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We derive an exact system of nonlinear equations that describe the dynamics of a degenerate 
He3 - He4 solution, and compute the nonlinear correction to the propagation velocity of 
first sound (proportional to the amplitude) in the collisionless limit. Our nonlinear treatment 
requires the third functional derivative of the total energy with respect to the distribution function 
of He3 quasiparticles in addition to the second functional derivative (the Landau function). 
We find the Fermi-liquid parameters in the limit of small He3 concentrations from a microscopic 
calculation, and obtain an explicit expression for the correction. O 1996 American 
Institute of Physics. [S 1063-776 1 (96)01105-51 

1. INTRODUCTION 

We will consider degenerate normal He3 dissolved in 
He4 to form a non-stratified solution with arbitrary concen- 
tration. The temperature is assumed to be so low that the 
contributions of phonons and rotons can be neglected. The 
dynamic properties of the system are described by a distri- 
bution function n(p,r,t) for the interacting He3 quasiparti- 
cles, and the density p4(r,t) and superfluid velocity vs(r,t) 
of the ~ e ~ .  A previous paper by ~halatnikov' solved the 
problem of finding a complete system of dynamical equa- 
tions for these variables. Although the equations derived in 
this paper are correct in linear approximation, some of them 
differ significantly from those derived in the present paper. 
We will discuss this question at the end of the third section 
of the article after we have derived our nonlinear equations. 

Even in pure He4, nonlinear effects lead to a dependence 
of the velocity of sound on wave amplitude, and hence to 
changes in the profile of a sound wave. In a solution, the 
He3 quasiparticles participate in the acoustic vibrations, 
which leads to a dependence of the nonlinear correction on 
the Fermi-liquid parameters. Because of the nonlinear char- 
acter of Fermi-liquid oscillations, the very possibility of de- 
scribing them using kinetic equations is often questioned. 
This problem was analyzed in Ref. 2, where it was shown 
that if 

where EF is the Fermi energy, p is the density of the solu- 
tion, and o and Sp are the frequency and amplitude of the 
density-wave oscillations, then He3 can be described to ac- 
curacy up to quadratic terms by the Boltzmann equation 
without a collision integral. The correction we find in this 
paper to the velocity of sound depends not only on the Lan- 
dau function for the quasiparticle interactions, but also on the 
third functional derivative of the Fermi liquid energy of the 
~ e ~ .  Because the expressions that appear here are quite cum- 
bersome, we will often put them in appendices to the basic 
text. 

In the next part of the paper we find the parameters of 
the Fermi liquid required to compute the corrections, calcu- 

late them from a microscopic theory for the case of low- 
concentration solutions, and use them in a general explicit 
expression. We compare our expression for the correction to 
the velocity with the nonlinear correction to the velocity of 
sound in pure He4 found previously by Khalatnikov et al.' 

2. DYNAMIC EQUATIONS 

Let E, , PC be the energy and momentum (per unit vol- 
ume) of the liquid in a reference frame moving with the 
velocity of superfluid motion v,. Then the energy and mo- 
mentum of the liquid in the rest (laboratory) frame will equal 

J=PC+pvs (2) 

where p4 is the density of ~ e ~ ,  p=p4+m(nc) is the density 
of the He3 - He4 solution, m is the mass of a He3 atom, n, is 
the distribution function of He3 quasiparticles in the co- 
moving frame, and ( .  . .) = $.  . . d r  ( d ~ = 2 d ~ p l ( 2 v h ) ~ ) .  
In the laboratory and co-moving frames the He3 quasiparti- 
cles are characterized by real momentum, and the value of 
the total Hamiltonian of the system equals its energy. In the 
co-moving system 

where {n,} denotes a functional dependence on n, . The en- 
ergy of a single quasiparticle in the corresponding system is 
the functional derivative SEI Sn for p4 = const: 

From (2) we have 

P ~ v , +  (pn) = (pnc) + mv,(nc) + p4vs 9 

from which we obtain 
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and consequently where a= dEc l d p 4 .  In order to determine dp41dt ,  we write 

Now, having derived (I)-($, we can compute the Hamil- 
tonian of the quasiparticles in the laboratory frame: For the total density we must have 

J P  - + div J= 0, 
d t  

while we find ( d n 4 / d t )  from the kinetic equation The total momentum of the solution from (2) is 

J= PC+ pvs= ( p n , )  + pvs= ( p n )  + p 4 v , .  (8) 

Because the solution is a closed system, we must satisfy the 
conservation law To summarize, 

Let us substitute (8) into (9), Substituting (13) and (15) into (lo), we obtain 

we will determine dnldt  from the kinetic equation 

The law of conservation of momentum gives ( p  St n)=O.  
Therefore, multiplying (1 1) by p i  and averaging over p, we 
obtain 

- m  ( n ) usi ) =-- "a,:. 
From this we find an equation for v, and the form of IIik : 

Using the fact that 

Now we also find the energy flux Q defined by the equa- 
tion 

we can verify the equation 
dE 
- + div Q= 0. 
dt  

We have 

Substituting it into the previous equation, we obtain after 
some computations 

Making use of ( l l ) ,  (15), and (16) we obtain 
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The Boltzmann equation ( l l ) ,  the continuity equation 
(15), and the equation for the superfluid velocity (16) form a 
complete system of nonlinear hydrodynamic equations for 
the degenerate ~ e ~ - H e ~  solution. As always, these equa- 
tions are exact in the limit where p4, v, , and the distribution 
function n(p,r,t) vary slowly in space and time. 

We now turn to a comparison with the results of Khalat- 
nikov. In Ref. 1, the quasiparticle energy is given by the 
functional derivative SEI Sn for p = const. Taking (5) into 
account, we obtain 

But the Hamiltonian in the laboratory system is 

It is clear that, unlike H, H as defined by Eq. (7) is obtained 
from E via a Galilean transformation. Because the quasipar- 
tide energy for a dilute gas of quasiparticles should always 
transform this way under a Galilean transformation, we must 
conclude that Eq. (7) is correct. When the nik and Q ob- 
tained from (17), (19) are expressed in terms of n, and < it 
is found that they are exactly equal to the fluxes obtained in 
Ref. 1. How are we able to obtain the same energy and 
momentum flux as Ref. 1 while using a different Hamil- 
tonian function? The fact is that the kinetic equation intro- 
duced in Ref. 1 was derived using the Hamiltonian H, for 
which the unknown was the distribution function in the co- 
moving system n(p+ mv) = n , ( ~ ) .  By definition, however, 
both the Hamiltonian and the distribution function should 
enter into the kinetic equation in the laboratory frame. Thus, 
the authors of Ref. 1 derived the correct form of the fluxes 
because of a double error. 

Since s and Care phenomenological quantities, the only 
significant difference between H and H is the quadratic term 
mu:l2. Therefore, the linear expressions from (1) remain 
correct once we relabel the phenomenological constants ap- 
propriately. 

3. NONLINEAR COLLISIONLESS OSCILLATIONS 

In specific calculations we will use the distribution func- 
tion of quasiparticles n, in the co-moving system as our 
variable. At zero temperature, a small deviation from the 
equilibrium state (in which PC= 0)  can be characterized by a 
displacement of the Fermi surface that depends on the direc- 
tion of the momentum. In this case, the perturbed function is 
a step function as before. This is related to the fact that in 
solving the Boltzmann equation by the method of successive 
approximations we represent n in the form of a series in 
derivatives of the delta function: 

~ = ~ o ( P F - P ) +  ~ o ( ~ ) ~ ( P F - P )  +ai(n)  ~ ' (PF-P)  

+ a  2(n)Sr(pF-p)+..., 

where n=plp. Accordingly, we can either work with this 
series or write the nonequilibrium function in the form 
n,(p) = B[p (n) - p] , and its increment in the form 

Sn,(p,r,t)= B[p,(n) -PI- ~[PF-PI ,  

where p (n) -pF is the displacement of the Fermi surface in 
the direction n. 

To quadratic accuracy in Sn, (i.e., for sufficiently small 
deviations from equilibrium), the energy of Fermi excitations 
in the comoving system has the form 

(20) 

where f-is the ordinary Landau function and 4 is the third 
variational derivative of the total energy of the system with 
respect to Sn, at constant p4, evaluated at n,(p)=no(p). 
The spin dependence will be omitted here and in what fol- 
lows. Let us introduce the set of parameters given previously 
in Ref. 2: 

~ ' ( a )  = 2 F;P~(COS a ) ,  
l=O 

Here 

are 3 j  symbols, a, P,  y are the angles between p and p', 
p and p", and p' and p" respectively, 8, cp are angles that 
determine the orientation of the vector p, and B', ON, cp', 
cp" are the analogous angles for p'p". Then 

cos a=cos  6 cos Br+sin 6 sin 8' cos(cp-cp') 
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with analogous expressions for P, y. Pl(cos a )  is a Leg- 
endre polynomial, Yl,( 0 , ~ )  is a spherical harmonic, and 
~ ~ = ~ i / 3 . r r ~ t i ~  is the number of ~e~ atoms per unit volume 
of the equilibrium liquid. The parameters @111213 defined by 
Eq. (24) are dimensionless. Because of the symmetry prop- 
erties of the 3 j  symbols, when 4 is a symmetric function 
these parameters equal zero whenever the sum 1 + l2 + l3 is 
odd. The first two terms of the series (24) reduce to the form 

@(a ,P ,  y)=@ooo+(Poll~(cos a+cos P+cos y ) .  
(25) 

The Harniltonian in the laboratory frame is determined by 
Eq. (6). Because Sn, appears in the majority of the integrals 
we must deal with, we write the kinetic equation (1 1) in the 
following form for convenience: 

dn, an, dH(p+mvs) dn, dH(p+mv,) -+- -- 
dt dr  JP JP dr  

dv, dn, 
-m - =  

dt dp St nlp+m~, .  

We will use the continuity equation in the form (14). We 
want to investigate axially symmetric uniform oscillations of 
the liquid solution. In this case, using (7) and (20), and also 
introducing the parameters (21)-(24), we can write Eqs. 
(14), (16) and (26) to quadratic accuracy in the small devia- 
tion from equilibrium as follows: 

in the collisionless regime. In this case the collision integral, 
as shown in Ref. 2, can be omitted if the following condition 
is satisfied: 

where SpF=pl -pF,  o is the acoustic frequency, and EF is 
the Femi energy. In order to treat approximations higher 
than quadratic, we must take collisions into account (see Ref. 
2). 

After some computations we obtain 

d v 
+ 3 e s  I - cos BdQ+vFA(v,~V;)=O, 

m P 4  

where p3 (p4) are the equilibrium densities of ~e~ ( ~ e ~ ) .  
B, A, D are expressions that are quadratically nonlinear in 
the deviations (27), and are given in Appendix 1. 

Let us consider one-dimensional collisionless small os- 
cillations of a degenerate solution described by the system of 
Eqs. (28)-(30). As in Ref. 2, we can obtain corrections to the 
velocity of sound in the collisionless regime once we have 
solved the problem with given initial conditions. The impor- 
tance of a specific formulation of the problem for a collision- 
less system was discussed in Ref. 3. Let us prescribe the 
initial conditions 

and solve the system (28)-(30) using the standard method of 
successive approximations in the amplitude 
(*pl+&+. . , c = r 1 + r 7 + .  . . , v=  v , + v z + .  . .)  us- 
ing initial conditions (31) for the first approximation and' 
zero for the subsequent approximations. We will find only 
the first and second approximations, because the system 
(28)-(30) itself is only quadratically accurate. 

Let us apply a Laplace transform %with respect to t and 
a Fourier transform 9 with respect to x to the system: 

Xexp(-ikx+iut)dx d t  

and approximate the Landau function by its first two har- 
monics: 

F=Fo+FI cos a. 

Then we obtain the following system for the transforms 
v$+), pi+), and u y )  of the first approximations vl ,& , r 1  : 

gk m cos 0 
v(,+)[s-cos O]=  - - - - - 

1kUF m* ikUF U l k  
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and p lk  , v , and gk( 8) are Fourier transforms of the initial 
conditions (31). Because we have limited the number of har- 
monics in the Landau function to two, Eq. (32) for the dis- 
tribution function contains only two constants. The solution 
to this equation and the inverse transforms of the solutions as 
functions of the two variables (x, t) are given in Appendix 2. 
As a result, the first-approximation transforms have the form 

where X1 is a linear function of the initial conditions v l k ,  
plk , gk . The basis of this method is that the transforms have 
poles as a function of complex o that correspond to propa- 
gating waves. Equation (35) as it stands will have poles 
when y (so) = 0. This condition implies two poles 
so= uo lv F ,  - uo /vF on the real axis, corresponding to zero- 
temperature first sound (coll~sionless regime) propagating to 
the right and to the left. The authors of Refs. 1, 4 argued that 
there are no poles corresponding to zero-sound modes for the 
Fermi liquid parameters of a He3 - He4 solution. In addition, 
as we show in Appendix 2, the transforms are not defined on 
the segment of the real axis from - kvF to kvF, and can 
have cuts there corresponding to single-particle excitations. 
When we return to the variables (x, t), we obtain a sum of 
contributions from various singularities of the transforms. In 
the reconstructed original, a separate term will correspond to 
each of these singularities. Retaining only the contribution 
from the acoustic pole, we obtain 

where 

i.e., it depends on x -  uot through the initial conditions of the 
problem. The constants and functions entering into this ex- 
pression are defined in Appendix 2. In first approximation, 
Eq. (36) corresponds to a sound wave and represents a trav- 
eling wave of constant shape. 

In second approximation, the equations for the trans- 
forms do not change; the only difference is that the system 
now has zero initial conditions, and contains the nonlinear 
terms A, B, D. Therefore, we can obtain a system of equa- 
tions for the transforms v y ) ,  p r ) ,  v y )  in second approxi- 
mation by making the following substitutions in (32)-(34): 

m 
u~~- ' -v~%S[D(X,~)] ,  -gk(8)-- COS 8 V l k  m* 

where we have substituted the exact first-approximation 
quantities &, 6, , vl into A, B, D (the nonlinear parts of 
Eqs. (28)-(30)). Consequently, in second approximation the 
transforms have the form (35), where X1 is now a linear 
combination of S F A ( x , t ) ,  S B ( B , x , t ) ,  S F D ( x , t ) ,  
which still have poles at w=uok (if we substitute (36) into 
A, B, D). Thus, second-order poles appear in the second- 
approximation transforms, which give secular terms -t 
when we transform back to the original variables. We solve 
the second-approximation equations and evaluate the inverse 
transforms in Appendix 3. We show there that in order to 
find the coefficient for the secular term that corresponds to 
the pole o = uok, in substituting the first-approximation 
functions into A, B, D it is sufficient to save only terms that 
correspond to the same pole, i.e., use the functions (36). As a 
result, we obtain the following expression for the secular 
term corresponding to the pole o=uok in the second- 
approximation original 

while for ul we have the following expression: 

dF(a)  sin2 8 
3 ~ ' ( a ) + 2 ~ ( a ) + - -  d cos 8 cos 8 

where A= A (  8), A' =A( 8' ), A" = A (  19'). 
We know that the secular term should be cancelled by 

the term arising from the correction to the velocity of sound 
in the first-approximation functions: 

Expanding this expression for small Su t and setting the 
result equal to the term linear in t in (38), we find that the 
correction to the velocity uo of the first approximation (36) is 
Su = u Accordingly, the first-approximation expres- 
sions for sound waves are: 

(40) 
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We can confirm this by verifying that (40) is a solution to the 
system (28)-(30) to accuracy up to quadratic terms in the 
amplitude. As is clear from (40), the correction to the veloc- 
ity deforms the profile of a simple traveling acoustic wave 
(36), analogous to the Riemann solutions of hydrodynamics 
and the propagation of large-amplitude sound in He4 (see 
Ref. 1). 

4. GAS APPROXIMATION 

At low concentrations, bare He3 quasiparticles dissolved 
in a superfluid background form a dilute degenerate Fenni 
gas of slow-moving particles with a short interaction radius. 
In this description, we can describe the particles of the solu- 
tion using only a single parameter-the s-wave scattering 
length a for a collision of two bare quasiparticles-and clas- 
sify the states of a single ~e~ atom located in superfluid 
He4 at rest using the continuous energy spectrum 

where m is the mass of a He3 atom and M is the bare mass. 
In He4 at rest, the energy of the system can be written to 

second order in perturbation theory in the form 

- 
128.rr2a2fi4 C ninkn~Qik 

M iklm P:+P~-P:-P~' 
(42) 

where E: is the energy of pure He4, Qik= 114- u p k ,  u is a 
spin variable, and the labels i, k, I ,  m enumerate the spin 
states. Varying the energy (42) twice and three times with 
respect to n,(p), we obtain respectively (see Ref. 4) 

COS a 

Quut 

x [ ~ ~ ~  y+cos P cos a- 1 

+ Qudl 

cos a+cos y cos p- 1 

+ Qddl ] (44) cos a+cos  p-cos y-1 ' 

where A = pFal di is a small parameter. 

Using (42)-(44) from Appendix 4, we can calculate all 
the parameters needed in Eq. (39) for the correction to the 
velocity. Approximating the functions F ( a ) ,  F' ( a ) ,  
@(a ,py )  by the first two terms of Eqs. (22)-(24) and sub- 
stituting the computed parameters into the expressions for 
uo, ul , we obtain to accuracy up to terms --p; (this accu- 
racy comes from writing the energy in the form (42)) 

The constants e l ,  e2, T, W, and y are defined in the same 
Appendix. The analogous quantity for pure He4 at zero tem- 
perature (see Ref. 1) is u = ( 1 + y)co. 

We are deeply grateful to I. A. Fomin for discussing a 
number of questions. 

APPENDIX A 

+sin2 8 1  dFo d cos 8  v ' d ~ ' )  

dv' d 
+ ~ l ( a ) ]  - v ' + f l ( a )  - (vvl)]dfl '  

dx dx 

-- 
au, 

+COS e - 
d cos 8  dx 

m +--+ 
P ,  dt 

2 dv m* dv 
v+3-- v cos 8  

m dx 

(48) 

c2 P3 8 ac + ~ Z ~ - - ( F !  V F  P4 dx ~ d f l ) + K ,  

890 JETP 82 (5), May 1996 Andreev et a/. 890 



J2E0 P24 d2&o P4 
z = 2 - 2 ,  y = - -  

d ~ 4  rnc a ~ d ~ 4  O F '  

v = v ( ~ ) ,  v l =  v(O1), vn= v(e1'), 

dQ = sin 8d 812. 

APPENDIX B 

The system (32)-(34) is solved as follows. Using Eq. 
(32), we express u: in the following way: 

after which we substitute into the definitions 

which gives a linear inhomogeneous system consisting of the 
two equations for C1, C2. Solving it we obtain 

I cos 8 m c2 
+Flsw M(8) - d Q + a  - w(l 

ikvF P F ~ F  

cos 8 
d f l  

Sdm 1 
X s2w -- - ( m * 3  

where 

gk(8)+(mlm*)vlk cos 8 
M(8)= - 

s-cos 8 9 

cos 8 s s + l  
dQ=-1+-In-  

s-cos 8 2 s - 1 '  

Now, o, and therefore s ,  are complex quantities; hence, in 
order to give meaning to the last integral and integrals like it 
(i.e., in which the expression under the integral sign contains 
s- cos 8 in the denominator) we must make a cut in the 
complex plane o along the real axis from - kvF to kvF. 
This cut, and the condition of reality when s<- 1 and 
s> - 1, specifies one branch of the complex multivalued 
function In[@+ l)/(s- l)]. Substituting (51) and (52) into 
(33), (34), we obtain a linear inhomogeneous system consist- 
ing of the two equations for p: , v: , from which we find 

where 

We recover the original functions we are looking for using 
the inverse Laplace transform 5' and inverse Fourier 
transform 9- : 

;l=9-159-1[p(l+)], r 1 = 9 - ' x l [ v \ + ) ] ,  

v l = ~ ' x l [ v ( , + ) ] .  (54) 

The unattenuated singularities of the functions p:, v: , v: 
in the complex o plane will be: a cut from - kvF to kuF and 
a pole at o= kvF cos 8 (only for v:), which correspond to 
single-particle excitations, in particular the unaccelerated 
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motion of particles from the initial state (a particle in unac- 
celerated motion with constant velocity kvF cos 19 along the 
x axis), and the two poles o=uok,  - uok-if y(so)=O, 
so= u0 /vF,  - uo /v+orresponding to first sound at zero 
temperature (collisionless regime) propagating to the right 
and to the left. There are no real zero-sound solutions to the 
equation y (s) = 0 (see Refs. 1, 4). Retaining only the contri- 
bution from the pole o=uok (so=uolvF), we find 

m + i u  iYk dk d o  
exp(-iot+ikx) - - 

2lT 277 

whereYk= ([R + Rl]sr- [vlk+R2]b)/y1(so) = dylds(so), 
and consequently 

In R ,  M(6) we replace p lk ,  v l t ,  gk(@ by pl(x-uot), 
vl(x-uot), g(I9,x-uot) respectively, and in w, r ,  b we 
substitute s = so. Analogously we find for vj') , v('): 

where 

cos 19 q + d  cos 8 
-R(19)=so-cos19 A ' 

APPENDIX C 

As we said in the main text, in order to obtain a system 
of equations for the second approximation it is sufficient to 
make the replacement (37) in Eqs. (32)-(34); consequently, 
the transforms of the required functions have the following 
form: 

where Z(A,B,D) is a linear function of A ,  B, D, i.e., the 
nonlinear expressions (47)-(49) (in which we substitute the 
exact first approximation), which is easy to write down mak- 
ing the replacement (37) in (53). The transforms of vl , C1 
are obtained analogously. The problem is to identify the 
secular terms (proportional to f) that give a correction to the 
velocity of a sound wave (36). The secular term in the origi- 
nal arises from the second-order poles in the transforms. 
Equation (58) already has a pole at w= uok if y(so) = 0  (see 

Appendix 2). The numerator of Eq. (58) has a pole at 
o= uok only when the function Z(A ,B,D) = Z(x - uof); 
consequently, in order to obtain the secular term correspond- 
ing to the pole w = uok in Z(A,B,D) we must substitute the 
part of the first approximation corresponding to the sound 
wave (36). Then 

and consequently Z(x- uot) - Y dYldx. Taking into account 
only the second-order pole o=uok  in (58), we obtain 

where * denotes convolution. It is easy to see that we obtain 
Eq. (56) for u /v with the replacement of R, v , - M ( 8) 
X(so- cos 8) by A , D B , respectively. After some 
simple but tedious transformations, we finally obtain Eq. 
(39) for u and (38) for the secular part (which gives a 
correction to (36)) in second approximation. Analysis shows 
that the other singularities of Eq. (58) give no correction to 
the first-approximation velocity (36). 

APPENDIX D 

Since we know the explicit forms (43), (44) of the func- 
tions f (a) and 4(a,/?, y), we can compute their harmonics 
in the expansions (22), (24). Neglecting some simple but 
tedious computations, we present the values of the first two 
harmonics: 

The change in the Landau function 6f (a) with the change in 
the number of particles in equilibrium 6N3 = p;SpF / 7r2fi3 is 
written as follows: 

Because we have already approximated the Landau function 
by its first two harmonics in these calculations, it is sensible 
to retain only the first two harmonics in the expansions (23), 
(24) of the functions ~ ' ( a ) ,  @(a,/?, y) as well. Equation 
(62) gives the expressions for these harmonics: 
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~ F o  dFl F o m  
2 ~ , ! + 3 @ ~ ~ ~ = -  PF-FO- - p~ - - 

~ P F  dp, 3 m*' 

Taking (60), (61) into account, we find 

The free energy of the solution obtained from (42) by inte- 
gration equals 

where N3 (N4) is the concentration of ~e~ ( ~ e ~ ) .  Differen- 
tiating (64) with respect to N3, we obtain 

The change in the chemical potential p3 as the number of 
particles changes by SN3 equals 

Taking (65) into account, we obtain from this 

There still remains the undetermined parameter 
11M * = d2eldp2(pF). TO determine it we write the change in 
SuF, i.e., G(dsldp)(pF) for the variation SN3, as follows: 

from which, taking (63), (67) into account, we obtain 

All the variations (62), (66), (68) are easily obtained from 
Eq. (20), in which we understand the variation Sn to be the 
difference between infinitesimally separated equilibrium 
states ~[pj ;-p]  - 8[pF-p] that differ by 
pk-pF= 8pF- SN3. 

In order to find the unknown parameters that take into 
account the interaction of the Fermi quasiparticles with the 
superfluid background, let us find p4,  i.e., the chemical po- 
tential of ~ e ~ ,  which is easy to obtain by differentiating (64) 
with respect to N4: 

Using (65), (67), (69), we compute the following parameters 
to accuracy determined by writing the energy (42) to second 
approximation: 

where 

where co is the velocity of sound in pure ~e~ at T=O. Sub- 
stituting the computed parameters in the expressions for 
uo,  u ,  given in the previous paragraph, and approximating 
the functions F ( a ) ,  F1(a) ,  @ ( a , p  y) by the first two terms 
of expansions (22)-(24), we obtain Eqs. ( 4 9 ,  (46) to accu- 
racy up to terms -p;, where 

8 m2 
- - --Z (x- 1 ) ~ h ~ s ~ ( 4 3 + 4 4  ln 2) 

75 M 
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