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We model the potential function of the YBa2Cu307 crystal lattice, describing the lattice's 
structural evolution and dynamical processes under conditions of hydrostatic compression, 
including macroscopic elastic properties, the pattern of variation of interatomic distances, 
and the baric dependences of vibrational frequencies. We predict a structural phase transition 
induced by hydrostatic pressure. The effect is found to be related to the lowering of the 
frequency of the dispersion branch that is flat along the ~(O,O,O)-+Z(O,O,O.5) direction in the 
Brillouin zone. The soft mode corresponds to a strain vibration along the x axis of a 
linear -Cul-Ocul-Cul- chain. Softening of this vibration is caused by stresses generated in the 
chain under compression. We analyze the symmetry properties of the YBa2Cu307 structure 
at P > P C  . O 1996 American Institute of Physics. [S 1063-7761(96)01505-31 

I. INTRODUCTION 

Most high-T, superconductors known today belong to 
the class of perovskite-like compounds. The common prop- 
erty of such compounds is the tendency toward structural 
phase transitions.' These transitions usually are caused by an 
essentially anharmonic effect+ondensation of the soft vi- 
brational mode-which suggests that strong anharmonicity is 
a characteristic feature of the phonon subsystems of - 
perovskite-like crystals. 

This fact is a cornerstone of general discussions about 
the role of phonons in the mechanism of high-T, supercon- 
ductivity, since the anharmonicity of atomic vibrations is 
considered to be a factor responsible for strong electron- 
phonon coupling and, therefore, it affects the value of T, 
(see, e.g., Refs. 2-5 and the review by Lemanov and 
~ h o l k i n ~ ) .  This explains the interest in vibrational-spectrum 
studies of high-T, superconductors. 

Among perovskite-like superconductors the most studied 
one is the YBa2Cu307 compound. The literature to this com- 
pound is vast, and the phonon properties, especially their 
anharmonicity, occupy the central place in such discussions. 
Special attention is focused in this connection on vibrations 
of the linear component in this crystal, the -Cul- 
Ocul-Cul- chain (see Fig. l below). The result. of some 
researchers (see Refs. 3 and 7, and also Ref. 8 and the litera- 
ture cited therein) suggest that the local potential in which 
transverse displacements of the atoms in this component take 
place contains a large anharmonic term destabilizing the lin- 
ear chain. The growth of this potential (under an external 
agent acting on the crystal) stimulates the soft-mode behav- 
ior of vibrations generating such displacements. 

Attempts to prove the existence of such properties by 
direct experiments have failed, however. In particular, stud- 
ies of the temperature behavior of the individual low- 
frequency dispersion branches of the YBa2Cu307 lattice by 

inelastic neutron scattering have revealed no traces of soft- 
mode behavior in the temperature range from 300 to 20 K 
(see Ref. 9). Here the frequency of the dispersion mode that 
is flat in the (O,t,O) direction (167 cm- ' at T= 300 K), 
which mode Pyka et identified as the strain vibration of 
the chain, was found to grow only slightly. 

Thus, the situation with this problem became fraught 
with controversy. However, in the current discussion atten- 
tion has been focused on only one external thermodynamic 
factor, the temperature. 

The present paper studies a model in which the anhar- 
monicity of the phonon subsystem of the YBa2Cu307 lattice 
is induced by hydrostatic compression. In relation to objects 
of this type the compression can be considered an alternative 
to lowering the temperature: pressure stimulates the transi- 
tion of YBa2Cu307 into the superconducting state (T, is 
observed to increase linearly up to pressures P =  10 GPa, 
with dT,ldP--1 K GP~- ' ;  see Ref. lo), and at the same 
time is a factor destabilizing perovskite-like structures. Usu- 
ally for such structures the derivative dT,ldP is positive""2 
in the case of the most typical phase transitions caused by 
condensation of rotational vibrations of complex octahedral 
anions. Note that in classical perovskites with the formula 
ABX3 these vibrations can be interpreted as combinations of 
zigzag strain in (X-B-X), chains. This suggests that the 
instability of the chains under such strain is the underlying 
property of perovskite-like structures responsible for the type 
of phase transition mentioned earlier.13 

The theoretical prerequisites of our study were the con- 
clusions drawn in Ref. 13, according to which compression 
of crystals, in view of the laws of mechanics, must weaken 
the elastic restoring forces acting on the atoms in their trans- 
verse displacements in the linear structural components of 
the crystal lattice. This may lead to a loss of mechanical 

918 JETP 82 (5). May 1996 1063-7761 I96105091 8-1 1$10.00 O 1996 American Institute of Physics 918 



L state can be described in terms of the absolute variation of 
9 the spring length, Ar ,  or in terms of macroscopic uniform 

Y strain 

U = A r / r .  (1) 

To establish the properties of interest to us we restrict 
our discussion to the problem of short-wave (band-edge) vi- 

C"lOC", 
brations, when the neighboring atoms in the chain are dis- 

I placed in antiphase. The harmonic approximation presup- 
poses that only the quadratic term is retained in the potential 
function V ( X )  (i.e., in the expansion of the internal energy 
density V  of the system in a Taylor series in the Cartesian 
displacements x of the atoms). Differentiating the quantity 
V ( r )  twice with respect to X, we find the coefficient of the 
quadratic term, which is known as the atomic harmonic force 

x constant, in the form 

FIG. 1. The YBazCu,O, crystal structure and the schematic of strain vibra- 
tions of the -Cul-Om,-Cul- chain. 

stability and to strain (zigzag fracture) in such components, 
i.e., to a structural phase transition. 

A microscopic destabilizing factor in this effect is the 
stress in the interatomic bonds that emerges as a result of 
compression of the lattice. Note that the hypothesis of such a 
role of the static interatomic stress in perovskite lattices un- 
der normal pressure has been expressed earlier.14 In Sec. 2 
we use an approach based on the dynamical crystal theory to 
discuss the behavior of the vibration frequencies of an infi- 
nitely long linear chain of atoms in conditions of uniform 
compression and the case of a three-dimensional lattice. This 
approach forms the theoretical basis for studying the phonon 
subsystem of the YBa2Cu307 crystal lattice. In this investi- 
gation we use the model of the valence-force potential func- 
tion suggested earlier in Refs. 15 and 16 for describing the 
vibrational spectra and the elastic properties of this crystal at 
P=O. 

For the present study the model was modified so as to 
allow for two competing anharmonic contributions to the 
potential function that determine the dynamic response of the 
system to a decrease in volume: 

(1) the stabilizing contribution of the existing anharmo- 
nicity (using the terminology of Ref. 17) of the interatomic 
potentials caused by the increase in the force constants as the 
interatomic distances decrease; 

(2) the destabilizing contribution determined by the 
stress in the interatomic bonds, i.e., static two-center repul- 
sive forces that appear when the atoms in the compressed 
lattice move closer. 

2. THE ANHARMONICITY OF VIBRATIONS OF A SYSTEM 
OF COUPLED POINTS UNDER HYDROSTATIC 
COMPRESSION 

We start with the case of vibrations of an infinitely long 
linear single-spacies atomic chain consisting of ideal springs 
of length r characterized by a modulus of elasticity K when 
a longitudinal external force F acts on the chain. The com- 
pression (elongation) of the chain with respect to the free 

where X, are the Cartesian displacements of an atom along 
the a axis, and V; and V L  are the first and second deriva- 
tives of V  with respect to r. Equation (2) is the general 
expression for the quantities VaB in the case of an arbitrary 
potential of short-range forces.18 The first term in (2) is 
known as the radial component of V a p  and the second as the 
tangential component. 

When the configuration of the chain is time-independent, 
the forces acting on the atoms are zero (in view of symme- 
try), and the condition of equilibrium under macroscopic 
stresses with (1) taken into account is reduced to the equality 

which means that the external force F is balanced by the 
internal stresses in the system. 

Assuming that the Cartesian y axis is directed along the 
chain and using Eqs. (2) and (3), we find that 

Thus, the frequency vy of the longitudinal oscillator of 
the chain is determined solely by the radial part of the V,,  
matrix, 

(m is the mass of the atom), and is independent of the state 
of the system, in full agreement with the properties of a 
harmonic oscillator. 

The frequency v, of the transverse oscillator behaves 
differently. The oscillator's equation of motion has the form 

It implies that v, is determined by the tangential part of 
V a p  and is a variable depending on the value of the uniform 
strain of the chain. Thus, the transverse oscillator of the 
chain is essentially anharmonic. When the chain is com- 
pressed ( U < O ) ,  v, is imaginary and the system loses stabil- 
ity with respect to transverse displacements of the atoms. 
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Let us now examine a three-dimensional periodic lattice 
consisting of N  atoms coupled by ideal springs whose elastic 
properties are specified by a matrix K. In Born's theory19 the 
space of true lattice strains has 3N + 3  dimensions, because it 
has 3 N -  3  internal degrees of freedom and six external de- 
grees of freedom. The latter correspond to macroscopic uni- 
form strain. The difficulties of examining the dynamics of 
uniform strain in the basis space of absolute atomic displace- 
ments are well known (see, e.g., Ref. 19, Sec. 25). Bearing 
this in mind, we use the space of variations of the relative 
atomic positions?0 which we call the q-space of natural co- 
ordinates. 

Suppose that the lattice, which initially was free, has 
been deformed by an isotropic pressure P. In the natural 
coordinate space (which in our case is simply the set of 
variations of the interatomic spring lengths) the microscopic 
strain vector qo corresponding to the new state is related to 
the macroscopic strain vector U and pressure P in the fol- 
lowing ~ a ~ : ~ ~ , ~ ~  

where L is the uniform strain matrix, and K is the crystal's 
linear compressibility tensor. 

In a strained lattice the following forces (stresses) F ap- 
pear in the lattice: 

these balance the external pressures and are mutually bal- 
anced in the action on each atom. 

The variation of the density V of the lattice's internal 
energy brought on by new strains q with respect to the equi- 
librium state contains (in the case of ideal springs) only two 
terms: 

To go from (9) to the standard notation for the potential 
function in the space of 3N absolute Cartesian displacements 
X, of the atoms, we expand q in a power series in these 
displacements23 (summation over repeated indices is as- 
sumed everywhere): 

where all the coefficients are determined by the geometry of 
the structure. 

Substituting (10) into (9) and collecting the terms with 
the same powers of X,, we obtain the potential function in 
the form of an infinite series: 

where the absence of a linear term corresponds to the equi- 
librium condition. We see that the potential function of a 
lattice constructed of ideal springs proves anharmonic, since 
it contains higher-order terms. If in (11) we keep only the 
first term, we have a quadratic potential energy, which by 
definition17 describes lattice dynamics in the harmonic ap- 
proximation. 

In this approximation the oscillatory system of the crys- 
tal consists of a set of 3 N -  3  independent oscillators. This 
means that their frequencies are independent of the internal 
strains of the lattice. However, below we show that this 
property is not valid for external uniform strain. Indeed, the 
coefficient V,p in (11) obtained as a result of substituting 
(10) into (9) is defined as 

Similar to Eq. (2), the first and second terms on the right- 
hand side are, respectively, the radial and tangential compo- 
nents of the force constant. 

Allowing for (8), we reduce (12) to 

which implies that the force matrix Vap and, hence, the val- 
ues of the vibration frequencies depend on the size of the 
uniform strain of the lattice, U, i.e., on the hydrostatic pres- 
sure P. 

Note that in the dynamical theory of crystals such behav- 
ior of the vibration frequencies is defined as being a purely 
anharmonic property.17 We can therefore say that our system 
possesses anharmonicity induced by uniform strain of the 
lattice under hydrostatic compression. The microscopic na- 
ture of this anharmonicity can be related to the interatomic 
static forces emerging as a response to changes in inter- 
atomic distances that such strain produces. 

The bearer of this property is the tangential component 
of the force-constant matrix Vap. It determines the forces in 
the equations of the vibrational motion in directions perpen- 
dicular to the lines connecting the interacting atoms.18 Note 
that the stresses in the interatomic bonds corresponding to 
lattice compression introduce (through this component) 
negative contributions to the characteristic numbers of the 
dynarnical matrix. Thus, there is always a factor in the dy- 
namics of the lattice that lowers the lattice's stability under 
compression. The factor is model-independent, i.e., is 
present in all physically consistent model descriptions of 
crystals as systems of elastically coupled atoms and hence is 
an inherent mechanical property of crystal lattices. 

At the same time, as the interatomic distances decrease, 
the stiffness of the "interatomic springs" must increase in 
view of the substantial anharmonicity of the real interactions 
between atoms. In contrast to the forces generated in the 
springs, this effect increases (through the radial part of 
Vap) the characteristic numbers A = v2 of the dynamical ma- 
trix and stabilizes the structure. 

Generally, the A contain contributions from both parts of 
Vap  : and lattice compression generates two effects: the sta- 
billzing and the destabilizing. Usually the first is greater than 
the second and the vibration frequencies increase under com- 
pression of the lattice. But if the lattice structure is such that 
for some vibrations the tangential component is predomi- 
nant, these frequencies may manifest their "anomalous" 
soft-mode nature under compression of the lattice. Primarily 
this is related to a purely geometric factor, in view of which 
the radial and tangential parts of the dynamical matrix sepa- 
rate. This situation realizes itself most vividly, as noted ear- 
lier, in the case of a linear chain. 
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TABLE I. Force constants, structural parameters, and baric dependences of bond lengths, dlldP, for the YBa2Cu30, crystal lattice under hydrostatic 
compression. 

P=O GPa P=15  GPa P = 30 GPa 
dlldP Length or angle Constants Length Constants Length Constants 

Cu 1-%, 
Cu-Ocu 

Cul -ocu1 
Cu-O;, 
&-%a 
Y -O;, 
y-ocu 
Ba-%a 
Ba-Ocul 
Ba-OLu 
Ba-Ocu 
0,-0, 
O&-o;, 

Cu-Y 
Cul-Ba 
Ba-Ba 

Cul-Cul 

BI  Ocu-Cu-0;" 88.9 0.45 0.56 0.66 
B2 OBa-Cu 1-OCUI 90.0 0.45 0.56 0.66 
B3 %,-Cu-O', 97.7 0.15 0.19 0.22 
B4 %a-cu-Ocu 98.4 0.15 0.19 0.22 

HI S I - ~ I  -0.20 -0.24 -0.28 
HZ s6 &-s6, s7 0.13 0.18 0.22 

,Note: The force constants are given in the folloying units: Si ,mdyn/A-I, Bi ,mdyn/A, and H i ,  mdyn/A-'. The distances are given in angstroms, the angles 
in degrees, and the quantity dlldP in units of A ( lo4 GPa) - I. 

It is the presence in the YBa2Cu307 lattice of such a 
structural component as the -Cul-Ocu,-Cul- chain (Fig. 
1) that provided us with arguments in favor of the hypothesis 
concerning the existence in the lattice's spectrum of soft 
modes induced by hydrostatic compression and, as a corol- 
lary, the tendency of the lattice toward becoming destabi- 
lized under pressure. In view of the complexity of the struc- 
ture of the given compound, verifying the hypothesis 
required doing quantitative model calculations that allow for 
both of the above-mentioned factors (the stabilizing and the 
destabilizing). 

3. BUILDING THE DYNAMICAL MATRIX OF THE YBa2Cu307 
CRYSTAL LATTICE UNDER CONDITIONS OF 
HYDROSTATIC COMPRESSION 

The calculations done in this paper are based on Born's 
theory,lg whose central concept is that of the dynamical ma- 
trix DUB of a crystal lattice. The approach to building such a 
matrix is described in detail in the literature (see, e.g., Ref. 
24). 

In our calculations we used the CRYME package.25 
With it the (generally) complex-valued matrix DaB is built 
for each wave vector separately and satisfies the correspond- 
ing properties of translational and point symmetries. The 
eigenfrequencies and vibration modes (polarization vectors) 
were found by diagonalizing the matrix, while the elastic 
constants of the lattice were determined by the long-wave 
method.lg In the potential function of the crystal we allowed 
only for short-range forces, considered in the basis space of 
two- and three-center (angular) internal coordinates q (see 

Refs. 24 and 26), which automatically ensures that all the 
conditions of invariance following from the physical mean- 
ing of this quantity are met.20 New conditions are added 
when pressure P is applied to the lattice-those of equilib- 
rium in relation to the internal and external degrees of free- 
dom of the crystal. This means that the resultant of the forces 
acting on the atoms is zero and that the external pressure is 
balanced by the totality of all inner stresses in the lattice. 

The crystal lattice of YBa2Cu307 ( D ; ~ =  Pmmm and 
z = 1 ) is depicted in Fig. 1. The notation system for the at- 
oms used below corresponds to that adopted in the reviews 
by Evarestov er al." and Kitaev et ~ 1 . ~ '  and in Refs. 15 and 
16 and allows for the layered structure of this compound: an 
oxygen atom belonging to a definite metal-oxygen layer 
contains a label of the corresponding metal. In calculations 
we used the structural data of Molchanov et ~ 1 . ~ '  

The model of the force field suggested earlier in Refs. 
15, 16,30, and 31 for describing the dynamical properties of 
the RBa2Cu307 - compounds at P = 0 incorporates three 
types of constants: S, B, and H (Table I). The constants S 
describe diagonal two-center interactions at distances no 
greater than 3.9 A. The constants B determine diagonal 
three-center interactions, i.e., the elasticities of the angles 
(the model allows for elasticity of the 0-Cu-0 angles). Fi- 
nally, the constants H describe the dynamical interactions of 
two bonds with a common atom (two types of interaction 
were considered: through the Cu 1 atom, OBa-CulICu 1 - 
OBa, and through the Y atom, Oc,-YIY-Ocu). 

In the present study the set of constants used in Refs. 15 
and 16 was augmented by two other constants, SI6 and S,, 
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TABLE 11. Experimental and calculated values of the elastic constants Cik (GPa) in YBa,Cu307 compounds. 

C~~ C~~ C33 C44 c5.5 C~ C12 C13 C23 

230 150 50 85 100 100 Experiment" 
207 63 31,36 85 Experiment3' 

160 25 85 66 ~ x p e r i m e n t ~ ~  
23 1 268 186 49 37 95 132 71 95 ~ x p e r i m e n t ~ ~  
181 235 167 50 47 59 50 94 82 ~alculation'~ 
206 261 167 50 47 59 50 94 82 Calculation* 

*Note: Results of the present work. 

(see Table I), corresponding to the weak Ba-Ba and Cul- 
Cul interactions between the closest translationally equiva- 
lent atoms in the xy plane. Allowing for these interactions 
made it possible to improve (in comparison to the results of 
Ref. 16) the similarity between the calculated results and 
experimental data on elastic constants (see Table I1 below). 

In modeling the response of this force field to the hydro- 
static compression of the crystal we allowed for two factors 
related to the decrease in the interatomic distances in the 
lattice: 

(1) an increase in the values of the force constants S, 
B, and H caused by the substantial anharmonicity of the 
interatomic potentials; 

(2) the generation of stresses, i.e., interatomic forces F 
balancing the outer pressure and ensuring that the atoms in 
the deformed lattice are in equilibrium. 

For this we used the calculated values of the absolute 
variations in interatomic distances found for each new value 
of P (Table I). This made it possible to allow for the first 
factor by introducing anharmonic corrections for the values 
of the force constants S with the use of the S vs r depen- 
dence, which was found from the sets of respective constants 
obtained earlier in calculations of the dynarnical properties 
of the YBa2Cu307, YBa2Cu306, GdBa2Cu30,, and 
GdBa2Cu306 compounds at P = 0 (see Refs. 15, 16,30, and 
31). In favor of this was the fact that these compounds con- 
tain a set of chemically single-type bonds of varying length. 
For instance, the RBa2Cu307 compound contains five 
symmetry-nonequivalent Cu-0 bonds, four Ba-0 bonds, 
and two Y-0 bonds, all corresponding to different distances 
r (Table I). Using the sets of constants for the four com- 
pounds, we found Scu-o, SBa-Or and SyPO as functions of 
r. Furthermore, as Fig. 2 shows, all three functions form a 
common"universa1" empirical S vs r curve. On its basis we 
estimated the other two-center force constants for which 
there was no way of obtaining the S vs r dependence at 
P = 0. Figure 2 gives an example of the baric dependence of 
S(Cu-Y) built in this way (in the linear approximation). 

Since the literature contains no data on the behavior of 
B and H under strains of the corresponding structural com- 
ponents, we calculate their variations caused by lattice com- 
pression as linear functions of pressure according to the best 
fit of the calculated baric dependences of the frequencies of 
vibrations of the A, symmetry and the experimental data. 

The second factor mentioned above (the destabilizing 
one) determines the variation of the tangential part of the 
force-constant matrix Va8 for P>O. To allow for it, we sub- 
stituted the values of the uniform strains U and their shapes 

L, determined for a given value of P from the geometry of 
the problem and the force matrix according to the scheme 
developed in Ref. 21, into the second term on the right-hand 
side of Eq. (2). 

Thus, the dynamical properties of the crystal lattice were 
found from the dynamical matrix Va8(P), which at P=O 
was determined only by the first term VaB(0)=BaK(O)BB 
in Eqs. (12) and (13) and for a fixed hydrostatic pressure P 
# 0 assumed the form 

Vff8(P)=B,K(P)BP SK(O)LKPB,~, (14) 

where K(0) corresponds to the initial (at P=O) set of the 
force parameters S, B, and H, and K(P) to the set of these 
quantities determined in the above way for a compressed 
lattice. 

By way of an example, Table 1 lists the force constants 
of the YBa2Cu307 lattice at P=O, 15, and 30 GPa found in 
this manner. Here for each two-center interaction at P # 0 we 
list two parameters: one determining the elasticity of a spring 
for a given value of P, i.e., the value of S with allowance for 
the anharmonic correction, and the other the magnitude of 
the force F on a given spring. 

Note that the variation of both terms in (14) corresponds 
to allowing in the potential function for two anharmonic fac- 
tors of an entirely different nature. As noted in the Introduc- 
tion, the first is determined by the "substantial" anharmo- 
nicity of the interatomic potentials, and for a two-center 

FIG. 2. The force constants S(Cu-0), S(Y-0), S(Ba-O), and S(Cu-Y), as 
functions of the interatomic distance r .  
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interaction was numerically estimated from the diagram in 
Fig. 2. The second describes the anharmonicity that is in no 
way related to the nature of the interatomic forces and is 
present even in the simplest dynamical model consisting of 
hard spheres and ideal springs. To clarify its meaning we 
note that from the viewpoint of physics the anharmonicity of 
atomic movements in a crystal means the existence of a non- 
linear relationship between the absolute displacement of an 
atom and the restoring force that is generated in the process. 
Earlier it was shown32 that due to the curvature of the space 
of the internal coordinates q the variation of the coefficients 
in the linear terms in the expansion (9), i.e., the generation of 
forces F, leads to nonlinear effects in the expansion ( l l ) ,  
i.e., to a change in the quantities V a p ,  Vap,,, etc., which 
constitutes an inherently anharmonic effect. In Ref. 33 it was 
noted that these effects should be related to the cubic terms 
of the X ~ U  type in the expansion of the energy V in the 
3N+ N-dimensional total space of true (by the terminology 
of Ref. 9 strains of the crystal, the space consisting of 
3N- 3 internal strains X (the vibrational coordinates) and 
six external macroscopic strains U. 

Thus, both anharmonic factors were numerically allowed 
for in our predictive calculations without introducing explic- 
itly any anharmonic terms in the expansion (1 I), in contrast 
to the common way of introducing higher-order tenns into 
the potential for reproducing the experimental results (e.g., 
the phase transition of P-quartz into an incommensurate 
structure34 or destabilization of the La2Cu0, lattice35). 

4. RESULTS OF CALCULATIONS 

4.1. Dynamical properties of the Yba2Cu307 lattice at P =O 

Since modeling the behavior of the YBa2Cu307 struc- 
ture under external mechanical stresses was of a predictive 
nature, it was done together with calculations of a broad 
spectrum of dynamical characteristics of the structure. These 
characteristics included, in particular, nine independent elas- 
tic constants Cik and 39 fundamental vibrations of the 
YBa2Cu307 lattice, which are distributed over the irreduc- 
ible representations at the center of the Brillouin zone as 
follows (see, e.g., the review articles by Evarestov et al." 
and Kitaev et ~1.~ ' ) :  

Note that vibrations that are even with respect to the 
inversion center are active only in Raman scattering (RS) 
spectra, while odd optical vibrations are active only in IR 
spectra. 

In discussing our results of calculating center-zone vi- 
bration frequencies at P=O for YBa2Cu307 (Refs. 15 and 
16), YBa2Cu306 (Ref. 30), GdBa2Cu307 (Ref. 16), and 
GdBa2Cu306 (Ref. 31) we have already noted their good 
agreement with a large set of experimental data known from 
RS and IR-reflection spectra. Adding the constants 
S16(Ba-Ba) and S17(Cul-Cul) to the model of Ref. 16 has 
no effect on the properties of center-zone vibrations but con- 
siderably improves the description of elastic properties 
(Table 11). 

The main idea of our study of the possibility of destabi- 
lizing the YBa2Cu307 lattice by hydrostatic compression 
presupposes the existence in the lattice's spectrum of a pho- 
non that either totally or to a considerable extent corresponds 
to the strain vibration of an isolated -Cul-Ocul-Cul- 
chain. Symmetry considerations imply that when the chain is 
directed along the y axis, the two components of such a 
vibration polarized along the z and x axes must belong to the 
representations B1, and B3,, respectively. 

An analysis of the shapes of the calculated vibrations 
(the eigenvectors of the dynamical matrix) given in Table VI 
of Ref. 15 suggests that the B3,-mode with the frequency 
126 cm-I has the most easily discernible features of a strain 
vibration of the chain (see Eq. (16) below). To a lesser extent 
this is true of the vibration with the frequency 336 cm-' of 
the B1, symmetry. Thus the question of the low-frequency 
region in the IR spectrum with the polarization Ellx where 
vibrations of the B3, symmetry are active is of primary im- 
portance. 

Note that in studying the IR spectra of the superconduc- 
tor YBa2Cu30-, there is the problem of separating the vibra- 
tions from the background of strong plasma reflection (pri- 
marily in the EL z polarization). It is for this reason that the 
corresponding data are absent even from the most thorough 
review of the IR spectroscopy of supercond~ctors.~ As the 
carrier concentration decreases (as the oxygen content in the 
Ocul position decreases), phonon screening also decreases, in 
view of which fairly reliable spectra of IR reflection for 
YBa2Cu3O6 in the E l  z polarization were ~ b t a i n e d . ~  How- 
ever, the YBa2Cu3O6 structure does not contain Cul- 
Oc,-Cul chains. We known of only one work (Ref. 41) 
devoted to the study of B2"- and B3,-vibrations in single 
crystals of YBa2Cu3O6+ with considerable oxygen content 
S. Three new lines (as compared to the spectra of 
YBa2Cu3O6) were discovered in the IR spectra of such crys- 
tals with an oxygen content 0.2< R 0 . 4 ,  which is in full 
agreement with the result of symmetry analysis. The line 
147 cm- ' for the EL z polarization was related to the strain 
B3,-vibration of the chain along the x axis discussed here. 

The results of studies of the dispersion of phonon 
branches in YBa2Cu307-a crystals by the method of inelas- 
tic neutron scattering can be found in Refs. 9, 36, 42, and 43 
and are compared with the data of optical experiments and 
the results of dynamical calculations in the review of Litvin- 
chuk et a1.@ Unfortunately, not all 39 dispersion branches 
have been detected in the neutron spectra, but in the spectral 
range of interest to us a number of vibrations were observed; 
namely, the vibrations that at point r have the frequencies 
120, 140, 153, and 167 cm- '. Allowing for the results of 
Ref. 41, we select two of these vibrations, 140 and 
153 cm- ', which can be related to the strain vibration of 
chains along the x axis in YBa2Cu307 crystals. 

4.2. Comparison of experimental data and results of 
calculations for P> 0 

Let us now discuss the agreement between the experi- 
mental data and the calculated elastic characteristics of the 
crystal and the estimate of strain for different structural com- 
ponents of the YBa2Cu307 lattice under hydrostatic com- 
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pression, since these quantities form the basis for a model 
description of the anharmonic contributions to the potential 
function. Moreover, such an analysis is a cornerstone in 
modeling the potential function of crystal lattices since there 
exists the possibility of solving the problem of reproducing 
an eigenvalue (in the given case the bulk modulus) and ei- 
genvector (the microstrain patterns of the structural compo- 
nents of the lattice) of the dynarnical matrix of the crystal.21 
This is in sharp contrast to the situation in vibrational spec- 
troscopy, where studying such a problem is fraught with dif- 
ficulties, since measuring the eigenvectors of phonons in 
multicomponent objects usually constitutes a complicated 
experimental problem. In our studies the good agreement of 
the calculated polarization vectors at P = 0 and those deter- 
mined from experiments (say, in studying Raman scattering 
in samples with isotopic substitution) was noted in Refs. 16 
and 31 and in the review article by Kitaev et a1.28 

The experimental picture of micro- and macro-strains in 
the YBa2Cu307 lattice under pressure has been fully deter- 
mined in structural studies.34 The results obtained in the 0- 
0.6GPa range suggest that the nature of the internal relax- 
ation of the lattice has prominent special features: the varia- 
tion of interatomic distances along the z axis within the el- 
ementary cell is of an undulating nature. In particular, the 
relative variations of the lengths of the Ocu-Ocu and Oku- 
Oku bonds in the YBa2Cu306.93 lattice for P>O prove to be 
considerably smaller than the similar variation of the param- 
eter c of the cell, i.e., the quantity (dc1dP)lc. In 
YBa2C~306.60 this effect manifests itself even stronger: the 
lengths are practically independent of pressure in the studied 
pressure range. This picture of internal relaxation resembles 
the undulating structural transformation of the lattices 
RBa2C~307-6 observed under variations of their chemical 
c~mposi t ion. '~.~~ 

In our calculations the bulk modulus B = 120 GPa for all 
practical purposes coincides with the experimental value of 
123 GPa (Ref. 44), and the above-mentioned undulating be- 
havior of the lattice clearly manifests itself for P>O: the 
pressure derivative of the interatomic distance in 0;"-0;" 
even proves to be a small negative quantity, which explains 
the anomalous behavior of the corresponding force constant 
S13 when the lattice is compressed (see Table I). 

Since an important component in our calculation scheme 
is the fact of allowing for substantial 'darmonicity in the 
potential function, we paid special attention to reproducing 
the experimentally established baric dependences of the fre- 
quencies of a number of vibrations at the center of the Bril- 
louin zone. Unfortunately, the relevant experimental infor- 
mation is restricted to the most intense vibrations of the 
totally symmetric representation in RS spectra. For instance, 
in the case of YBa2C~306.9 single crystals under pressure, 
the behavior of the frequencies of two A -vibrations (435 

55 and 498 cm- ' at P = 0) have been studied (Fig. 3), while 
for ceramic samples of the YBa2Cu307 composition the 
baric dependences of the frequencies of four A,-vibrations 
(145,338,440, and 540 cm- at P = 0) have been obtained 
for pressures up to 16 G P ~ . ~ ~  These frequencies increase 
with pressure, and the higher the vibration frequency the 
greater the value of the parameter dvldP (Fig. 3). We also 

P. GPa 

FIG. 3. Baric dependences for the vibrational frequencies of YBa2Cu,07 
crystals in the center of the Brillouin zone. The solid curves represent the 
results of calculations (for vibrations of the A, symmetry and for two low- 
frequency B,,  modes), the dashed curves to the experimental data of Syas- 
sen et a ~ . , ~ ~  and the dotted curves correspond to the experimental data of 
Kulakovskil et 

note that Syassen er aLM observed a line that splits away 
from the band at 338 cm-' as the pressure grows and exhib- 
its a weak negative baric dependence. 

The results of our calculations (Fig. 3) reproduce fairly 
well the behavior of the experimental v vs. P curves, includ- 
ing the increase in their slope dvldP as we move from one 
vibration to another with a higher frequency. 

To obtain a full picture of the variation of the vibrational 
spectrum of YBa2Cu307 under pressure we calculated the 
dispersion branches along all the high-symmetry directions 
in the Brillouin zone, namely, 
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(The notation for the singular points corresponds to that 
adopted in Ref. 47.) 

Note that all the calculated vibrations in the medium- 
and high-frequency ranges of the spectrum become consid- 
erably stiffer under hydrostatic compression of the lattice, 
demonstrating in this way the ordinary baric dependence 
caused by the essential anharmonicity of interatomic interac- 
tions. Within the present model the effect has a simple ex- 
planation: this spectral range contains what is known as va- 
lency vibrations, for which the tangential contributions to the 
force constants are either zero or so small that they play no 
noticeable role. 

4.3. Predictlon of the appearance of a soft mode at P> 0 

The behavior of low-frequency vibrations for P>O con- 
stitutes the most interesting aspect in our study. According to 
calculations, the situation in this range differs dramatically 
from the one discussed in Sec. 4.2: the frequency of a num- 
ber of vibrational branches decreases (softening of vibration 
modes) as the pressure increases. For instance, the vibration 
frequencies at the edge of the Brillouin zone at point 

S(0.5,0.5,0), which at normal pressure are 85, 93, and 
97 cm-', at P=30 GPa lower to 68, 77, and 87 cm-', re- 
spectively. 

The most dramatic changes, however, occur in the dis- 
persion branch along the (0,0,5) direction, whose center- 
zone point corresponds to an IR-active vibration of the B,,  
symmetry with a calculated frequency of 126 cm-' at 
P = 0. Exhibiting practically no dispersion along (0,0,5), 
this branch "descends," as the pressure grows, with a rate 
A VIA P that is greater than that of the above-noted vibrations 
by a factor of ten, and at P,=30 GPa it actually touches the 
horizontal axis over the entire T+Z interval (Fig. 4), dem- 
onstrating in this way the reduction in the stability of the 
lattice for the set of points (0.0.5) of the Brillouin zone, with 
0 6  560.5. 

Here for the other directions of the Brillouin zone at 
P=30 GPa not a single vibration has a frequency close to 
zero. This fact is illustrated in Figs. 4(g)-(i), where by way 
of an example we depict the dispersion of the branches along 
the (5,0,0), (5,5,0), and (5,5,5) directions. 

Note that the results of experimental investigations of 
the dispersion of the vibrations along the T+Z direction in 
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the relevant spectral range are known only for the mode with 
a frequency of approximately 140 cm- ' at P = 0. According 
to Ref. 36, this vibration has no dispersion along the 
(0.0.5) direction [Fig. 4(a)]. 

As the frequency drops, the "soft" branch crosses two 
branches with the same symmetry: the optical branch emerg- 
ing at the center-zone vibration 64 cm- ', and the acoustic. 
Hence, for a clearer understanding of the mechanism of lat- 
tice strain for P > P c  related to the shape of the soft-mode 
vibration we will examine the results more carefully. 

5. ANALYSIS OF THE STRUCTURAL INSTABILITY OF THE 
YBa2Cu307 LATTICE UNDER CONDITIONS OF 
HYDROSTATIC COMPRESSION 

The practically flat shape, obtained as a result of calcu- 
lations, of the soft mode along the T t Z  direction makes it 
impossible to provide a unique value for the wave vector K 
at which phonon condensation, which determines the phase 
transition and the property of the low-symmetry structure, 
occurs. From symmetry considerations it follows that three 
variants are possible: (1) K=O, (2) K=(0,0,0.5), and (3) 
K= (0,0,() with 0 < (< 0.5. We examine these cases sepa- 
rately. 

5.1. Phase transition is induced at the center of the 
Brillouin zone by condensation of a polar vibration of the 
6 3 ,  symmetry 

This effect leads to a phase transition in which the sym- 
metry changes from D : ~  to c:, but the size of the elemen- 
tary cell is retained. The soft mode becomes a vibration of a 
totally symmetric polar representation A of a low-symmetry 
structure. From symmetry considerations it follows that in 
the new phase the lattice can have a dipole moment, i.e., 
exhibits ferroelectric properties. 

Let us examine the evolution of the properties of low- 
frequency vibrations of the B3, type as the pressure grows 
from zero to PC. 

We note that optical vibrations in layered perovskite-like 
multicomponent compounds separate into interlayer modes 
that exhibit considerable dispersion in all directions of the 
Brillouin zone, and intralayer modes, which are character- 
ized by the absence of any dispersion in the T-1Z direction 
perpendicular to the layer xy plane (Ref. 15; see also the 
review by Kitaev et ~ 1 . ' ~ ) .  The vibration with a frequency of 
126 cm- ' must also be classified as belonging to such intra- 
layer modes; to a great extent it is determined by the dis- 
placements of atoms in a single layer (in the present case the 
layer is the one formed by chains). This vibration, like all 
other vibrations of the B3, symmetry, is caused by the dis- 
placement of atoms along the x axis and has the following 
shape:I5 

It can be classified as an essentially strain vibration of 
-Cul-Ocul-Cul- chains (see Fig. 1). 

At P = 0 in the spectrum of YBa2Cu307 the calculated 
optical mode of the B3u symmetry with the lowest fre- 
quency, 64 cm-I, is clearly an interlayer vibration, since its 
shape is 

TABLE 111. Calculated values of the frequencies v and the relative displace- 
ments along the x axis of Cul and Oal atoms corresponding to two low- 
frequency vibrations of the B, ,  symmetry at the center of the Brillouin zone 
for different pressures P. 

Amplitudes Amplitudes 
P,GPa v,cm-' Cul Ocul v,cm-' c u l  Ocuc 

which corresponds to antiphase displacements along the x 
axis of the CulOcul and BaOBa layers with respect to the 
layers of Y atoms and CuO cuO&, . 

Thus, in contrast to the strain mode at 126 cm-', the 
64 cm- ' mode contains translational movements of chains 
along the x axis. According to our calculations, as the pres- 
sure grows, the frequency of the strain mode decreases, 
while the frequency of translational mode increases very 
slightly. As a result of these two vibrations of the same sym- 
metry moving closer to each other and interacting, mixing or 
even inversion occurs (see Fig. 3). The data listed in Table 
111 shows how the characteristic vectors of these vibrations 
are transformed in the interaction process. Table 111 gives 
only the contributions of the Cul and Ocul atoms to these 
vibrations, since the displacements of other atoms play no 
significant role and depend on pressure only slightly over the 
entire pressure range from zero to 30GPa. Clearly, at 
P=21 GPa the shape of the vibrations of a chain in the low- 
frequency mode changes from translational to strain, and in 
the 21-28 GPa range the spectrum contains two vibrations of 
the B3, symmetry with antiphase displacement of the Cul 
and Ocul atoms in the chains. At P=28 GPA the vibration 
with the higher frequency acquires the shape of a transla- 
tional vibration: the displacements of Cul and Ocul atoms 
are now in phase. Hence inversion ("exchange") of vibra- 
tion shapes occurs, and the low-frequency mode, which be- 
comes softer under a further increase in pressure, is a strain 
vibration of a chain. 

In addition, as the pressure is increased from zero to 
30 GPa, the soft optical branch moves closer to the acoustic 
branch of the same symmetry. Their interaction results in an 
observable effect similar to the one described above for the 
case of two optical B3,-vibrations. The overall behavior of 
the dispersion branches is depicted in Fig. 4. 

At PC= 30 GPa the frequency of the soft mode vanishes, 
and its shape is determined by the following components of 
the displacements of atoms along the x axis: 
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i.e., practically coincides with the vibration 126 cm-' at 
P=O. 

Note that the calculated value of PC is determined by a 
number of parameters with no experimental verification, so 
that the obtained value of 30 GPa can only be thought of as 
being a rough estimate. 

5.2. Condensation of a vibration at point Z (0,0,0.5) at the 
edge of the Brillouin zone 

We immediately note that for all points of the dispersion 
branch with a wave vector K=(O,O,[) directed at right 
angles to the plane in which the Cul and Ocul atoms are 
displaced, the shape of the strain vibration along the x axis is 
retained. 

The point symmetry of the wave vector K= (0,0,0.5) is 
described by the DPh group, whose vibrational representa- 
tions have the following form (see Table 8 in Ref. 22): 

=7Ag+7B3,+7B2g+6Blu+6B3u+6B2, ,  (19) 

with the vibration of the soft-mode branch at point Z belong- 
ing to the representation Z: =B2g. When this vibration be- 
comes condensed, there is induced a D~,--+D;, phase tran- 
sition with doubling of the elementary cell along the z axis, 
and the symmetry of the soft-mode vibration changes from 
BZg to A,. 

5.3. Condensation of vibrations with the wave vector 
K = (0,0,5), O<&0.5 

The point symmetry of the wave vector K= (0,0,[) is 
described by the CZv group. For P< PC the vibrations with 
such a wave vector are distributed over the irreducible rep- 
resentations of this group as follows: 

The soft mode belongs to the B2 representation. 
This case corresponds to multiplication of the cell along 

the z axis. The modulation period of the structure is deter- 
mined by the wavelength of the soft-mode vibration and gen- 
erally is not an integral multiple of the lattice constant C of 
the D:, phase. The transition is into an incommensurate 
phase, whose symmetry, in accordance with the classification 
of Wolff et ~ 1 . ~ '  is described by the four-dimensional space 
group ~r;ly-y. 

6. DISCUSSION AND CONCLUSIONS 

Let us estimate the objectivity of the obtained results on 
the basis of the relationship between the number of the ad- 
justable parameters in the model and the volume of the ex- 
perimental data described. 

Note that in modeling the radial part of the potential 
function the principle by which the arbitrariness in the choice 
of the numerical values of the force constants should be re- 

duced to a minimum was inherent in the very method of 
calculating these constants from a single "universal" em- 
pirical S vs. r dependence for two-center interactions (Fig. 
2). The tangential part of the potential function, responsible 
for the destabilizing effect, is actually determined by the 
laws of mechanics and in this sense is model-independent. 

Using the potential function constructed along these 
lines, we were able to describe in a fairly consistent manner 
practically all of the experimental data referring to the struc- 
tural and dynamical properties of crystals of the 
RBa2Cu307- family. Briefly the data are as follows: 

(a) the values of the elastic constants CiR (Table 11) and 
the value of the bulk modulus of the YBa2Cu307 lattice (see 
Ref. 44); 

(b) the nontrivial undulating transformation of the struc- 
ture of YBa2Cu307 under hydrostatic compression (Table I 
and the results of Ref. 44); 

(c) the set of the experimentally established optical fre- 
quencies at the center of the Brillouin zone for the 
YBa2Cu307 compound (Refs. 15 and 16), the YBa2Cu306 
compound (Ref. 30), the GdBa2Cu307 compound (Ref. 16). 
and the GdBa2Cu3O6 compound (Ref. 31); 

(d) the baric dependences of the frequencies of vibration 
of the Ag symmetry in YBa2Cu307 crystals (Fig. 3); 

(e) the values of LO-TO splitting in IR-active vibrations 
in YBa2Cu306 crystals (Ref. 30); 

(f) the dispersion of the vibrational branches of the 
YBa2Cu307 lattice (Fig. 4a).14 

We pay special attention to the discrepancy between our 
calculation results and the experimental data of Pyka et a1.Y 
who in establishing the anharmonicity in the chain's vibra- 
tions focused exclusively on the 167 cm- ' vibration and the 
corresponding dispersion branch along the T--+ Y direction. 
Allowing for the results of studies41 of the IR spectra of 
YBa2Cu307- a and of calculations of the dynamical proper- 
ties of the YBa2Cu307 lattice conducted by other research- 
ers (see, e.g., Refs. 49 and 50), we conclude that classifying 
these vibrations as strain displacements of the chain along 
the x axis is not obvious, and it cannot be ruled out that the 
results of Ref. 9 are outside the scope of the present study. 

As for other experiment, we note that the above-noted 
possibility of a phase transition of the YBa2Cu307 lattice to 
the ferroelectric phase is in qualitative agreement with the 
anomalies of the insulator properties of this lattice discov- 
ered by Testardi et ~ 1 . ~ ~  This case is especially interesting 
also because all known superconductors have centrally sym- 
metric crystal lattices. 

Here is another argument in favor of our conclusions. 
We note the agreement of our result with the structural fea- 
tures of the object being discussed. The crystal lattice of 
YBa2Cu307 (Fig. 1) consists of BaOB, and CuOcuO',, lay- 
ers, a layer of Y atoms, and -Cul-Ocul-Cul- chains. The 
first three types of layers consist of atoms forming a qua- 
sisquare lattice (aZb) ,  which proves to be a considerably 
more stable structural element in conditions of hydrostatic 
compression than the -Cul-Ocul-Cul- chain. The anisot- 
ropy of the vibrational properties of the chain is of clear 
origin: the Cul and OcUl atoms in the chain are positioned at 
a small distance (on the y axis) from each other (1.94 A), and 
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the length of the bond along the z axis between the Cul and 
OBa atoms is even smaller (1.84 A). The distance between 
the Oc,, and Ba atoms in the adjacent layers abng the z axis 
is characterized by an average value of 2.88 A , while the 
distance between the chain atoms along the x axis is equal to 
the value of cell parameter of 3.82 A . Because of this the 
potential relief for atomic displacements along the x axis has 
a mild slope, which makes the zigzag vibration of the chain 
in this direction the most "vulnerable" structural strain of 
the YBa2Cu307 lattice under compression. 

All of this suggests that the proposed potential function 
provides a fairly accurate description of the dynarnical prop- 
erties of the YBa2Cu307 crystal lattice, a description that can 
be used to model the behavior of the vibrational subsystem 
of the lattice under varying external conditions. 

The main results of the present work are the prediction 
of structural instability in the YBa2Cu307 crystal lattice in 
conditions of high hydrostatic pressure and the description of 
the micromechanism of this phenomenon. According to our 
calculations, the optical vibrations belonging to the flat dis- 
persion branch along the T-+Z direction and the correspond- 
ing strain displacements along the x axis of the atoms in the 
-Cu 1 -Oc,,-Cu 1 - chain demonstrate soft-mode behavior as 
the pressure increases. 
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