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We use the microscopic approach to study the evolution of a nonequilibrium polariton 
condensate and show that as a result of polariton-polariton scattering the condensate becomes 
considerably depleted in a very short time interval whose value is determined by the 
initial density of the condensate. Disintegration of the condensate has the form of nonlinear 
damped oscillations. We study the dynamics of the distribution function of extracondensate 
polaritons and show that in the initial stage of the system's evolution the distribution 
function has the shape of a symmetric bell. With the passage of time oscillations appear in the 
envelope of the distribution function, and these are gradually transformed into shallow 
chaotic ripples. Formation of the short-wave wing of the distribution function is also observed. 
Attention is focused on the ignition, followed by partial extinction, of an additional sharp 
peak, which appears in a time interval characterized by low values of the density of the polariton 
condensate and slow variations of this density. O I996 American Institute of Physics. 
[SlO63-7761(96)02105-11 

1. INTRODUCTION 

The classical approach is used in a large number of stud- 
ies devoted to the spatial-temporal evolution of intense laser 
radiation in resonant media. This approach presupposes that 
the photon and material fields are macrofilled coherent 
modes, or condensates, interacting with each other. It is as- 
sumed that, first, disintegration of the condensates takes 
place exponentially and, second, that the lifetime of a con- 
densate far exceeds the time of the nonlinear coherent pro- 
cess under investigation. The classical approach was used, in 
particular, by Moskalenko et al.' to study the phenomena of 
self-induced transparency and nutation in the excitonic range 
of the spectrum. 

We believe, however, that the microscopic approach is 
more consistent. In it the dynamics of the interacting conden- 
sate modes and quantum fluctuations appearing in the system 
as a result of real quasiparticle scattering processes is de- 
scribed in a unified manner. In other words, we must allow 
for (a) the interaction of the condensates with each other, (b) 
the excitation of extracondensate quasiparticles, and (c) the 
effect of the extracondensate particles on the condensates. In 
the present paper the microscopic approach is used to de- 
scribe the temporal evolution of a system of high-density 
polaritons that initially was coherent. 

As is known? when an electromagnetic wave whose fre- 
quency is in resonance with a specified exciton energy level 
acts on a direct-gap semiconductor, a coherent polariton 
wave with a wave vector k,-, # 0 is excited in the crystal, or a 
nonequilibrium polariton condensate is formed. As the wave 
propagates through the crystal and various scattering pro- 
cesses take place, the initial polariton wave may lose its co- 
herence, the condensate can be depleted either completely or 
partially, polaritons with wave vectors k # k,-, may be ex- 
cited, etc. 

At high crystal excitation energies, polariton scattering 
associated with exciton-exciton collisions dominates. Inter- 

est in this scattering mechanism has been stimulated by re- 
cent experimental studies3 and by a large body of intriguing 
physical results obtained in theoretical studies of the dy- 
namic and kinetic changes emerging in a polariton system as 
a result of the interaction between excitons (see, e.g., Refs. 4 
and 5). 

According to Refs. 5 and 6, when exciton-exciton col- 
lisions are taken into account, the most interesting situation 
from the standpoint of physics is the one in which the coher- 
ent excitation of polaritons is achieved in a certain spectral 
range for which the laws of energy and momentum conser- 
vation allow for real processes of two-photon escape of po- 
laritons from the condensate. These processes lead to insta- 
bilities in the fully condensed state of the polariton system. 
The existence of such a range near an isolated exciton reso- 
nance is related to the special features of the polariton dis- 
persion law. 

Pitei et aL6 studied the energy spectrum of extraconden- 
sate polaritons resulting from the decay of a coherent polar- 
iton wave. They found that k-space has regions in which, as 
the researchers believe, no energy spectrum can exist. 

We note at this point that the research in Ref. 6 is based 
on a model which, by its formal properties, is similar to that 
used by ~ o ~ o l ~ u b o v ~  to study the equilibrium system of a 
weakly nonideal Bose gas. In the nonequilibrium physical 
situation examined in Ref. 6, in which the polariton conden- 
sate is in the process of disintegration accompanied by exci- 
tation of a large number of extracondensate polariton, the 
model can be thought of as reflecting the physical essence of 
the problem correctly only in the initial stage of the decay of 
the condensed state of the system, when the number of po- 
laritons in the condensate is still considerably greater than 
the total number of extracondensate polaritons. This stage, 
however, is essentially time-dependent, which is proved by 
the instability of the condensate. But studying the energy 
spectrum presupposes finding the stationary states of the sys- 
tem (see Ref. 8, p. 28). For this reason we believe that the 
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results of Refs. 5 and 6 based on the specified model and 
referring to the energy spectrum of the system cannot be 
considered justified. 

Strictly speaking, the largely time-dependent nature of 
the processes taking place in the system requires using the 
methods of nonequilibrium statistical mechanics. Here the 
derivation of equations describing the disintegration of the 
polariton condensate and the excitation of quantum fluctua- 
tions possesses several special features related to the exist- 
ence of degeneracy in the system. Since the total energy and 
the total momentum of two extracondensate polaritons may 
prove to be equal to, respectively, the energy and momentum 
of two polaritons in the condensate, we are forced to deal 
with the degeneracy of two-particle states. In addition, the 
mere presence of a condensate implies degeneracy caused by 
the condensate's macroscopic amplitude? 

To describe a system with degeneracy in a meaningful 
way we must introduce, in addition to the ordinary (normal) 
distribution function Nk= (a:@ k), anomalous functions 
+,=(a,) and Fk'(@k@25-k) (see Ref. 10). Here 6: 
(dk )  is the Bose creation (annihilation) operator of a polar- 
iton in a state with a wave vector k on the lower polariton 
branch. The appearance of anomalous averages means that 
the selection rules related to the gauge invariance of the sys- 
tem are ~iolated. '~- '~ In our problem gauge symmetry break- 
ing appears because of the noninvariant initial condition re- 
lated to the assumption that initially (at time t=to) the 
system contained a condensate. 

An attempt to derive the kinetic equations for a system 
of polaritons excited in a semiconductor by an external clas- 
sical source acting in a time-independent manner was made 
in Refs. 13 and 14. The researchers, however, did not ac- 
'count for the degeneracy of two-particle states in the system. 
In particular, no anomalous distribution function Fk was in- 
troduced. No wonder then that the equations they obtained 
contained a nonphysical singularity. 

Kinetic equations describing the evolution of partially 
coherent polaritons and allowing for degeneracy were found 
in Refs. 15 and 16 by Keldysh's method17 formulated in 
terms of functionals. The equations coincide with those ob- 
tained by the same authors in Ref. 18 by the method of a 
nonequilibrium statistical operator19 and contain no non- 
physical singularities. We would also like to mention the 
reports in Refs. 20 and 21, which contain the most thorough 
description of Refs. 15, 16, and 18. 

According to Refs. 16 and 18, the kinetics of partially 
coherent polaritons is described in the Born approximation 
by a system of nonlinear integro-differential equations for 
the coherent part of the polariton field Pko and the normal 
and anomalous distribution functions nk= N ~ -  6k,kol w 
and f k =  F.- s ~ , o ~ ,  respectively. In the absence of quan- 
tum fluctuations described by the functions nk and f k ,  the 
equations for these function become identities, and the equa- 
tions for qka ( a  is the number of the polariton branch) are 
in this case equivalent to those obtained in Ref. 22 for a 
system of interacting coherent excitons and photons. In an- 
other special case in which ?%=0 and fk=O, an ordinary 
kinetic equation follows from the results of Ref. 16 for the 

distribution function Nk given, for instance, in Ref. 23. 
The right-hand sides of the kinetic equations suggested 

in Refs. 16-18 contain terms linear in the exciton-exciton 
coupling constant v>O and terms proportional to v2. The 
first correspond to the self-consistent field approximation, 
which means ignoring higher-order correlation functions. 
This approximation allows for the two-photon escape of po- 
laritons from the condensate, reverse processes, and the 
transformation of a created pair of extracondensate polari- 
tons into another pair with the same total momentum. These 
terms describe the fastest processes in the system and are 
sufficient for studying the early (pre-kinetic) stage in the 
evolution of the system. 

The terms proportional to v2 allow for scattering pro- 
cesses in which only one polariton belongs to the conden- 
sate. For this reason they are nonzero only when the system 
has extracondensate polaritons. Such terms describe slower 
variations (compared to those described by the terms propor- 
tional to v) of the system's characteristics and become im- 
portant only in the kinetic stage of the evolution. Our study 
of the temporal evo!ution of a system of nonequilibrium po- 
laritons is based entirely on the self-consistent field approxi- 
mation. 

2. THE SYSTEM HAMlLTONlAN 

We start with the simplest ~ a m i l t o n i a n ~ . ~ ~  

The creation (annihilation) operators @k+, (@ka) of an exci- 
ton (at a= 1 ) or photon (at a= 2) in a state with wave 
vector k obey the Bose commutation relations: 

For the Pauli matrices 7-1, r2 ,  and r3 we employ the stan- 
dard representation.I7 The frequencies wk and wi  are defined 
by o k = ~ l k l e i " 2  and oi=o'+hk2/2m, where c is the 
speed of light in vacuum, ?ioL is the energy needed to form 
an exciton in the band fio: , and m is the exciton effective 
mass. The background dielectric constant eg allows for the 
contribution to the total dielectric constant of the crystal of 
all excitations except for the excitons in the isolated band 
hwi  . 
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The Hamiltonian ( 1 )  describes a system of interacting 
dipole-active excitons and transverse linearly polarized pho- 
tons in an infinite crystal ( V - t w ,  where V is the quantiza- 
tion volume) near an isolated excitonic resonance ok= W: 

(see Ref. 24). 
In other words, we assume that the photon frequency 

h ok , the exciton energy h oi , and the minimum energy gap 
AlT separating the exciton band hok  from any other bands 
are linked by the following relationships: 

We also assume that the exciton-photon (vk= T , I - ~ )  and 
exciton-exciton (vk= vdk)  coupling constants are fairly 
small: 

(here if is the mean exciton number density in the system). 
The first inequality makes it possible to keep only the reso- 
nance terms in the Hamiltonian (2), while the second allows 
considering the exciton-exciton coupling a small perturba- 
tion. If the condition for resonance, okWo;, is met, the 
weak frequency dependence of EB can be ignored. 

The quadratic part (2) of the Hamiltonian ( 1 )  can be 
reduced to diagonal form, 

and the average value of an arbitrary dynamical quantity is 
defined as (A),= ~ r f i i ( t ) .  Here 6 is the density matrix de- 
fining the distribution of polaritons initially (at t = to ) .  and 
the "check" sign on operators denotes the Heisenberg pic- 
ture. 

When there is a condensate in the system, the average 
value of the polariton annihilation operator 

q k a ( t )  = ( @ k c ~ ( ~ ) ) t  (7) 
is nonzero. Because of the interaction between polaritons this 
average value varies with time. Out of the operator djka(t)  
we take the coherent part: 

& k a ( t ) =  q k a ( t )  + i k a ( t ) -  (8) 
According to the definition (7), (xka) ,=O.  

We substitute (8) into the system Hamiltonian 
H H and represent the Hamiltonian as 
H =  H l ( t )  + H 2 ( t ) ,  where the operator H l ( t )  contains only 
terms that are linear or bilinear in i k a ( t )  and ,fk+,(t). The 
operator H2(t )  contains products of three or four operators 
i k a ( t )  and );;k+,(t). 

We now allow for H 2 ( t )  in the self-consistent field ap- 
proximation. To this end we make the formal substitution: 

i&,(t)~&a2(t)ik3a3(t)ik4a4(t)ji~al(t)i12a2(t) 

+ + &=C C h ~ k ~ d k + n & k ~ ,  (4) ( ~ k ~ a ~ x k ~ a ~ ) t + i k , a , ( ~ ) i k ~ a ~ ( ~  ) ( ~ k ~ a , ~ k ~ a ~ ) f  
k  a =  1.2 

by introducing the Bose polariton Operators 6ka and 6,+, via +i~a,(r)ik3a3(t)(~k'2a2~k4~4)t+i~1 a l ( t ) i k 4 a q ( t )  

the transformation ( ~ $ a ~ ~ k ~ a ~ ) t + ~ & a ~ ( ~ ) ~ k ~ a ~ ( ~ ) ( ~ ~ o , ~ k ~ a ~ ) f  + 

Here the function Ak can be found by solving the equation i~2a2(t)ik3a3(t)~k4a4(t)ti&a2(t)(~k3a3~k4a4)t 

%A:+ h(ok-  oi)hk- vk= 0. In the polariton representa- 
tion. 

As a result, H 2 ( t )  and hence H acquire the same operator 
structure as H l ( t ) .  If we now go from the operators i k a ( t )  
to the original operators 6ka(t) in H ,  we obtain 

4, ;t9 .k,+k4(sk,k3),,a3(p$k4) a Z a 4  
H = E o ( ~ )  +C C f i ~ k ~ b L ( t ) @ k ~ ( t )  

( 5 )  
k  a =  1.2 

1 
where +- C 2 Skl+$.k3+k4 2v k, , . . . ,k4 a1 , . . . ,ad= 1.2 

The Hamiltonian (1) is invariant under the gauge trans- 
formation i=exp( iyc ,  where y is an arbitrary real con- + v k ,  -k3(pklk4)ala4(s$k3)a2a31 

stant, and i = x k x a =  l,26,+,6ka is the operator of the total 
number of polaritons in the system. 

3. THE SELF-CONSISTEM FIELD APPROXIMATION 

In the Heisenberg picture the operators 6ka(t) obey the 
equation of motion 
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where Eo(t) is a c-number function. 
Combining the expression for the Hamiltonian (9) and 

the equations of motion (6), we find the system of equations 
describing the temporal evolution of a system of partially 
coherent polaritons in the self-consistent field approximation. 
If we introduce the distribution functions 

we get 

Equations (11)-(13) acquire a simpler form when the 
state of the system is initially prepared in such a way that at 
t= to only one macrofilled coherent mode k= ko on the 
lower polariton branch is excited: 

n ( k ~  ,a1 ;kz,a~Ifo)=f(k~ ,a1 ;k2,(~21to)=O. (14) 

We can use Eqs. (1 1)-(13) to find the increments the 
functions (7) and (10) acquire by time t=to+dt: 

Thus, a coherent polariton wave with a macroscopic ampli- 
tude serves as a source of quantum fluctuations described by 
the function f(kl ,al;2ko-k,  ,a21t). 

Now let us substitute 

into the right-hand sides of Eqs. (1 1)-(13) and again find the 
increments that the functions (7) and (10) acquire in an in- 
finitesimal time interval dt. The result is 

d*kaccak,kg9 d n ( k ~  ; k z , a ~ ( f ) ~  8kl .k2, 

i.e., after the quantum fluctuations described by theanoma- 
lous distribution function f (k, ,a1 ;2ko- kl ,all t), fluctua- 
tions characterized by the normal distribution function 
n(kl ,al ;kl ,a2[ t) are excited in the system. 

Substituting 
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into the right-hand sides of Eqs. (11)-(13). we see that the 
left-hand sides of these equations have the same structure. 
Thus, with the initial conditions (14) the solution of the sys- 
tem of equations (11)-(13) has the form (15). This result 
follows solely from momentum conservation in the elemen- 
tary scattering events of the interacting polaritons. 

We can further simplify Eqs. (11)-(13) by keeping in 
their right-hand sides only resonance terms related solely to 
states belonging to the lower polariton branch. Allowing for 
(15) and discarding the rapidly oscillating terms on the right- 
hand sides of Eqs. (11)-(13), we get 

+Fk(O]  - 

Here 

and 

are the polariton-polariton coupling constants. According to 
(14), the solution of Eqs. (16)-(18) must satisfy the initial 
condition 

In what follows we take to=O. 
When dealing with equilibrium problems, the quantities 

of type Fk or pk can be interpreted as order parameters and 
can be found by solving integral equations? In the nonequi- 
librium situation considered here the order parameters are 
time-dependent, with the result that finding them means solv- 
ing the system of nonlinear integro-differential equations 
(16)-(18). 

Equations (16)-(18) are invariant under time reversal, 
i.e., they retain their form when t - t  - t, *kO-+*:n, and 

fk- ' fC.  
In addition to additive integrals of the motion, which 

reflect the conservation of the average values of the number 
of particles, energy, and momentum of a closed system, Eqs. 
(16)-(18) are characterized by additional integrals of the 
motion: nk(t) -n2k,,-k(t)= const and 1 fk(t)I2- nk(t) 
X[ 1 + nk(t)] = const. Employing the initial conditions (20), 
we find that 

This (21) makes it possible to eliminate Eq. (17) from the 
system of equations (16)-(18). 

Clearly, the transformation 

separates the equation for the phase of the condensate wave 
function qk,,(t) from the system of equations (16)-(18). As 
a result, the system of the evolution equations acquires the 
form 

where 

and 
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where 

is the relative polariton number density in the condensate. 
The steady-state solution of Eqs. (16)-(18), 

where Ek is the renormalized polariton energy, was found in 
Ref. 25. Substitution of this solution into the expression for 
the total average energy and the total average number of 
particles suggests that the given solution cannot be realized 
with the initial condition (20). However, this state of a po- 
lariton system can be achieved by irradiating the semicon- 
ductor crystal with steady-state laser light.26 

4. NUMERICAL RESULTS 

The system of equations (22) and (23) is still too com- 
plicated even for numerical solution. Hence for the sake of 
simplicity we ignore the dispersion of the exciton-exciton 
coupling constant v. Near an exciton-photon resonance the - 
function Ak is approximately unity and hence vpt 
= 2 VPlW v12. 

The initial condition (20) has the same form for all val- 
ues of the wave vector k. Hence Eqs. (22) and (23) imply 
that in the absence of dispersion in the polariton-polariton 
coupling constants the k-dependence of g is achieved by a 
function of fik+fi2kO-k-2fik0: 

gk=g( f ik+f i2k0-k-2 f iko , f ) .  

Using the identity transformation 

and introducing the dimensionless variables 

~ = ~ t , ~ ~ = ~ - ~ ( f i ~ + f i ~ ~ ~ - ~ - 2 f i ~ ) ,  04)  

we can write the system of equations (22) and (23) as fol- 
lows: 

Below, for numerical estimates, we use parameters of 
polaritons formed by the mixing of photons and 
1A-excitons in the ionic crystal of cadmium sulfide 
(c~s): ~ ~ ' 9 . 3 ,  hoL=2.55 eV, 77/h = 1 . 1 ~  1 0 ' ~  s-', 
m,=0.89mo (here mo is the free electron mass), and 
mil= 2.85rno (see Ref. 27). We use the model of an isotropic 
parabolic exciton band with an effective mass 
rn = (m:rnll)1'3. The effective Bohr radius of a 1A-exciton in 
CdS is a,,= 28 a (see Ref. 28). The ionization energy is 
1,,=27 meV (see Ref. 29). The value of the exciton- 
exciton coupling constant can be estimated by the formula 
v 3  YO= (26m/3)l,xa~x (see Refs. 4 and 30) and amounts to 
4.3X erg.cm3. The interaction of excitons with acous- 
tic phonons in CdS is extremely weak. Only the interaction 
with a single branch of optical phonons with an energy 
f i  wqh- 38 meV, which are characterized by considerable dis- 
perslon, can play a noticeable role.31 

It the initial evolution of the system, when a consider- 
able fraction of polaritons is still in the condensate and the 
number of extracondensate polaritons is fairly low, we can 
ignore the terms with the function G ( T )  in Eqs. (25) and 
(26). The solution of such a "truncated" system of equations 
has the form 

(here the effect of the small fraction of extracondensate po- 
laritons on the condensate is ignored), 

According to (28), in the initial stage of evolution there 
is intense excitation of extracondensate polaritons in the 
range - 2 s  w GO, where the distribution function n(w) is 
shaped like a symmetric bell with the maximum at o= - 1. 
As we move away from this range, the distribution function 
decreases in an oscillatory manner. 

The numerical solution of the system of equations (25) 
and (26) is done in two stages. First we find the explicit form 
of the p vs w dependence for various values of the conden- 
sate density Iq\Irko(0)12/~ and of the wave vector b. Then 
this dependence is used to integrate the evolution equations 
(25) and (26). The results of integration for 
lbl=3.6X 105cm-' are depicted in Figs. 1-3. This choice 
of the value of lkol corresponds to an exciton-photon reso- 
nance lying slightly below the bottom of the exciton band. 

Disintegration of the nonequilibrium polariton conden- 
sate is described by the curve in Fig. 1. Up to the moment 
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FIG. 1. The relative number density of polaritons in the condensate as a 
function of the dimensionless time T. 

T-7 of dimensionless time the depletion of the condensate 
proceeds rather slowly. Then there is a sharp drop, as a result 
of which by T -  15 only 10% of the original polaritons re- 
main in the condensate. Further disintegration of the conden- 
sate is accompanied by nutation oscillations, in the course of 
which the condensate density is partially restored (up to 30% 
at T-20) .  Nutation oscillations are absent if in Eq. (26) we 
ignore the function G ( T ) ,  which describes the combined ef- 
fect of all pairs of extracondensate polaritons with the same 
value of total momentum 2hko per pair. Thus, in the disin- 
tegration process the condensate oscillations are related to 
the correlation of the states of separate pairs of extraconden- 
sate polaritons. By T-50  the amplitude of the oscillations 
and the disintegration rate noticeably diminish. These results 
cannot be obtained by introducing phenomenological con- 
stants into the dynamical equation for the condensate's wave 
function. 

Figure 2 depicts the distribution function of extracon- 
densate polaritons at moments chosen within the interval in 
which the polariton condensate undergoes the most rapid and 
substantial variations. The curve corresponding to T =  10 is 
shaped like a symmetric bell with its maximum at w = - 1 ,  
just as the curve describing the function (28). By T =  15 the 
distribution function increases considerably in magnitude, 
while remaining symmetrical, and the maximum moves to- 
ward higher energies of extracondensate polaritons. The in- 
crease in the number of extracondensate polaritons by a fac- 
tor greater than 10 is consistent with the fact that the function 
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The distribution function of extracondensate polaritons at T =  10 
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FIG. 3. The distribution function of extracondensate polaritons at different 
moments of the dimensionless time T. The marks on the left vertical axis 
give an idea of the scale of the function. 

N o ( T )  has a local minimum at T -  15. At T =  20 the enve- 
lope of the distribution current becomes distorted and the 
area under it decreases. The latter is consistent with the fact 
that the function M o ( T )  has a local maximum at T-320. 
Thus, the distribution function rises and falls in step with the 
oscillations of the condensate's density. 

The subsequent evolution of the distribution function is 
depicted in Fig. 3. By T =  30 the envelope acquires oscilla- 
tions which emerge not only in the dependence of the distri- 
bution function on the parameter w but also in the depen- 
dence on the dimensionless time T (unfortunately, we were 
unable to reflect this fact in Fig. 3).  This means that if, for 
instance, the distribution function at T-40 has a local maxi- 
mum at w = - 1, at another time it has a local minimum at 
the same point. With the passage of time the frequency os- 
cillations become denser and shallower. This results in cha- 
otic ripples appearing on the smooth envelope of the distri- 
bution function. 

At T-30 the distribution function acquires a short-wave 
wing. By T =  100 the distribution function is localized in the 
range - 2 < w < 1. Of special interest here is the ignition, 
followed by partial extinction, of an additional sharp peak 
localized in the range - 0.22< w < - 0.08 with its maximum 
at w - - 0.15. The time interval in which the additional peak 
is formed and exists is characterized by low values of the 
condensate density and slow variations of this density (see 
Figs. 1 and 3).  The position of the additional peak does not 
change with the passage of time, and the peak reaches its 
maximum height at T -  80. 

Changes in the initial condensate density 1 q k o ( 0 )  1 2 / ~  

result in variations in only the scale of the dependencies 
discussed here because of the corresponding transformation 
of the dimensionless arguments (24). This is a corollary of 
the extremely weak dependence of the solution of Eqs. (25) 
and (26) on the initial condensate density via the function 
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p(w) contained in the definition of G(T). According to Figs. 
2 and 3, g(w,T) is nonzero only in the interval 
- 2 < w < 1. Numerical calculations show that in this interval 
p(w) is essentially independent of w because of the specific 
features of the dispersion of the lower polariton branch near 
an exciton-photon resonance. This makes it possible to re- 
place p ( ~ )  with p(0) in the definition (27) of G(T). As a 
result we have 

But according to (27) and (24), p(0) is independent of the 
initial density of the condensate and for fixed crystal charac- 
teristics is determined exclusively by the size of the wave 
vector ko . At I kol = 3.6X 105cm- ' we have 
p(0)-6.8X 

Note that although Eqs. (16)-(18) are reversible in time, 
their solution is not.32 

5. CONCLUSION 

Let us take a specific physical situation in which the 
above physical phenomena might show up. Suppose that a 
semiconducting crystal of thickness L in a ring cavity is 
irradiated by a pulse of resonant laser light of length r. The 
ring cavity is needed to confine the condensate and the ex- 
tracondensate excitations to the system. If the wave vectors 
of the condensate and scattered modes satisfy k L S  1, the 
propagation of the laser light in the resonant medium should 
be interpreted as the propagation of interacting mixed 
exciton-photon modes, or polaritons. The polaritons are 
formed in a time interval rpol- h / 2 ~ 4  r as a result of inter- 
conversion of the photons of the internal electromagnetic 
field (the field inside the semiconducting sample) and exci- 
tons with the same value of the wave vector. For a 
1A-exciton in a CdS crystal, rpol-7 fs. 

We assume that the length of the excitation pulse is lim- 
ited by the inequality rer,= lOA", which implies that in 
the course of 7 the polariton condensate has no time to 
"feel" the effect of the scattered modes and to be noticeably 
depleted (see Fig. 1). Then in the above-mentioned interval 
the propagation of the condensate can be described by clas- 
sical equations: the linear inhomogeneous Maxwell equation 
for the potential of the electromagnetic field and the nonlin- 
ear nonhomogeneous Schrodinger equation for the exciton 
an1~1itude.l~~ The inhomogeneous terms in the equations are 
related to the exciton-photon interaction. Integrating the 
Maxwell equation with allowance for the conditions at the 
crystal-vacuum interface, we find that the internal electro- 
magnetic field is a linear combination of (1) the secondary 
field generated by exciton polarization, (2) the field whose 
source is the crystal's boundary (this field emerges as a result 
of the action of external radiation on the boundary29), and (3) 
the field that existed in the crystal in the infinitely remote 
past (as t 4  -m). The latter component must be identically 
zero for the short excitation pulse considered here. Thus it 
can be said that after time T has elapsed the crystal contains 
a condensate polariton wave generated by a source at the 
crystal's boundary. The role of the excitation pulse consists 

in "creating" the initial condition that the condensate wave 
function must obey at the instant the pulse ceases to exist. 

The above line of reasoning has the following drawback. 
The use of a laser pulse of finite length leads to excitation of 
a polariton condensate in a finite spectral range of width 
A a- T- ' , which contradicts the initial condition (1 4). This 
contradiction, however, is unimportant if A i l 4  A, i.e., when 
r+0.1 r* . For an initial polariton number density in the CdS 
crystal of 10'~-10'~crn-~ we have 80-0.8ps, respectively. 

Thus, the length of the excitation pulse must meet fairly 
stringent and somewhat contradictory conditions: 
0.1 r* < r< r* . Nevertheless, it can be expected that at least 
some features of the temporal evolution of the system of 
initially coherent polaritons uncovered within the framework 
of the stated model problem will show up, even if the first 
condition is not met or if the second is slightly violated. 

The source of the laser light exciting the coherent polar- 
iton wave in the crystal must be sufficiently powerful that the 
nutation oscillations of the condensate density and the spe- 
cific features of the distribution function of the scattered 
modes have time to appear before relaxation processes in- 
volving optical phonons set in or photons escape from the 
cavity. The physical phenomena discussed in Sec. 4 occur in 
a time interval 1 .5ry < r< lor* (see Figs. 1-3). We assume, 
for the sake of definiteness, that the minimum relaxation 
time rr of condensate or scattered polaritons on phonons 
does not exceed the photon lifetime in the cavity, which is 
related to the transmissivity of the cavity's mirrors. By vary- 
ing the frequency w of the resonant radiation impinging on 
the crystal ever a certain spectral range lying below the ex- 
citon transition frequency w', a situation can be created in 
which, on the one hand, the kinematic relationships can be 
made to allow for real two-quantum escape/ of polaritons 
from the condensate and, on the other, the condition 2% rr 
can be made to hold (here .T= ( 1.5- 10) 7, is the delay time 
determined by the moment of observation). The time rr 
strongly depends on the state of the polaritons in the 

At moderate temperatures (kBTQfiwph, with kg 
the Boltzmann constant), when anti-Stokes scattering of po- 
laritons by optical photons is negligible, and the polariton 
states with energies close to the bottom of the exciton band 
are characterized by extremely long relaxation times 
(7,-0.1~~-1 ns; see Ref. 24). This corresponds to a sharp 
increase in the density of the possible final states in 
polariton-photon scattering, when states are transformed 
from exciton-like into photon-like. 

Observing the disintegration process requires the thick- 
ness of the semiconducting sample to be bounded 
by L<v,Y, where vg is the polariton group velocity, 
which depends on the choice of wave vector ko (see Ref. 25). 
The value v = 9.4X lo9 cm. s- ' corresponds to 1 bl 
= 3.6X l ~ ~ c m - ~ .  We also note that one of the modes emerg- 
ing in an elementary scattering event lies in the photon-like 
section of the polariton branch and has a component of the 
wave vector directed opposite to the direction of propagation 
of the excitation pulse.5 This mode rapidly leaves the crystal. 
For it to return to the scattering region in a time interval 
much shorter than r*, the thickness L of the semiconducting 
sample must be much smaller than (cl&) r, . 
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