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We develop a theory of the admittance of a quantum wire in the presence of an applied DC bias 
voltage, which under conditions of ballistic transport of electrons leads to a population 
inversion of the electronic states in the wire. We show that for a sufficiently strong inversion the 
real part of the admittance (the dynamic conductivity) becomes negative over a certain 
frequency interval. The admittance is determined both by electrons injected from the cathode and 
drifting through the wire to the anode and by electrons entering the wire from the anode 
and returning once again to that electrode. The negative dynamic conductivity is caused by the 
injected electrons. The electron flux from the anode creates a positive conductivity and 
has a marked effect on the shape of the frequency dependence of the admittance, the value of 
the negative conductivity, and its dependence on applied voltage. We establish that there 
are two basic regimes of negative dynamic conductivity: 1) in long wires, where the admittance 
oscillates with increasing frequency and the dynamic conductivity becomes negative at 
frequencies determined by the drift time of electrons in thg wire, and 2) in short wires, where the 
dynanlic conductivity becomes negative near a frequency equal to the lowest energy of the 
band of states occupied by the injected electrons above the bottom of the conduction band. 
O 1996 American Institute of Physics. [S 1063-776 1 (96)01305-41 

I. INTRODUCTION 

In recent years, interest in the high-frequency conductiv- 
ity of semiconducting quantum structures in the ballistic re- 
gime has grown rapidly, driven both by attempts to identify 
overall regularities of the dynamic conductivity (similar to 
the Landauer formula),'-3 and by the promise of applications 
related to the detection and generation of electromagnetic 
radiation in the terahertz range."6 In particular, the quantum 
ballistic wire, which is a convenient system for implement- 
ing quantum interference phenomena, has attracted much at- 
tention. The admittance of a quantum wire has an oscillatory 
dependence on frequency, caused by spatial resonances of 
one-dimensional charge waves in the wire.' These reso- 
nances are the result of interference between electron waves 
at the fundamental frequency and "sideband" (quasienergy) 
waves. An interesting feature of these systems is that the real 
part of the admittance, which characterizes the energy loss, 
can vanish at certain frequencies, indicating that electrical 
instability could occur under nonequilibrium conditions. In 
Ref. 9, Fedichkin and V'yurkov studied the classical motion 
of electrons in a wire and showed that in the presence of a 
constant applied voltage it is possible for negative dynamic 
conductivity to appear, connected with the classical drift in- 
stability, which has been known in vacuum electronics for 
thirty 

The goal of this paper is to discuss quantum mechani- 
cally the admittance of a ballistic quantum wire in the pres- 
ence of a DC bias voltage, and to clarify the conditions under 
which negative dynamic conductivity can appear. In Sec. 2 
we describe our formulation of the problem. In Sec. 3 we 
study the admittance of a wire with a distribution of electron 
potential energy along its length that is smooth (on the scale 
of the electron Fermi wavelength), and analyze the condi- 

tions for the appearance of negative dynamic conductivity. In 
this analysis we take into account the fact that the admittance 
is determined by the sum of currents created by electrons 
injected from the cathode and electrons entering into the wire 
from the anode. Both of these currents give comparable con- 
tributions to the total current through the wire, but the nega- 
tive dynamic conductivity is caused only by the first. The 
flux of electrons from the anode determines the form of the 
frequency dependence of the admittance to a significant de- 
gree, and strongly affects the frequency at which the largest 
negative conductivity is achieved. The mechanism of nega- 
tive dynamic conductivity is analyzed in more detail in Sec. 
4, based on a model in which we treat only one flux of 
electrons from the cathode to the anode in a certain band of 
energies above the bottom of the conduction band. Here we 
discuss the contributions to the total current from the upper 
and lower energy sidebands, which are connected with ab- 
sorption and emission of a photon with energy fiR, respec- 
tively (where R is the external field frequency). The dy- 
namic conductivity arising from the upper sideband is 
always positive, while that arising from the lower sideband is 
negative. It is possible for the 'wire to exhibit negative dy- 
namic conductivity, connected with the fact that the partial 
conductivities arising from the upper and lower sidebands 
are functions of frequency. We consider two basic cases: 1) 
the long-wire case (long compared to the electron wave- 
length), where both conductivities are oscillatory functions 
of frequency due to spatial charge-wave resonances, and 2) 
the short-wire case, where the negative dynamic conductivity 
arising from the lower sideband has a sharp maximum con- 
nected with an increase in the one-dimensional density of 
states of the wire as the energy approaches the bottom of the 
conduction band. 
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2. STATEMENT OF THE PROBLEM 

Let us consider a quantum wire of length L that joins 
two highly conducting regions (electrodes), to which we ap- 
ply a DC bias voltage V, and an AC voltage V1 cos(Rt). The 
electrodes are reservoirs in which electrons are in a state of 
thermodynamic equilibrium. While in the wire, electrons 
cannot undergo collisions. We use a one-dimensional model 
of the wire, i.e., we will treat the motion of electrons along 
the wire by assuming that it is decoupled from the transverse 
motion. This model is easily justified in the case where the 
width of the wire varies smoothly as we approach the 
electrodes.12 In this case the energy of transverse quantiza- 
tion enters in as potential energy in the equation of longitu- 
dinal motion. If the width of the wire varies rapidly, then 
although the one-dimensional model, strictly speaking, can 
no longer be used, it nevertheless leads to qualitatively cor- 
rect results. We can convince ourselves of this by calculating 
the static conductivity of the wire in the one-dimensional 
model and comparing it with the results of calculations by 
~ i r chenov '~  for a two-dimensional model.') 

Thus, we write the Schrijdinger equation in the form 

a)+ ti2 a2) 
ifi- --7-Uo(x))-H1)=O. 

dt 2m dx 

Here Uo(x) = Ubi(x) - eVa(x), where Ubi(x) is the "built- 
in" potential of the wire, which includes both the potential 
caused by the electrodes and the quantization energy for 
transverse motion; Va(x) is a DC potential connected with 
the applied DC voltage. HI is the Hamiltonian for the inter- 
action of an electron with the AC electric field E l ,  for which 
it is convenient to use the vector potential 

where F(x) = E l(x)lVl. The voltage V1 is assumed to be 
small (eV14hO),  so that in solving Eq. (1) it is enough to 
take into account processes with emission or absorption of 
only one photon with energy fin. 

The electron transport current j(x,t), which is obtained 
by solving Eq. (I), depends on the coordinate x, because by 
virtue of the continuity equation div j = - dl $1 ' 1  dt # 0. This 
also implies that a nonstationary charge density appears in 
the wire, which propagates in the latter in the form of trav- 
eling waves.' The total current, which remains constant 
along the wire, is also the current detected in the external 
circuit. It consists of a sum of transport current and displace- 
ment current; the latter in turn consists of two components. 
One is connected with the nonstationary charge in the wire; 
it is this current that provides continuity of the current. The 
other, which is connected with charges at the electrodes in- 
duced by the external source, consists of the usual capacitive 
current. The current detected in the external circuit is ex- 
pressed in terms of the conduction current and the interelec- 
trode capacitance C by using the Shockley theorem14v11: 

Injected electrons - I 

FIG. 1. Energy diagram of a quantum ballistic wire and plot of the distri- 
bution of AC electric field F ( x ) .  

For the AC voltage V1 exp(-iRt), we write Eq. (3) in the 
form 

Y(f i ) - iOc  I v,, 

where Y ( a )  is the dimensionless admittance of the quantum 
wire. 

In calculating Y(O) we will assume that the built-in 
potential Ubi(x) is a known function of x, determined by 
solving the steady-state problem. The potential Ubi(x) de- 
pends on transverse quantization subband under discussion. 
In this paper we will discuss the conductivity arising from 
only a single lowest subband. The AC field F(x) is deter- 
mined, generally speaking, by charges both at the electrodes 
and in the wire itself. For simplicity we will assume, in this 
paper, that the charge on the electrodes is considerably larger 
than in the wire; therefore F(x) is determined only by the 
geometry of the electrodes, and consequently can be consid- 
ered a known function. For this it is necessary that the ca- 
pacitance C be sufficiently large: -R C* (eZlh) 11m Y(-R)I. 

3. ADMITTANCE OF A WIRE WITH A SMOOTH POTENTIAL 

Let us consider a wire whose width varies so smoothly 
over an electron wavelength as we approach the electrodes 
that we may use the quasiclassical approximation to solve 
Eq. (1). The shapes of the potential curves Ubi(x) and the 
AC field F(x) are shown in Fig. 1. The electric current is 
created both by electrons injected from the cathode and drift- 
ing through the wire to the anode reservoir and by electrons 
that enter the wire from the anode. For a sufficiently large 
voltage (eVa> - Urn) all the electrons entering from the 
anode are reflected within the wire and pass back out into the 
anode reservoir. 

Let us consider the contribution of these two electron 
fluxes to the total current. In the contact reservoirs, if they 
are sufficiently large, the thermodynamic equilibrium of the 
electrons is essentially undisturbed by the current passing 
through it. Under these conditions the wave functions of 
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electrons entering the wire from the cathode and from the 
anode are not coherent, and consequently the currents con- 
nected with them can be treated separately. 

3.1 Admittance of injected electrons 

The wave function of electrons injected from the cathode 
has the form 

where k ( x )  = J 2 r n [ ~  - U o ( x ) ] l h ,  E and m are the energy 
and effective mass of the electrons, ko = lim k ( x - + m ) ,  and 

When the electrons interact with the AC field in the 
wire, processes of absorption and emission of photons with 
energy h a  take place, as a result of which the wave function 
takes the form 

where $ , ( x )  is determined from perturbation theory using 
the Hamiltonian (2 ) :  

I," k + - k  
- e x p [ - i s - ( x ) ]  d x ' F ( x f )  - 

4 z  

k + = k + ( x ) =  4 2 r n [ e + f ~ ~ -  u ~ ( x ) ] I ~ ,  

S + ( x ) =  d x l k + ( x ' ) .  I,' 
The expression for I,- ( x )  when E > Urn + fin coincides 

with t,b+(x) if in the latter we replace by -a, and k +  by 
k -  and S+ by S -  , respectively. For E < Urn + h a  the lower 
sideband possesses a classical turning point x = x - ,  to the 
left of which the quantity k -  becomes imaginary; x -  is a 
positive root of the equation E + h a  - U O ( x - )  = O .  In this 
case, neglecting the effects of tunneling, which is correct for 
sufficiently long wires, we have 

+ (exp[iF- ( x ) ]  + exp[ - iF- ( x ) ] )  

(7) 

where 

The electron conduction current at frequency R is deter- 
mined by the interference of electron waves at the fundamen- 
tal and sideband energies, and is expressed in terms of the 
wave functions t,b- and $+ as follows: 

The electric current in the external circuit, in accordance 
with (3), equals 

where g ( ~ )  is the density of states in the cathode reservoir, 
and f ( ~ )  is the distribution function in the cathode. 

Using Eqs. (6)-(9) ,  we find the AC current connected 
with electrons injected from the cathode. The admittance 
Y ,-, corresponding to these electrons equals 
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cos S- sin S- 
k 

For a long wire (Lk(eF)% 1) we can neglect the integrals of 
rapidly oscillating functions that contain S + S ,  in their ex- 
ponents. They are associated with sideband electron waves 
that propagate counter to the incident fundamental wave. 
Then Eq. (10) simplifies 

At low temperatures, where the function f ( e )  is close to 
a step function of E F - E ,  the integration with respect to en- 
ergy in this expression essentially reduces to selecting two 
energy bands of width h R  near E F ~  and U r n .  Taking into 
account this fact, for relatively low frequencies 
( h R 9 ~ ~ ~ -  Urn) we have 

FIG. 2. Frequency dependences of the 
real (a) and imaginary (b) parts of the 
admittance associated with electrons in- 
jected from the cathode; Lk,= 50. 

yc-a- IoLdx~(x)exP{i[s+(x) - ~ ( x ) l l  

Further simplication of the expression for Y , - ,  is pos- 
sible if we use a specific form for the potential Uo. Thus, for 
the case where Uo varies linearly with x and for 
h a 9  e V ,  , the integrals are calculable to the end, and we 
obtain the following expression for the admittance Y c - , :  

where we introduce the dimensionless applied voltage 
u = eV, / ( E F ,  - U,)  and dimensionless frequency 
w = h f l L k F / e V a ,  kF= J2m(EF1- urn)/f i .  It is clear that 
oscillations appear in the frequency dependence of the ad- 
mittance with characteristic frequencies of order ( $) - ' and 
( m- 1 )- ' that are determined by the drift times of elec- 
trons with energies close to the lower and upper energy lim- 
i t .  of the injected electron flux. For US- 1 these frequencies 
are both of order ( 6)- I ,  which in dimensional units corre- 
sponds to 

i.e., the characteristic frequency is determined by the drift 
time of electrons in a wire with energy eV, .  

Figure 2 shows the dependence of Re Yc-, and 
Im Y,-, on frequency for three values of the applied voltage. 
For simplicity, we normalize the frequency in a way that 
does not depend on applied voltage: 
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The frequency normalized in this way is connected with the 
drift time to of electrons with energies equal to the upper 
energy boundary of the injected flux by the following rela- 
tion: 

As is clear from Fig. 2, in the presence of an applied voltage 
the real part of the admittance is negative near certain fre- 
quencies determined by the drift times. The imaginary part 
of the admittance also oscillates, and can be either capacitive 
or inductive in character. 

3.2 Admittance of backward-flux electrons 

For a sufficiently large DC voltage the flux of electrons 
from the anode reservoir is cut off in the wire and does not 
create a through-current. Therefore, it does not contribute to 
the current at zero frequency. However, for an AC signal the 
contribution of electrons from the anode reservoir to the con- 
ductivity becomes significant. The current caused by elec- 
trons entering the wire from the anode is calculated in the 
same way as the current of electrons injected from the cath- 
ode, using Eqs. (3), (5) ,  and (8). The wave function of the 
incident electrons has the form 

where k, is the wave vector in the anode reservoir 
(x-+m), 

and xo is the turning point for the energy E .  

The sideband wave functions @, (x), taking (2) and (13) 
into account, have the form 

x(k+ cos Fsin F?-k sin Fcos F?) 

-cos F? /xmdx'~(x ' )( t  sin 9 

+ik, cos $exp(iF2) , I 
where 

and x, are ,turning points for energies E 2 fin. 
Using these wave functions, and also the fact that the 

currents arising from the upper and lower sidebands are ex- 
pressed in terms of each other by simultaneously shifting the 

energy by fin and the coordinates of the turning points by 
x+-xo, we obtain the following expression for the admit- 
tance Y c - ,  of the backward-flux electrons: 

Here f ( ~ )  is the distribution function in the anode reservoir, 
and 

k sin F+ ik+ cos F 
K((E ,x) = exp(ig+) jx d x l ~ ( x l )  

K Xo 

k+ cos F sin F+ - k sin F cos F+ 

k+ cos Fsin F+-k sin Fcos F+ + 

k sin F+ik+ cos F 
x /xLdxlF(xl) exp(iF+). JK 

We are most interested in the real part of Y o - ,  , for which 
we have 

k+ cos F sin F+ - k sin cos F+ 
X 

K 
Thus, Re Ya-, is always positive. If the frequency reduces to 
zero, then Re Ya-, reduces to zero in accordance with the 
fact that the flux of electrons from the anode cannot cause a 
stationary current. 

Under the same conditions used to obtain Eq. (12) for 
electrons injected from the cathode, Eq. (16) takes the form 

w cos w-sin w 
Re Y, - ,=8  (17) 

The notation here is the same as in (12); for simplicity we set 
= E F ~  and Urn= UL . 

3.3 Total admittance 

The admittance of the wire equals the sum of the partial 
admittances discussed above: 

y = Y, - ,+Yo- ,  . 
Plots of the frequency dependence of the real part of the total 
admittance together with the partial components are shown 
in Figs. 3a, 3b for two values of the applied voltage. Both 
components of the admittance have frequency dependence of 
an oscillatory type with differing periods, which moreover 
depend on voltage. The partial admittances are the same or- 
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der of magnitude. For voltages v - 1 (Fig. 3a) the admittance 
Y,-, is considerably larger than Ye-, , but because 
Re Ya-,, as an oscillatory function, reduces to zero when 
w = w, (where w, is a root of the equation w = tan w), the 
real part of the total admittance can become negative at those 
frequencies w, for which Re Ye-, is negative. For large volt- 
ages (v  % 1 ) the contribution of the admittance Y, -, de- 
creases rapidly (Fig. 3b) due to the repulsion of electrons 
from the wire into the anode reservoir under the action of the 
external electric field. In this case the region of frequencies 
in which Re Y<O broadens. There also exist values of the 
voltage for which the oscillations of Re Ye-, and Re Yo-, are 
exactly out of phase: at the first extremum of the frequency 
dependence, the maximum of the negative conductivity (-Re 
Y,-,) coincides with the maximum of the positive conduc- 
tivity (Re Yo_,). In this case a net negative conductivity 
appears at subsequent periods due to a gradually increasing 
phase shift between the oscillating partial conductivities. 

The maximum value of the negative conductivity 
max(-Re Y) depends on the applied voltage. Plots of this 
dependence are shown in Fig. 4a. Here the thick curves show 
the total conductivity, while the thin ones show the partial 
conductivity of electrons injected from the cathode. Negative 
conductivity occurs at all voltages for which the model can 
be used (v > 1); however, for certain of its values (specifi- 
cally, those for which the partial conductivities Y,-, and 
Yo-, oscillate with nearby frequencies and are out of phase) 
it is very small. As a result of the oscillations of the partial 
conductivities, the frequency at which the largest negative 
conductivity is reached changes discontinuously as the volt- 
age varies (Fig. 4b). 

The analytic expressions (12) and (16) presented here for 
the admittance were obtained in the case of a linear distribu- 

FIG. 3. Frequency dependence of the 
real part of the total admittance and its 
components connected with fluxes of 
electrons from the cathode and from the 
anode, for two values of the applied volt- 
age: a-v=2. &v=2; LkF=50 

tion of potential along the wire. For an arbitrary distribution 
of AC potential V,(x) and an arbitrary (but smooth) constant 
potential the admittance can be written using Eqs. (1 1) and 
(15). In this case, numerical calculations are required to find 
the admittance. These calculations show that the negative 
dynamic conductivity is more strongly manifested the more 
abrupt the change in potential is near the electrodes. The 
cliaracteristic frequency of oscillation of the admittance, as is 
clear from (1 I), is determined by the drift time even for an 
arbitrary distribution of potential. 

4. ON THE MECHANISM FOR NEGATIVE CONDUCTIVITY 

In this section we will discuss a somewhat simplified 
model that allows us to understand the mechanism of nega- 
tive dynamic conductivity and the basic conditions for its 
appearance. As we established above, negative dynamic con- 
ductivity is caused by a flux of electrons injected from the 
cathode and passing through the wire while in a certain band 
of energies above the bottom of the conduction band. The 
flux of electrons from the anode into the wire possesses a 
positive conductivity at all times; moreover, it is ejected 
from the wire by the external electric field. Therefore, we 
will consider a simple model of the system in which the 
nonequilibrium electron flux density moves over a flat- 
bottomed conduction band in the quantum wire between two 
ideally conducting electrodes, to which we apply an AC volt- 
age V ,  cos(0t) with an arbitrary distribution of AC electric 
field along the wire on the segment from x = 0 to x = L. 

Calculation of the AC current leads to the following ex- 
pression for the wire admittance normalized by the conduc- 
tivity e2/h: 

I . .  .. 
0 1 2  3 4 5 . 6  

FIG. 4. a) Dependence of the maximum 
value of the negative dynamic conduc- 
tivity (the thick curve corresponds to the 
total admittance, the thin curve to the ad- 
mittance of injected electrons) on a p  
plied voltage. b) Dependence of the fre- 
quency at which the maximum negative 
conductivity is reached on voltage. 
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where 

Here f(e)  is the distribution function with respect to. the 
energy of the injected electrons; k, k+ , and k- are wave 
vectors of electrons for the fundamental, upper, and lower 
sidebands respectively. 

The real part of the admittance can be written in the 
form 

1 L 
Re Y(a )=  I dxF(x) def(e)([l - f (&+f ia) ]  

0 I," 

Equation (21) consists of a sum of the partial conductivities 
of the upper and lower sidebands: 

Note that in Eqs. (19) and (20) the factor llkk, is the prod- 
uct of one-dimensional densities of states in the wire for the 
ground-state energy E and quasienergies e + h a .  The form 
of Eq. (21) coincides exactly with the Kubo-Greenwood 
formula.15 Here the first term describes a current associated 
with absorption of a photon with energy h a .  It is always 
positive. The second term describes current associated with 
emission of a photon; it is always negative. 

Let us assume that f ( ~ )  = 1 in a band of energies from 
E~ to c2 ,  and f = 0 outside this interval. For concreteness we 
will assume that the AC field F(x) does not depend on x; 
then the expression for Re Y, takes the form 

where 

Here we have introduced the normalized frequency, wire 
length, and value of the lowest energy of the occupied states: 

 ha/&^, ~=L~G/A,  /&2. 

The quantities r and s are expressed in terms of v and S as 
follows: 

The limits of integration determined in this way reflect the 
fact that in Eq. (21) we have included only transitions from 
filled states to empty ones: rnax[ (~~-f i f l ) ,~~]  in the 
first term and E < E < max[(&, + ~ . R ) . E ~  .2& in the second. 

Let us consider the frequency dependence of the quanti- 
ties Re Y+ and Re Y -  . For Re Y+ the presence of two char- 
acteristic frequencies is important: v= 1 and v= v2= 4 d b .  
The first is the frequency of electron waves with energy 
e2 ,  while the second corresponds to the drift time of an 
electron with this energy through the wire. The shape of the 
frequency dependence of Re Y+ is determined by the value 
of v2. If v 2 e  1 (i.e., the length of the wire significantly 
exceeds the wavelength of the electrons), then Re Y+ oscil- 
lates and attenuates at a rate v. The physical nature of the 
oscillations is connected with the spatial resonances of 
charge waves over the length of a wire.8 For v2- 1 the 0s- 
cillations disappear, while for v2+ 1 there is a maximum at a 
frequency vk 1 - S determined by the width of the band of 
occupied states. 

The frequency dependence of Re Y -  has an analogous 
form; however, the characteristic frequencies in this case 
equal v= S and v= vl = v2 1 fi. They have the same mean- 
ing as for Re Y + ,  the only difference being that they are 
measured from the lowest value of the energy of occupied 
states e l .  For v14  1 the value of Re Y -  oscillates with in- 
creasing v and decays. For vl% 1 a maximum appears at a 
frequency v- S. The appearance of this maximum, which is 
considerably more abrupt than it is for Re Y+ , is connected 
with an increase in the one-dimensional density of states as 
the energy approaches the bottom of the conduction band in 
the wire. 

The total conductivity of the wire is determined by add- 
ing the conductivities arising from the upper and lower side- 
bands. Characteristic plots of the frequency dependence of 
Re Y  are shown in Figs. 5a, 5b for two of the most interest- 
ing relations between the characteristic frequencies: 
v2<v1<1: 1<v2<v1.  

From the figures we have shown it is clear that a nega- 
tive dynamic conductivity appears in both cases: Re Y  < 0. If 
the wire is long ( v 2 4  l ) ,  then the characteristic instability 
frequency is determined by the drift time for the upper side- 
band: a- 4 . r r J a 1 ~ .  In particular, when v1 4 1 we have 
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In this limiting case the instability under discussion is analo- 
gous to the classical drift-time instability. 

If the length of the wire is small ( vl  % 1 ), then an insta- 
bility appears with a characteristic frequency determined by 
the lower edge of the energy of occupied states: a-E lh. 
In this case the instability is connected with the fact that the 
density of states for electrons making transitions with emis- 
sion of a photon with energy fLlR turns out to be larger than 
the density of states for those making transitions with ab- 
sorbtion of a photon. Thus, for v2G 1 G v1 the admittance has 
the following form: 

It is interesting to note that in the steady-state limit 
(v+O) the conductivities arising from the upper and lower 
sidebands are the same in magnitude and completely com- 
pensate each other, which corresponds to zero differential 
conductivity. This is a consequence of saturation of the in- 
jection current with respect to the DC bias voltage. As E 

reduces to zero, the contribution of the lower band disap- 
pears. As a result, there remains only the partial current of 
the upper sideband. It is this current that gives the usual 
expression for the conductance e2/ h . 

5. CONCLUSIONS 

In this paper, based on a first-principles quantum me- 
chanical discussion, we have investigated the admittance Y 
of a quantum ballistic wire. We have shown that in the pres- 
ence of an applied external voltage a negative dynamic con- 

HG. 5. Frequency dependence of the real part 
of the total admittance (Re Y)  and the admit- 
tances connected with the upper (Re Y +) and 
lower (Re Y-) sidebands: a-v,= 0.2, 
vl=0.28, 6=0.5; b-v2=20, vl=36.5, 
6 =  0.3. 

ductivity appears (Re Y < 0) ,  which is associated with an in- 
version of the population of electronic states in the wire that 
occurs under conditions of ballistic transport of electrons. 

The wire admittance, and in particular the value of the 
negative dynamic conductivity, are determined by adding the 
currents caused by electrons injected from the cathode reser- 
voir and electrons entering the wire from the anode, being 
reflected within the wire and returning to the anode reservoir. 
The negative dynamic conductivity is connected with the 
injected electrons. The current of electrons entering the wire 
from the anode creates a positive contribution to the conduc- 
tivity, which strongly affects the value of the negative dy- 
namic conductivity and the frequency at which it is a maxi- 
mum. 

For the case of long wires (LkF% 1 ), the admittance 
oscillates as a function of frequency, with the characteristic 
frequency of the oscillations determined by the drift time of 
electrons in the wire. Due to the superposition of the currents 
created by electron fluxes from the cathode and from the 
anode, the dependence of the maximum value of the negative 
conductivity on the applied voltage becomes strongly non- 
monotonic, and the frequency at which the negative conduc- 
tivity reaches a maximum undergoes a sharp jump. 

The mechanism for negative dynamic conductivity is 
connected with inversion of the populations of stationary 
electron states in the wire. A consequence of this is that 
downward transitions of electrons to unoccupied states with 
the emission of a photon with energy AQ become possible. 
These transitions give rise to a negative conductivity, while 
positive conductivity is associated with transitions that are 
energetically upward. The downward transitions turn out to 
be dominant in two cases: 1) the case of long wires, where 
due to spatial resonances of the charge waves over the length 
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of the wire the conductivities arising from the lower and 
upper sidebands oscillate in frequency with different periods; 
2) the case of short wires, when the conductivity arising from 
the lower sideband has a sharp maximum in frequency, con- 
nected with the increased density of states in the wire as the 
energy approaches the bottom of the conduction band, which 
causes the rate of transitions with emission of photons to 
become larger than that of transitions with absorption. 
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')one of the results of these calculations, which we have not published, is 
that the oscillations in the conductance as a function of the position of the 
Fermi level in the wire predicted by Kirchenov in Ref. 13 are also pre- 
dicted by the one-dimensional model. These oscillations are connected 
with resonances in the above-barrier transpolt of electrons from one con- 
tact reservoir to the other, where the height of the barrier is determined by 
the quantization energy for transverse motion in the wire. The quantitative 
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discrepancy between the calculated results for the one- and two- 
dimensional models does not exceed 15%. 
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