It is understood from (4) that the tensor s has the form1) 
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In( 1 - Px) 0 
0 In( 1 - Px) 

0 0 

0 

In( 1 - Pz) 

0 

In( 1 + ex) 

0 

whence, since 

I1=21n(l + & , ) + h ( l + & , ) = 2 ~ + 3 ~  (22) 

[~=ln(l+&,) ,  and the definition of o is given below], it 
follows from (7) that 

where o= ln[(l +~,)/(1 +~3], and that [see (Ala)] 

and from (9) it follows that 

Now it is clear that since 

a,= -p+(2p/3)w-(v/9)wZ= -P ,  (23) 

substitution of the value of p hence obtained into 

(t is the tensile stress) gives 

t =  -2pw+(v/3)w2. 

The functions p ,  p, and v must still be expanded in the 
vicinity of {- 3 In a,O,O} with the required accuracy, and 
E, from (23) must be expressed in terms of E, and substi- 
tuted into (24) to obtain the dependence of E, (and thus of 
E,) on the tensile stress r .  We perform the corresponding 
calculations to the second order with respect to the strain in 
(23) and (24): 

where the values of the moduli were taken at the point 
r = { - 3 In a,O,O}, and the prime denotes the derivatives of 
the respective quantities with respect to I, at that point. For 
example: 

Also, it was taken into account in (25) that 
dplak2 = - 2 ( p + p 1 )  (this is a consequence of the equality 
of the cross derivatives of the free energy with respect to 
Il and k2; see Ref. 1). 

We note that we were forced to resort to an expansion 
different from (13)-(13c) in (25), because Tr s is not a fixed 
quantity in the case of uniaxial deformation. 

The substitution of (25) into (23) gives the relationship 
between w and K :  

where 

whence 

Here 

Now substitution into (24) gives 

with 

In the linear theory (see Ref. 4) lim(tle,) as &,--to is 
called Young's modulus Y. It is seen from (28) and (22) that, 
as expected, within the measurement procedure chosen 

Equation (28) expressed in terms of E ,  [see (22)] has the 
form 

The tensor equation of state also specifies s, (due to the 
equalities a, = u,, = 0), and now we can write 

where D is the same coefficient as in (27a), and 

has the meaning of the Poisson constant under pressure. 
The measurement of AV/Vo and, therefore, of K(P) and 

JKldP (although, perhaps, with insufficient accuracy) is a 
fairly routine matter in high-pressure physics. The shear 
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TABLE I. Approximate values of the second shear modulus v  (according to published data). 

Material K , G P a  8Kldp p , G P a  dp/.Idp B y , %  b vlK v ,  GPa 

Steel 166 6.5 82.1 1.96 5.5 17.7 - 19.6 -3250 
Copper 138 5.74 46.84 1.39 -2.3 23.7 - 17.3 -2380 
Cu (single) 137 5.84 47.34 1.37 - 1.42 23.7 - 17.6 -2420 
copper ( 4  137 5.84 47.34 1.37 7.91 185 -156 -21 400 
Ag (single) 104 6.18 29.7 1.39 -4.17 9.79 -4.43 -461 

modulus p and its derivative dpldP can be found from ul- F = y - b K  
trasonic experiments (this is also true for K) or from mea- 

(34) 

surements of Young's modulus Y(P) using Eq. (29): to obtain the values of b for cast iron (GK3 and A15), soft 
copper (with matching to Carl Bach's results), copper, 

3KY bronze, silver, and steel (with matching to J. 0. Thompson's 
P(P)= ~ K - Y ,  (3 results). 

and knowledge of F (or D)  makes it possible to determine To utilize his results, we take into account that, as is 

the second shear modulus v(P) (here q =  p13K): clear from (30), 

v 4F(1+17)3 t = t  exp[2(w+~)]=t  e x p ( - 2 ~ ~ ) ,  
- d~ 

(334 
- - 
k 3K 

+611(1-27)--18q2 
dp after which the substitution of cp from (30) and t from (28b) 

gives 
d~ - - 8 ~ ( 1 + ~ ) ~ - 6 ( 1 - 2 ~ ) - .  
d~ t f . ~ E Z + ( ~ - ~ / 2 - 2 ~ u p ) & ~ ,  

(33b) 

(32) 
whence 

To avoid any misunderstanding we recall that K= K(P) etc. F = Y - ~ [ Y ( ~  + 4 u p ) - 2 F ] l ~ ,  (344 
denote the values of the modulus etc. under hydrostatic com- so that, in accordance with (34), 
pression, i.e., at the point r [see (25)l. 

Considering a phase which does not exist under a zero b=[Y(l  +4up)-2F]lY, (34b) 
load, we must bear in mind that the strain in it should be and from (32) we obtain 
measured from the intrinsic zero corresponding to its un- 
loaded state, whose position can, in principle, be restored v 

after experimentally studying the equation of state. As this 
can be done in the particular case of uniaxial deformation, it 
is illustrated in Appendix B, which is also of interest in itself. (324 

6. APPROXIMATE 
MODULUS 

EVALUATIONS OF THE SECOND SHEAR 

It would be of interest to evaluate v in materials for 
which there are more or less adequate experimental results. 

For this purpose it must, first of all, be taken into ac- 
count that a lack of data on the transverse compression in 
extension forced most experimentalists to express (as a func- 
tion of either the nominal or the natural strain) the nominal 
stress, which we denote by 

r= FIS,= tSISo= t(1 (33) 

Next, we call the quantity f ip ,&, )  =d3dez  under any (elas- 
tic) strain cZ the tangential Young's modulus to distinguish it 
from the modulus Y of the linear theory, which we can call 
the initial modulus. 

Griineisen (for further details, see Ref. 6) obtained very 
accurate values of Y for several materials using an interfer- 
ence technique for measuring small strains (from 
1.7X loT6 to 7 X with an accuracy of 2 X Then, 
utilizing the results of other investigators for large strains, he 
used Hartig's formula for Young's modulus expressed in 
terms of T 

We use this equation to evaluate v at zero pressure, but 
since measurements of all the parameters required by Eq. 
(32a) have not yet been performed on a single sample, the 
values of the moduli and their derivatives must be extracted 
from existing publications, for which purpose we used Ref. 
7. Unfortunately, the parameters of construction materials 
depend strongly on the technology used to manufacture 
them; therefore, it is difficult to require even simple repro- 
ducibility of their properties. As for other materials, their 
properties also depend, although not strongly, on the history 
of the sample, and such dependences can be important in 
precision measurements (see the discussion of these ques- 
tions in Ref. 6). 

This means that only an attempt can be made to find 
some correspondence in Ref. 7 to the materials described by 
Griineisen, but it is sufficient for an approximate evaluation. 
The degree of correspondence can be assessed in some sense 
using A : 

AY= 1oo(y[7]- y[6])ly[7] 9 

where Y17] is obtained from the values of K and p in Table 
I, and Yr6] are the values of Y found by Griineisen in Eq. 
(34). 
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The values of K, p,  and their derivatives in Table I were 
taken from Ref. 7. The values for the materials followed by 
the word "single" were adjusted to a polycrystal (by the 
method proposed in Ref. 8) from experimental data for cubic 
Cu and Ag single crystals, the row labeled "Copper (s)" 
refers to soft copper, and the remaining materials are ordi- 
nary polycrystals. 

Table I needs no additional commentary apart from the 
fact that the result for soft copper is the least reliable.2) The 
negative values of V, as can be seen in the calculation em- 
ploying Eq. (32a), are a consequence mainly of the large 
values of b, i.e., the excessive decrease in the tangential 
Young's modulus with increasing extension. 

It would be useful to perform experiments not only with 
determination of all the parameters listed in Table I on a 
single sample, but also with simultaneous measurement of its 
transverse strain and to compare the results for v obtained 
from D and F. In fact, in a strict sense the proposed theory 
applies to a completely isotropic substance, and only glass 
can probably be considered such when there are no gradients 
of the properties in it. In single crystals any of the parameters 
can be expanded in powers of the strain tensor with increas- 
ing rank of the tensor coefficients, which are averaged dif- 
ferently in polycrystals, and for this reason there must be no 
dependence between moduli like (34), which would act as a 
criterion of amorphousness in this light. 

An expansion up to terms of higher order with respect to 
K ,  unfortunately, is relatively uninformative, since the ap- 
pearance of a continually increasing number of derivatives of 
the moduli with respect to the invariants s permits making 
any adjustments due to a lack of experimental data which 
would make it possible to compare the results of measure- 
ments under different types of loading. 

tedious and cumbersome need to express y3 in terms of the 
lower powers of y from the Hamilton-Kelly equation, since, 
as is clear from (35) and (A7), 

and since it follows from (8) that 

the stress tensor a is completely specified in terms of y and 
can be substituted into the equilibrium equations (2a), which 
must be supplemented by compatibility conditions of the 
Saint-Venant type. Since y can be treated as a metric tensor 
in a curvilinear coordinate system parametrized by the Car- 
tesian coordinates of points in the loaded state or, stated 
differently, in a coordinate grid obtained from a Cartesian 
grid after removal of the load (see Refs. 4 and I), the com- 
patibility conditions are the conditions for a Euclidean space 
written in that coordinate system, i.e., the vanishing of all the 
components of the curvature tensor [or the Ricci tensor R i j  
(see Ref. I)]. In a three-dimensional space their number 
equals 6, as does the number of Saint-Venant relations. 

We shall discuss Rivlin's theory" in greater detail, since 
it has been used to describe physically interesting results of 
large-strain experiments with rubber. 

Referring the reader to the work just cited, we point out 
only that the independent variables or invariants chosen by 
Rivlin have the following forms in our notation: 

7. MURNAGHAN'S AND RIVLIN'S FORMULATIONS OF THE If we introduce the notation a=exp(-2)  and 
THEORY OF FINITE STRAINS P= exp(-2y) (x and y are the eigenvalues A and A2, re- 

spectively), then, since y=exp(-2s) [see (4)], it is clear 
In Ref. 1 it was noted that Murnaghan's equation of from (C7a) that 

state9 in Birch's formlo is obtained, if the invariants Kl are 
chosen as the independent variables in f [see Appendix A a 2 =  a+P+ lIaP,  (38) 
and (4)], since, as was shown therein, and it follows from (Cl) and (C6) that (the invariants of the 

alas=-2ydldy, (35) natural strain tensor s are written, as always, without indices) 

so that (6) with consideration of (4) gives Ir=a2exp(- 211/3). (39) 

a l p =  -2  y ( d f l d y ) = ( E - 2 u ) ( d f l d ~ ) ~ ,  (35a) Also, since 

which implies, of course, a transition to the invariants of u J:= ~ r y ' =  ~r exp( - 4s) = a4exp(- 411/3), (394 
using the formulas it follows from (1.5) that 

J:=Tr(E-2~)=3-25:, az-a4 2 41 
I:=--exp(- 2 $1. (39b) 

J : = ~ r ( ~ - 2 u ) ~ = ~ r ( ~ - 4 ~ + 4 p ~ ) = 3  -4JY+45; . . . , 
etc. and a direct calculation with consideration of (C7a) gives 

As was noted in Ref. 1, the choice of u (or, more pre- a2-a4 2 1 1 
cisely, y) as the variable in the free energy is useful in cal- = -  

2 
+ - + C Y / ~ = U _ ~ ,  

ff P (40) 
culations of the equilibrium state of a stressed body. 

More specifically, if Xl=0.5 lnI,Y, X2=0.5 In I:, and so that Rivlin's variables expressed in terms of the natural 
X3 = 0.5K: are chosen as the variables in f ,  we can avoid the strain tensor have the form 
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It is more convenient, however, to choose a slightly different 
set of independent variables, viz., 

whose use permits isolation of the dependence on the density 
in a separate argument and thereby simplification of the cal- 
culations along with greater transparency of the equations. 

Introducing the notation f k =  df/dXk, from (10a) and 
(C6b) we have 

~ l p = 2 f ~ c - ~ - 2 f ~ c ~ ,  

or, with consideration of (C7a), 

The bulk compressibility modulus is obtained, if the first 
of the equalities (42) is differentiated with respect to I, after 
recalling that p= po exp(-11) [see (8)]: 

or, alternatively3' 

K ~ P O = ~ ( P O / P ) ~ ~ + ~ ( P O / P ) ~ ~ ~ ~ .  (444 

Since it follows from (41) and (C8) that 

under small shearing strains, (C8a) and (43) give 

with the coefficients 

where the functions with the superscript 0 have the argu- 
ments {3,3, exp(211)}. 

The behavior of the moduli in the vicinity of A = 0 is 
thus determined by the signs of A and R, and when the 
deviator A increases and its value (i.e., w= &) ex- 
ceeds unity, as is clear from (C7) and (C7b), X1, X2, and 
their derivatives with respect to k2 and k3 increase exponen- 
tially; therefore, p and v should increase only iff and f 2  do 
not decrease more rapidly than exp(-2&). 

8. DISCUSSION OF THE RESULTS OF EXPERIMENTS ON 
THE DEFORMATION OF RUBBER 

The variables (37) and (37a) were used in Ref. 12 to 
interpret the results of experiments on the deformation of 
various types of crude rubber and unfilled vulcanized rubber 
under the assumption that the volume is invariant ( I l  = 0). A 
relation of the form 

f = ~ ( & - 3 ) + ~ ( & - 3 ) ,  (45) 

where A is a constant and the function x was studied by 
Rivlin and saunders12 (and was also presented in Rivlin's 
review"), was obtained for the free energy at not excessively 
large values of & (see below). In the variables (41), which 
faithfully describe the experiment, since they simply coin- 
cide with the variables (37a) when I1 ~0 (IT= 1 ), it can be 
assumed that 

After the transformation mentioned in the footnote to 
Eq. (Dl), from (43a) and (43b) with the values of the con- 
stants indicated in Appendix D we obtain 

An analysis of the graphical form of the dependences (43) on 
the eigenvalues of the deviator of A (see Appendix C) re- 
veals that in the region (D2) studied by Rivlin and Saunders 
[with f of form (42a) and X' from (Dl)], as expected [see 
the remark after (43b)], ,u has a maximum at zero [see 
(43c)], which is surrounded by a "trench" at a distance of 
-0.3 with a maximum depth (relative to the maximum) 
equal to about 0.38 kg/cm2 at the point x=y-0.23, and v 
has a minimum, which is also specified by (43c). 

9. UNIAXIAL EXTENSION OF RUBBER 

Let us directly compare the equations of Rivlin's theory 
and the natural-strain equations for the case of uniaxial ex- 
tension under zero pressure in the same notation and geom- 
etry as in Sec. 5. 

Going to the limit y +x in (44), we obtain 

2,ulp= f l[4/3a+ 4( l la-  a2)/9x] 

and then, recalling that x=  w/3= - ~ 1 2  [see (28a) and (24)], 
after some simple calculations we arrive at the expression 

with the following arguments for f k  : 
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The appearance of the third relation here is due to the 
absence of compressibility, which also permits writing the 
dependences (48) with a single argument, since [see (22)] 

We now perform the calculations in the Murnaghan- 
Rivlin theory [we combine them because of the use of the 
ordinary nonlinear strain tensor u;  see (4)]. 

For the comparison we must use the variables (41a) for 
f expressed in terms of y: 

Using (38), from (6) we obtain 

The derivatives are calculated as explained at the end of 
Appendix A. Then, with consideration of (1.7), as can easily 
be proved, we obta i~  

Substitution of these expressions into (49) gives the follow- 
ing relation in the principal axes: 

After expressing f3 /I: from the equation ax= 0 and substi- 
tuting it into a , ,  we obtain 

Under the assumption of incompressibility we have 
yx y, y, = 1, whence y, = 112  , and since 

we now obtain 

-f2(lly:- yx)= -2( llyx- Y;)(f 1 +fZ/YX). 

(474 

Since [see (4). (20b), (22), (21a), and (48a)l 

we can easily prove that (47a) coincides with (47). 

Any of the dependences r(s,), t (&, ) ,  qs,), and $ E , )  

constructed using an expression for f 2  = X' as a function of 
X 2  like (Dl) has a slope Y=3,u= 14.4 kgf/cm2 at zero, as it 
should when K 9 p .  The first of these dependences is a con- 
cave function at zero, and the others are convex. Also, the 
first dependence deviates least strongly from the 1 4 . 4 ~  
straight line, and the last dependence deviates least strongly 
(in the permissible range X2 S 5.5, which corresponds to the 
range - 0.532 G E, G 1.68 or, in natural strains, - 0.759 S s, 
S0.986). 

10. CONCLUSIONS 

The results of this work can be summarized in the fol- 
lowing manner. 

1) When the theory of finite strains is formulated in 
terms of the natural strain tensor, the values of the shear and 
the isotropic compression at an individual point in a body are 
independent of one another. 

2) The absolute value of the second shear modulus v of 
a solid body is of the order of the e!astic moduli K and ,u 
from the linear theory, but it can take either sign. 

3) When elastic moduli are determined under pressure, 
correct values of the relative strains under the action of ad- 
ditional (apart from the pressure) loads are obtained, if the 
increments of the linear dimensions are measured and their 
ratios to the current (under pressure) values are taken. 

4) The second shear modulus v can be determined from 
measurements of the deviations from the linear dependence 
of the tensile force or the transverse strain on the longitudi- 
nal strain (with accuracy to the second order with respect to 
the strain). 

5) Approximate evaluations of v for several materials 
have been performed by comparing the results of different 
measurements, and it has been found that they do not exces- 
sively contradict the physical models and common sense. 

6) The formulation of the theory in terms of the natural 
strain tensor has been compared with the previously pro- 
posed versions of the theory of finite strains, and their overall 
mutual equivalence and methodically prudent areas of appli- 
cation have been ascertained. 

We thank G. N. Ermolaev for an informative conversa- 
tion, which launched this work. It would also have been 
impossible without the support of the directors of the Insti- 
tute of High-Pressure Physics. 

APPENDIX A 

System of invariants of a matrix a 

For an arbitrary matrix a we introduce the invariants 

and I;, which are the coefficients in the equation for the 
eigenvalues 

Their expressions in terms of several other invariants, viz., 
the eigenvalues a l ,  a 2 ,  and a3 of the matrix a, clearly have 
the form 
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After isolating the spherical part of a, we obtain 

where A" is the deviator (the traceless part) of the tensor 
a, and then we introduce the following "small" invariants 
of a ,  which will be useful later on: 

It is obvious that the i; are the coefficients in the secular 
equation defining the eigenvalues of A 

and are expressed in terms of the eigenvalues of the deviator 
A = a - Iy/3 using formulas similar to (A3): 

Because the roots of a real symmetric operator are nec- 
essarily real (see Ref. I), the following inequality holds for 
any values of the deviators: 

Since only three invariants can be independent, there are 
several relations between them, some of which have already 
been presented in Ref. 1. Here more of them are needed. For 
this reason, as well as for reference purposes, we write them 
all out (invariants of a single matrix are implied; therefore, 
the index labeling the matrix is omitted): 

They are obtained by taking the traces of the different 
powers (A4) and using the matrix equations (A2) and (A2a), 
in which, in accordance with the Cayley-Hamilton theorem, 
A is replaced by the actual matrix a (or A) (the expressions 
for the roots ai in terms of Ik are given by Cardano's equa- 
tions, which we shall not present here, since they are cum- 
bersome and generally known, but they have been written in 
our notation in Ref. 1). 

The derivatives of any invariant with respect to a matrix 
[as, for example, (9)] are calculated by expressing it in terms 
of the powers J ,  using (A5)-(A~c), since 

Here we present only a single equation, which is impor- 
tant in applications. Differentiating I3 from (AS), with con- 
sideration of the first line of (A5) and after comparison with 
(A2) we obtain the following expression for a: 

APPENDIX B 

Dependence of the straln on the load in Bell's multiple 
elasticity theory 

J. F. ~ e 1 1 ~  discovered and described a phenomenon, 
which he called "multiple elasticities" in experiments on 
testing machines with dead-weight loading (so-called "soft" 
loading, as opposed to "hard" loading, where the strain is 
considered given, and the force is measured) with samples of 
nonconstruction, well annealed materials. Under this phe- 
nomenon the uniaxial extension curves clearly exhibit linear 
segments with different slopes for the dependence of t on 
e Z ,  whose existence Bell attributed to "second-order transi- 
t ion~."~)  Bell also ascribed the discrepancies which occa- 
sionally appeared in the data obtained by different investiga- 
tors over the course of more than two centuries (beginning 
with Coulomb's measurements of the shear modulus on a 
torsion vibration apparatus, which gave an appreciably un- 
derestimated value for the modulus for brass) to this phe- 
nomenon. 

Not wishing to go into a discussion of the possible 
mechanisms for multiple elasticities (or perhaps, for ex- 
ample, martensitic transformations, reversible twinning, 
etc.), we shall try to describe the extension diagram (i.e., the 
t-E plot) on a purely phenomenological basis. 

If it is assumed that each continuous ith segment of this 
dependence corresponds to its own unstressed state with its 
own L,Oi and L:~, then, as can easily be seen from (20) and 
(204, 

and with respect to s,,  which we denoted by K [see (22)], 

Here 

since all the strains are measured from the initial state L:,  
L:, which, in tun, is one of the unstressed states, for ex- 
ample, the one with i =  1. 

Dividing the semiaxis K>O by the points 
qi(i= 1,. . . ), qo=O into the intervals of smoothness 
Qi=(qi-l  ,qi), we can write the equation of state in the 
form 

where [see (28)] 

ti(x)= Y ~ x + F ~ x ~ +  . . . , 
and setting &(O) = s,Oi, we can write [see (30)] 
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where 

cpi(x)=upi+Dix+ . . . . 
In addition, the following continuity conditions must be sat- 
isfied on the boundaries between the intervals of smoothness: 

Strictly speaking, this makes it possible to determine K: and 
soi,  which are not observed experimentally (only ky = 0 and 

= 0 are known). 
After this, as is clear from (33) and (21), for Twe can 

write 

or, taking into account that 

X =  K ; E J & - E ~ - E ~ / ~ + & ? / ~ ,  

with accuracy to the second order with respect to E and 
, we obtain 
- 
~ = A ~ + ~ E + & E ~ ,  0334 

where 

Ai=[Fi+ Yi(l -4api)/2]- Yi(l +2s:,), 

&=F,-Yi(l +4api)/2. 

Finally, in (B3a) E lies in the range 

exp q i - l - l < ~ < e x p  qi- 1. 0334 

APPENDIX C 

The matrix-valued function exp(-ha) of a matrix a 

Substituting the expression for a in terms of its deviator 
A into the exponential function, so that a =ZlE/3+ A [see 
(A4)], we obtain 

exp(- Aa) = exp( - AZl/3)exp( - AA). (c1) 

Any function f(A) for a case of different eigenvalues Ak of 
A can be written in the form (see Ref. 13) 

where the Zk are the so-called components of A (or a )  which 
do not depend on the form off (as was pointed out in Ref. 
13, the expression for the case of repeated eigenvalues, in 
which some of the Zk become meaningless, can be obtained 
by the corresponding limiting transition). 

It was shown in Ref. 1 that [for the definition of the 
second shear A2 see (9)] 

Substituting f = 1 into (C2), we can easily prove that 

Differentiating the characteristic equation for A 

we readily obtain 

whence after a comparison with (B3) we conclude that 

Therefore, we can write 

exp(- AA)=aAE/3+ bAA+cAA2, (c6) 

where 

and, as can easily be proved, 

If the notation x= A and y = A2 for the eigenvalues of 
A as well as the notation a,=exp(-Ax) and 
PA = exp(- Ay), is introduced, we have 

and then we can write 

which, after being substituted into (C6), completely solves 
the problem of interest to us in a parametric form (the pa- 
rameters are the eigenvalues of the shear tensor A). 

For calculations in a solid body, where the deviators are 
usually small (- 7, l p ,  where 7, is the yield point and ,u is 
the shear modulus), if, of course, for some reason the experi- 
mental data are expressed in terms of components of y (or 
u), a direct expansion in the invariants of a = s  (s is the 
natural strain tensor; for the general expansion formula, see 
Ref. 1) is useful. In our case it has the form 
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(m+n- l ) !  

(2m+3n- l)!m!n! ](h2k2)"'(- A3k3)" 

from which and from (B6b) we obtain 

1 da, i 3 k 2  h4k3 h5k; b +--- " A Xk2 
+ ..., 

3! 4! 5! 
(C8a) 

APPENDIX D 

Required explanations for the graphical representation of 
elastic moduli and uniaxial tensile forces in rubber 

For a graphical representation we set pA = 1.7 kgf/cm2 
in (45a), in accordance with the results in Ref. 12'). and we 
write the function X' = f 2  in (42) and (43) in an approxima- 
tion with the same dimensions for B, D, and F in the form 
(with z=X2-3) 

Fixing the values pfi = pX' (0) = 0.7 kgf/cm2, 
pfi2= P X ' ' ( ~ )  = - 0.5 kgf/cm2, and pf2= 0.22 kgf/cm2, we 
arrive at a two-parameter problem requiring minimization of 
the deviations of the values of (Dl) from the corresponding 
values in Ref. 12 by the least-squares method. As a result, we 
obtain the following set of values for the parameters: 

which gives an expression that describes the experimental 
Rivlin-Saunders curve adequately for purposes of graphical 
representation in the range reliably investigated by them6) 

It is not convenient to graphically depict the depen- 
dences of the moduli in X1 and X2, since, because of (A3b), 
the region where any function of the strains is defined in 
these variables has the form of a beak, which is more con- 
veniently described after displacement in the (X1 ,X2) plane 
to the point (3.3) and counterclockwise rotation through 
d 4 ,  i.e., in the variables 

in which it has the form [after the appropriate substitutions 
from (A5)] 

where 

so that 

In the (x,y) plane of the eigenvalues of the deviator of 
x introduced in Appendix B the region where (C.2) is defined 
is bounded by a distorted ellipse with semimajor axis 
x+y=0.493, which is directed downward toward the left 
along the x=y axis and is confined to the square -0.759 
a x , y s  1. 

')1n the case of repeated eigenvalues a function of an arbitrary operator 
contains another term with its own derivative in the repeated roots, but 
they vanish identically for the operator of a simple structure, particularly a 
symmetric structure. 

')The accuracy of experiments at large e (which were used by Griineisen for 
matching to his own values of Y using Hartig's formula) must be sufficient 
for correctly isolating the nonlinearity. However, this means that the ex- 
periments cited should have been carried out with an absolute accuracy for 
a strain measurement'm poorer than when e - (the accuracy of 
Thompson's experiments was, in fact, 2X 

3)The absence of compressibility, i.e, the validity of the equality 1 1 = 0 ,  is 
due to the large value of the bulk compressibility modulus K of tubber, 
i.e., the large value of f3, (which usually ranges from 10 to 100 kbar) 
compared with the other f i j= d 2 f l d ~ i d ~ j ,  which are three to four orders 
of magnitude smaller [see Appendix D and (43c)l. 
')~n addition, after many years of careful work he found an empirical equa- 

tion, which gives all the previously measured values of the shear modulus 
p for polycrystals at temperatures above the Debye temperature with good 
accuracy. l l e y  turn out to depend on only one universal parameter (for all 
materials) and a pair of integers, which are small and more or less definite. 
This result is remarkable, although it does not rule out the existence of a 
similar equation substantiated by physical principles in a rigorous theory. 

')The relationship off  to Rivli's "stored-energy function" W normalized 
to the initial volume has the form f = W l p o .  The dimensions of the coef- 
ficients are transformed accordingly, although only their relative values are 
important for purposes of illustration. 

' h e i r  measurements covered the region X I  S 123, c 34, but in a large part 
of this region the experimental data did not satisfy the requirement of 
equality between the cross derivatives d z f l d x I  ax2= d ' f l d ~ , d ~ ,  . This 
may be an indication that the assumption that the materials investigated are 
isotropic is incorrect. 
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