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The equation describing spontaneous onset of poloidal rotation of tokamak plasma due to 
intrinsic non-ambipolarity of neoclassical diffusion in banana regime is derived for arbitrary initial 
conditions. The spin-up rate of poloidal rotation v, = 0.24vl~S, the effective inertial mass, 
and the steady-state rotation rate are found from this equation. Here v is the ion-ion collision 
frequency, E the inverse aspect ratio of the tokamak, and S is the orbit squeezing factor. 
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1. INTRODUCTION 

Tokamak experiments have observed spontaneous onset 
of poloidal rotation in the edge plasma with concurrent sup- 
pression of edge turbulence and improved confinement (H 
mode). In large tokamaks such as Doublet 111 and Asdex this 
happens when the edge temperature is sufficiently high to 
enter the banana regime where ions become In 
this regime the particles of each species could be divided 
into two groups with topologically different orbits. In a large 
aspect ratio tokamak with a strong magnetic field, most of 
the particles of given species are freely moving along the 
magnetic field lines thus closely following the magnetic sur- 
face (untrapped particles). However, a small group of par- 
ticles moving along the magnetic field lines with low veloci- 
ties are trapped in the outer part of the plasma torus since 
they cannot penetrate the inner part, being mirrored from 
stronger magnetic field there. These trapped particles deviate 
from the magnetic surface to a distance much larger than that 
of the untrapped particles due to their magnetic field curva- 
ture drift, forming the banana-like orbit. Figure 1 illustrates 
how the collision of like particles with different topologies of 
orbits results in the finite displacement of particles across the 
magnetic surface and thus in the diffusion of plasma. Here 
the untrapped particle 2 continues to move after the collision 
with the trapped particle I in the same direction and the 
trapped particle is turned in the opposite direction. 

Under the action of the magnetic field curvature drift 
(downward in Fig. 1) the trapped particle following the 
banana-like orbit will be displaced outward from its initial 
averaged position by the distance much larger than the aver- 
aged displacement of untrapped particle across the magnetic 
surface. Let us note here that the displacement of the like 
particles just after their collision is zero and it builds up to a 
finite averaged value only after these particles complete at 
least one orbital period. Therefore the orbit averaging is nec- 
essary to describe properly the plasma diffusion in the rare 
collision limit (see Eq. (18)). 

The nonambipolar diffusion described above generates a 
radial electric current, leading to the building up of a radial 
electric field. The radial electric field in turn generates poloi- 
dal rotation of plasma. Recently several authors calculated 
the spin-up rates of poloidal rotation and came out with very 
different results: vpl = 1.44v, (Ref. 3), up! = =I&, (Ref. 4). 
vpl = 0 . 7 ~ 1 ~  (Ref. 5). In this paper we derive analytically the 
equation for the time evolution of the poloidal rotation in the 
asymptotic limit of very large aspect ratio of tokamak, with 
allowance for the orbit squeezing effect, and obtain values 
for the spin-up rate of poloidal rotation, effective inertial 
mass, and steady-state rotation rate. 

2. PARTICLE ORBITS AND DRIFT KINETIC EQUATION 

For the sake of simplicity we limit ourselves here to an 
axially symmetric magnetic field with circular magnetic sur- 
faces 

where E= r l R  + 1 is the inverse aspect ratio, O ( r )  = B o l B g  
the ratio of the poloidal and toroidal magnetic fields, e, ,eo 
and el are local unit vectors in the radial, poloidal and tor- 
oidal directions. We assume here the following ordering of 
plasma spatial scales: 

where p = u T/oB is the Larmor radius of ions with the ther- 
mal velocity uT = JK and cyclotron frequency oB 
= eBolmc, L the spatial scale of plasma density and tem- 
perature profiles. 

The relaxation time TR for the trapped ion distribution 
due to collisions is much greater than the period TB associ- 
ated with their motion 

where v is the ion-ion collision frequency. Neglecting col- 
lisions in a first approximation we obtain from the equations 
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of motion of guiding centers an additional constant of the 
motion besides the energy 8 and the adiabatic invariant 
-the generalized toroidal momentum of a particle6 

J = m o B ~ ~ @ ( r ) d r - m u l l ( l  + r cos 8). (4) 

Here the longitudinal velocity of a particle is expressed in 
terms of 8, p, and the electrostatic potential @(r,t) of 
plasma: 

We assume here that the radial electric current due to non- 
ambipolar neoclassical diffusion results in a building up of 
the radial electric field, thus driving the poloidal rotation of 
plasma. Therefore we allowed for temporal evolution of this 
radial electric field on a time scale that, as we show later, is 
much smaller than that of the neoclassical diffusion TD 
= ~ l v & ( ~ l @ ~ ) ' ,  but larger than the trapped ion distribution 
relaxation time TR . Under this condition we consider below 
the plasma density and temperature profiles to be stationary. 
Expanding the expression for J to second order in the radial 
displacement ( r  - rO) of the particle from the starting point 
(ro,O), we obtain the particle orbit in the form6 

where 

and S = 1 + ( d ~ , l d r ) l o ~ @ ~  is the orbit squeezing 
According to the condition (3) the zero-order distribution 
functions of trapped and untrapped ions can be written as 
functions of the integrals of the motion1 

FIG. 1. Collision of counterstreaming trapped (I) and 
untrapped (2) ions resulting in displacement of new or- 
bit (1') of trapped ion much larger than that for elec- 
trons in similar case. 

The shape of these distribution functions is governed by in- 
frequent particle collisions and can be found from the equa- 
tion for the first-order distribution function f l : 

where b = BIB. Using the expression (6) for the particle or- 
bit, we substitute 

into Eq. (8), with the result' 

where the collision term (with allowance for orbit squeezing) 
takes the form 

where 

2 l ( x ) =  ( 2 1 6 )  jxexp (-x) \l; dx, x=2pBo/uT,  
0 
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UII is the field-aligned velocity of plasma flow. From the 
necessary condition to solve the equation (10)' 

we obtain the zero-order distribution function:' 

where ~ ( x )  = 1 for x > 0 and ~ ( x )  = 0 for x < 0,  n(r) and 
E( 1 1 ~ ~ )  is the complete elliptic integral of the second kind. 
Note that due to the temporal evolution of the electric field, 
this distribution depends on time via parameters K and 
V,(r,t) entering the expression (13). The time dependence 
of the field-aligned velocity of plasma flow is neglected here 
due to conservation of the toroidal angular momentum of the 
plasma. 

3. NEOCLASSICAL INERTIA OF POLOIDAL ROTATION IN 
THE BANANA REGIME 

To describe the temporal evolution of the radial electric 
field, which produces poloidal rotation of the plasma, we 
write the equation for the second-order distribution function 

where the time derivative of fo is calculated with the help of 
expressions (13) for fo  and (6) for K~ dependence on 
VE(r9t): 

Here vE = JVEIdt. Moreover, while writing the expression 
for the collisional tern St(fl) on the right-hand side of Eq. 
(12), we have taken into account that the dominant contribu- 
tion to the first-order distribution function f comes from the 
general solution of ~ q .  (10) ~ f , ,  = S f , ( x , ~ ~ , a , t )  and not 
from its particular solution. The explicit form for the distri- 
bution function Sf is found from the necessary condition to 
solve the equation (14) 

Integrating here over 8 and neglecting terms quadratic in the 
small parameters (VE IOU ,) and l / ~ ~ ( d l n V ~ / d t ) ,  we have 

To obtain the equation for poloidal rotation, we use the 
condition that the surface-averaged radial electric current 
must vanish to maintain plasma quasineutrality.9 The main 
contribution to the radial electric current comes from the 
neoclassical diffusion of ions, which is significantly larger 
than that for electrons during the process of generation of 
electric field and poloidal rotation. Neglecting the small elec- 
tron contribution, we require that the radial electric current of 
ions due to their neoclassical diffusion1 vanish: 

Transforming to variables x and K~ and integrating this 
equation over 9 by parts, we rewrite it with the help of Eqs. 
(10) and (14) as 

The first term in square brackets describes the neoclassical 
diffusion of ions: 

where 

is the component of the viscous force parallel to the mag- 
netic field.2 Here 

U p =  (cTleBo)d In n Tldr and UT= (cTleBo)d In Tldr 

are the pressure and temperature gradient drifts, respectively. 
The main contribution to the longitudinal viscosity force 
comes from the boundary layer between trapped and un- 
trapped particles in velocity space, described by the delta 
function in the expression for the collisional term St(fo) 
- S ( K ~  - 1 ) (see details in Ref. 1). Note that due to the sub- 
stitution of variables (9), both the longitudinal velocity and 
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the collisional term in Eq. (18) depend explicitly on the po- 
loidal angle. This permitted us to explicitly perform orbital 
averaging of the integrand in (18), integrating over perpen- 
dicular and longitudinal adiabatic invariants. 

The contribution of the poloidal rotation inertail force to 
plasma diffusion is described by the last two terms in square 
brackets in (19). With the help of (15) for dfoldt and (17) 
for Sf, we write it in the form of integrals over the complete 
elliptic integrals ~ ( 1 1 ~ ~ )  and ~ ( 1 1 ~ ~ )  of the first and second 
kind, respectively: 

where r(5/2)=3m112/4 is the gamma function. Here the first 
and second terms in the outer square brackets represent the 
contributions to the inertia of poloidal rotation from trapped 
and untrapped ions. The second term after differentiation 
with respect to K~ takes the form 

(23) 

Using the series expansion of the elliptic integrals K and E," 
we obtain the numerical value I = 0.12. Summing the results 
of calculations for (nV,)D and (nV,) ,  , we obtain the equa- 
tion for the evolution of poloidal rotation in explicit form: 

where q = EIO is the tokamak safety factor. With the help of 
the expression (21) for FII , we find the effective inertial mass 
meff and the spin-up rate of poloidal rotation vPl : 

meff= 1 . 5 2 ~ ~ r n  &, Y,= 0.24~1 E S .  (25) 

The steady-state velocity of poloidal rotation," 

v ~ ~ v ~ + @ u ~ ~ + u ~ = ( ~ - s - ~ ) u ~ +  ~ . I ~ s - ~ u ~  (26) 

is reached when FII = 0. 

4. CONCLUSION 

We have shown that intrinsically non-ambipolar neoclas- 
sical diffusion of plasma in the banana regime drives poloi- 
dal rotation at a spin-up rate (25) three times lower than that 
calculated in Ref. 5. As a result, the assumption concerning 
characteristic time scales, 

has been justified. We note that in contrast to the results of 
the steady-state velocity of poloidal rotation al- 

lowing for orbit squeezingH is clearly different from that in 
the plateau regime. The contrary statement of the paper'3 is 
based on an incorrect calculation of the longitudinal viscos- 
ity force in the paper.12 (see Eq. (19) for FII). 
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