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The method of functionals is used to average the collisionless Boltzmann equation describing the 
transport of charged particles in small-scale random and regular magnetic fields. Exact 
equations for the averaged Green's functions and the vertex operator are derived and solved for 
the case of strong small-scale random scattering taking place at fairly low particle energies, 
at which the particles scatter in a single scattering event by an average angle of order unity. The 
diagrammatic technique is used to determine the main processes of moderate and strong 
small-scale random scattering. The renormalized Green's functions and the vertex operator are 
found with strong scattering taken into account, and so are the renormalized kinetic 
coefficients. The energy dependence of the transport path and the anisotropy of the spatial 
diffusion tensor are calculated with allowance for moderate and strong small-scale scattering at 
low particle energies. The diagrammatic technique and the method of functionals differ 
somewhat from those employed by A. Z. Dolginov and I. N. Toptygin [Sov. Phys. JETP 24, 
1195 (1967); Icarus 8, 54 (1968); and Cosmic Rays in Interplanetary Magnetic Fields, Nauka, 
Moscow (1983) (in Russian)] and L. I. Dorman and M. E. Katz [Cosmic Rays: Variations 
and Space Explorations, North-Holland, Amsterdam (1974); and Space Sci. Rev. 20, 529 (1977)l 
but are convenient for studying strong random scattering and result from the development 
of methods for obtaining averaged kinetic equations in consistent diffusion theory. O 1996 
American Institute of Physics. [S 1063-7761 (96)00805-01 

1. INTRODUCTION 

The common approach to describing the transport of rap- 
idly moving low-density charged particles in random and 
regular fields in outer space is to use kinetic equations that 
are derived in consistent diffusion theory and allow for mul- 
tiple particle scattering by the inhomogeneities of the ran- 
dom field.'-6 This approach presupposes separating the spec- 
trum of the magnetic-field inhomogeneities into three 
components: regular, large-scale random, and small-scale 
random. 

Usually the regular component is assumed to be the 
magnetic field strength averaged over the entire inhomoge- 
neity spectrum and incorporating chiefly maximum-scale in- 
homogeneities. The large-scale random magnetic field is the 
part of the random field with inhomogeneity scales 
L: > RT , where R T is the Larmor radius of the particles in 
the random component of the field. In interplanetary and 
interstellar space the regular magnetic field often has the 
shape of the helically twisted field of an oblate dipole. The 
large-scale random magnetic field incorporates large-scale 
MHD perturbations: MHD waves (including shock waves 
and discontinuities in the magnetic field), magnetic clouds, 
sectoral structure in the case of the interplanetary magnetic 
field, and other large-scale  structure^.^-^ In this paper the 
large-scale magnetic field is incorporated into the regular 
field and is denoted by Ho(r , t ) .  

Usually the small-scale part of the random magnetic 
field incorporates magnetic inhomogeneities of scale 
L,<RT. Such a definition of a small-scale magnetic field is 
not sufficient, however. The main feature of small-scale scat- 

tering is the absence of resonant interaction of particles and 
MHD waves or the absence of particle trapping in the inter- 
action of particles with shock waves or other steady-state 
magnetic structures. Stochastization of particle motion, i.e., 
enhancement of small-scale scattering, may occur due to the 
motion of the particles in magnetic traps, due to resonance 
overlap in the phase space, due to violation of the quasi- 
adiabatic nature of the motion of the particles under rapid 
variations of the magnetic field, in a strongly turbulent 
plasma, and in a weakly turbulent plasma in the presence of 
inhomogeneous  condition^.'^-'^ Hence, in a highly perturbed 
medium the scattering closely resembling small-scale scat- 
tering may produce large-scale magnetic structures. 

Highly irregular perturbations of the magnetic field de- 
pending on the level of solar activity can be observed in 
interplanetary space, and irregular perturbations of the mag- 
netic field can also be observed in interstellar space.3~6~9*'5~16 
Consequently, the approximation of cosmic-ray diffusion 
caused by nonresonant scattering is often used in analyzing 
experimental data on solar and galactic cosmic rays propa- 
gating in interplanetary  ace.'-^,^.'^-'^ This case of cosmic 
ray propagation is considered beIow when the analytic re- 
sults are compared with the experimental data. 

It must also be noted that strong small-scale scattering 
affects the isotropy of the distribution function of the par- 
ticles and the broadening of resonances in the interaction of 
the particles and MHD waves in large-scale ~ca t te r in~ .~ '~-*  
Nonresonant random scattering affects anomalous diffusion 
in the high-temperature plasma of t o k a m a k ~ . ~ ~ - ~ ~  

Initially the kinetic equations were obtained for multiple 
scattering under the assumption that small-scale scattering 
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was weak,'-5 which was the result of employing the iteration 
method to obtain averaged kinetic equations. ~ u ~ r e e ? ~  
~ e i n s t o c k ? ~  and Rudakov and ~ s ~ t o v i c h ~ ~  were the first to 
broaden the scope of the ordinary iteration procedure, which 
begins with the unperturbed Green's function of the particle, 
by allowing in a more consistent manner for higher-order 
approximations in the random electric field in the turbulent 
plasma and by using nonlinear kinetic equations, while Kli- 
mas and ~ a n d r i ~ ~ . ~ ~  and ~ o l k ~ ~  also allowed for higher-order 
approximations in the random magnetic field (see also the 
literature cited in Refs. 6 and 29). Bykov and ~ o ~ t ~ ~ i n ~  and 
Vainshtein and ~ichatinov~' allowed for higher-order ap- 
proximations in the small-scale random magnetic field in the 
relaxation-time approximation and found the averaged trans- 
port coefficients. Finally, Dorman et ~ 1 . ~ '  used the method of 
functionals to determine the spectrum of the correlation 
functions of the fluctuation of the distribution of particles 
scattered by a strong magnetic field. 

In this paper the method of functionals is used to derive 
and solve the nonlinear equations for the average one- 
particle Green's function and' the vertex operator. The equa- 
tions are used to examine the kinetics of particles undergoing 
moderate random scattering by an average angle 5 1 on a 
single inhomogeneity of the field and strong random scatter- 
ing by an average angle 2 1 on a single inhomogeneity. The 
diagrammatic technique is employed to determine the main 
processes of moderate and strong small-scale scattering and 
find the corresponding collision integrals, which are then 
used to obtain the kinetic and diffusion equations for the 
averaged distribution function of the charged particles and to 
determine the averaged transport coefficients. The energy de- 
pendence of the transport path and the spatial diffusion co- 
efficient is also studied. 

2. THE DIAGRAMMATIC TECHNIQUE AND THE AVERAGED 
SCATTERING MICROPROCESSES 

Following the common approach to studies of the trans- 
port of suprathermal particles, we assume the plasma rarefied 
and the Coulomb collision rate much lower than all the char- 
acteristic frequencies in the plasma. We therefore start with 
the collisionless Boltzmann equation for a particle in a mag- 
netic field. Initially, for completeness of exposition and for 
establishing the link that exists between the diagrammatic 
technique and averaged scattering microprocesses in relation 
to studying the higher-order terms in the random magnetic 
field, we use the ordinary iteration solution of the Boltzmann 
equation, which we average over the random-field ensemble 
by employing the method of  functional^.^^ In contrast to 
Dolginov and Toptygin's work,'*2 to set up the diagrammatic 
technique we use the Green's functions that are exact in the 
regular magnetic field. Since the method differs somewhat 
from that described in Refs. 4 and 5, including the formulas 
with functionals, we briefly discuss the iteration solution. 

The collisionless Boltzmann equation for the nonaver- 
aged Green's function of a particle, g(x ,xo)  (here 
X= (r,p,t) and xo= (ro ,po ,to)), interacting with a magnetic 
field H(r , t )  has the form 

where 

v is the particle velocity, u is the magnetic-field velocity, 
Hl(r,t)  is the small-scale random field, and 

For the small-scale random and regular (large-scale ran- 
dom) magnetic fields we have the following relationships: 

where the angle brackets (. .) stand for averaging over the 
statistical ensemble of the small-scale random field. 

The separation of the total magnetic field into the small- 
scale random, the large-scale random, and the regular is 
largely arbitrary and depends on the spectrum and type of the 
magnetic inhomogeneities and the geometry of the regular 
magnetic field.'-7"4,'6 In this paper it is assumed that the 
small-scale random magnetic field incorporates magnetic 
structures that scatter cosmic-ray particles by a large angle in 
a single scattering event, e.g., field discontinuities, shock 
waves, magnetic clouds, and various types of MHD waves 
leading to resonant scattering in the presence of a strong 
broadening of wave-particle resonances. The large-scale 
magnetic field may form as a result of large-scale motion of 
the m e d i ~ m . ~ - ~  

The iteration solution of the Boltzmann equation (1) av- 
eraged over the small-scale random magnetic field has the 
form 

Xexp - 7,- drndtnS(r-rn)S(t- t , )D,  I : E l /  

is the characteristic functional that fully determines the sta- 
tistical properties of the small-scale random masnetic field, 
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is the Green's function of a particle in a regular magnetic 
field, and we sum over repeated vector indices. To eliminate 
the factor that appears as a result of integrating the appro- 
priate delta function over r we assume that integration with 
respect to r is done from zero to t -  to+A,  where A is an 
infinitesimal time interval. 

We can now transform the solution (2) by introducing a 
new functional argument: 

If the distribution of the small-scale random magnetic field is 
Gaussian, the relationship between the functional arguments 
6 and 77 is linear; in the more general case the functional 
argument a v,r,t] is a nonlinear functional of rl(r,t). 

For the remainder of this section we assume that the 
distribution of the small-scale random magnetic field is 
Gaussian. In this case the relationship linking the functional 
derivatives with respect to the functional arguments 5 and 
77 has the form 

where 

is the correlation tensor of the small-scale random magnetic 
field. 

Transforming the solution (2) via (4) and (5), we get 

In this expansion we transform the functional derivatives of 
@[a with respect to 6 by expressing them in terms of the 
functional derivatives of In@[g and allowing for the fact 
that in a Gaussian random magnetic field 

where the function Say (see Ref. 32), which does not enter 
into the final result, obeys the following relationship: 

In the solution (6) the nth term in the series is a polylin- 
ear functional of the nth degree containing terms propor- 
tional to the argument 5 raised to different powers. In this 
expansion of the Green's function G[a we are interested 
only in terms that contain the zeroth and first power of the 
functional argument 5. Also, for the sake of convenience in 
setting up the diagrammatic technique, we replace the in- 
verse Boltzmann operator (3) with the Green's function 
Go(x,xo) via the following relationship: 

where 

G o ( ~ , ~ o ) =  8(t-to)S(r-Ar(t- to)-ro)S(p-Ap(t- to) 

- PO) 9 (9) 

and Ar(t - to) and Ap( t - to) are the variations of position 
r and momentum p of a particle in the regular magnetic field 
& during r - to. 

After transformation, expansion (6) becomes 

G[S,x,xol= Go(x,xo) 
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+ ( dx4~0(x ,x4 )~4a (  dx3Go(x4 , ~ 3 ) ~ 3 / 3  Bap(r,t;rl ,t1)wal------ rt rltl , G(xyxo)-, - 10' 
Next, with the functional argument we associate the times 

x ( d x 2 ~ 0 ( ~ 3  . ~ 2 ) ~ 2 ~  sign: 
ta(r7t)-  x:. 

x ( dx1Go(x2 ,~1 )D~dB~, ( r3  ,t3;r4.t4) With the vertex operator F,(x,x, ; r l ,  t ' )  (see Eq. (18) 
below) we associate a triangle, 

XBar(r1 , t ~  ;r2,t2) 

where 
while with the mass operator i (x,xl)  (see Eq. (20) below) 
we associate a semicircle, 

etc. 
Let us now set up a diagrammatic technique that uses, in 

contrast to the one developed by Dolginov and ~ o ~ t ~ ~ i n ' . ~  
only the Green's functions that are exact in the regular mag- 
netic field and is topologically close to the one developed in 
Refs. 32 and 33. With the terms in (10) we associate the 
following diagrams: 

We assume integration in the diagrams integration over 
internal variables. Using the diagrammatic technique, we can 
represent the expansion of the Green's function (10) with the 
functional argument 6= 0 in the following way: 
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Separation of the resulting set of diagrams into weakly coupled and tightly coupled is done in the ordinary manr~er . ' .~ '~~ 
By using expansions (10) and (11) we can qualitatively separate the entire set of terms and the corresponding averaged 

elementary scattering microprocesses by the value of the average angle of particle deviation in a single scattering micropro- 
cess. For terms of order (H;') and the corresponding averaged elementary scattering microprocesses, a separation similar to 
the one performed in Ref. 33 is done in the following way: 

(a) a small-angle random scattering mi~ro~roces s , ' ~~  
h 

(b) a simple strong scattering microprocess, 

(c) a complex strong scattering microprocess, 
L 

The diagrams and microprocesses shown in order of increas- 
ing average deviation angle. 

3. EXACT EQUATIONS FOR THE GREEN'S FUNCTION AND 
THE VERTEX AND MASS OPERATORS 

Averaging the Boltzmann kinetic equation by the 
method of functionals over the small-scale random magnetic 
field H1,  we arrive at an equation similar to the Schwinger 
equation34 for the functional G[q,x,xo], which becomes the 
averaged Green's function at q = O  (see Refs. 4, 5, and 31). 
The averaged equation has the form 

We then go over to the functional argument 5 [ q r , t ]  (Eq. 
(4), assuming the distribution of the small-scale random field 
HI non-Gaussian and the relationship between the functional 
arguments 6 and q nonlinear. We also introduce the inverse 
functional G -  '[g by the following formulas: 

After going over to the new functional argument, we can 
use Eqs. (4), (5) and (16) to write the equation for the 
Green's functional G [ d  in the form 

+ S(x - xo) . 
Let us write this equation in integral form: 

(I5) where the vertex operator is defined as 
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and at &= 0 the correlation functional Bff8[$r,t;r1 ,t 
transforms into the correlation tensor B [r,  t;rl , t "! 

Let us introduce the mass operator q [ d  and derive the 
main relationships for it. To this end we write Eq. (17) i11 the 
form 

where the mass operator 4[4 meets the following condition: 
4[5,:,x9xll=DffSff(r,~)~(x-x~) 

r 

Next we obtain the differential relationship that exists 
between the vertex and mass operators. Muitiplying Eq. (19) 
by G-'[dj,x,xl], integrating the product with respect to 
xo, applying the Boltzmann operator (dldt+io)  to the re- 
sult, and differentiating the resulting expression with respect 
to the functional argument 5(r1,t I), we get 

We derive an equation for the vertex operator fp[4. To 
this end we differentiate the expression (20) for the mass 
operator i[4 with respect to the functional argument 
5(r',t1) and allow for the formula for the derivative of the 
Green's function, 

x f p [ & ~ 3 , ~ 2 ; r ' , t 1 ] ~ [ 5 , ~ 3  ,XI]. 

As a result we arrive at the following equation for the vertex 
operator: 

f ,[$x,x, ;rl , t ' ]= - 8(r-r1)8(t- t1)~,8(x-x ' )  

Equations (17) and (20) constitute a closed system of 
equations for the exact Green's functional G[&,x,xo] and the 
exact vertex operator fy[&x,xl ;rl,t']. 

The first term on the right-hand side of Eq. (22) for the 
vertex operator f ~4 (the one with the delta functions) pro- 
vides the main contribution in scattering in a weak small- 
scale random magnetic field1-' and in a small-scale random 
field of moderate strength3' with the average angle (a) of 
scattering by a single inhomogeneity 1 where 
(a)=RIIL, ,  ~ , = c ~ l e < ~ f > " ~  is the Larmor radius in 
the random magnetic field, and LC is the size of a small-scale 
magnetic inhomogeneity. 

The second term on the right-hand side of Eq. (22) re- 
flects the complex processes of strong small-scale random 
scattering of type (14) corresponding to diagrams with 
crossed dashed lines. In such a process the particle oscillates 
between inhomogeneities of the small-scale random mag- 
netic field and the scattering is of a quasi-resonant nature 
(see Sec. 5.2). 

The third term on the right-hand side of Eq. (22) refines 
the complex processes of strong random scattering, and al- 
lowing for this term means stepping outside the scope of the 
iteration approximation in the vertex operator f ,[a. Allow- 
ing for this term corresponds to allowing for processes of 
strong small-scale random scattering in traps formed by ran- 
dom inhomogeneities of the magnetic field, processes more 
complicated than those of type (55) (see Sec. 5.2) taken into 
account in this paper. 

The fourth term on the right-hand side of Eq. (22) is 
related to the non-Gaussian nature of the distribution of the 
small-scale random magnetic field. Allowing for it means 
taking into account processes of strong random scattering 
when the distribution function of the small-scale random 
field broadens. Since the magnetic field in outer space is 
formed as a result of collective movements of the plasma, the 
effect of the non-Gaussian nature of the distribution of the 
random magnetic field can be appreciable. Thus, when the 
distribution of the random magnetic field is non-Gaussian, 
we must allow for strong random scattering, and in the ki- 
netic equation we must allow for the terms like the last term 
on the right-hand side of Eq. (22). 

4. MODERATE SMALL-SCALE RANDOM SCATTERING 

4.1. The kinetic equation and averaged scattering 
microprocesses 

In moderate small-scale random scattering the average 
angle of scattering by a single magnetic inhomogeneity does 
not exceed unity. Then all the terms on the right-hand side of 
Eq. (22) for the vertex operator except the first can be ig- 
nored and we arrive at an expression for the vertex operator 
in the zeroth approximation: 
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~ ~ ( x , x I ; r ' , t r ) =  - 6 ( r - r r ) 6 ( t -  t r ) ~ , 6 ( x - x l ) .  (23) 
G(x,xo)=Go(x,xo)+ dxlGo(x,xl)Dla 

Substituting this vertex operator into the equation for the - 
Green's functional (17), assuming the functional argument 
5 zero, and replacing the inverse Boltzmann operator by the x 1 dx2BaP(r1 , t ,  3 - 2  ~ 2 )  

unbroadened Green's function Go(x,xo),  we arrive at the 
following nonlinear kinetic equation:31s36 X (3x1 ,x2)DzPG(x2 J o ) .  

Diagrammatically this equation can be written as 

The iteration solution of this equation is represented by diagrams as 

This solution implies that Eq. (25) allows for the averaged scattering microprocesses 

(26) 

in various combinations. The left diagram in (26) corresponds to weak small-scale scattering, while the right corresponds to the 
simple process of strong random scattering. 

4.2. The Green's function in the small-time-interval lating such Green's functions we assume the regular mag- 
approximation netic field fairly weak, as a result of which we can put 

Ho = 0 in the collision term. 
To solve the nonlinear kinetic equation (24) we linearize 

With allowance for these approximations, the linear ki- 
it by employing the solution of the linear kinetic equation. netic equation for the Green's function in the small-time- 
The Green's function G ( x l  ,xz) in the collision term in (24) approximation has the form 
is convolved in time and position with the correlation tensor 
BaB(rl , t l  ;r2 , t2) ,  so that we take the Green's function in the - dG1 dG1 +v- = w:m2daJ~-todTbap(l - u l T ) d p ~ l ( r  
collision term in the small-time-interval approximation, dt dr 
t ,  - t 2 4  LC l v ,  which is a refinement of the approximation 
used in Ref. 35. 

To obtain the Green's function in the small-time-interval where 
approximation we use the solution of the linear kinetic equa- l 
tion found in the ordinary iteration approximation in which XaXp 

bap(x)= s(*(x)6@,3+ m7) (28) 
for the zeroth approximation we take the Green's functions 
that ignore broadening due to random scattering and take is the (normalized to unity), correlation tensor of the random 
into account only small-scale random In calcu- magnetic field, 
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and o l ( r )=e<~ ; ( r )> ' / 2 /mc  is the Larmor frequency of 
particle rotation in the small-scale random magnetic field. 
Since the conditions of particle scattering described by Eq. 
(27) are homogeneous, we assume that the Green's function 
in this equation depends only on the difference of arguments, 
Gl(r-  ro- vr,t - to - T). We now introduce the Fourier 
transform of the Green's function G I  (k): 

Taking (28) into account, we can write Eq. (27) for the 
Fourier transform G I  (k) as follows: 

For small time intervals we can write 

Substituting this into Eq. (29) yields 

Note that the solution of the new equation holds both for 
small time intervals t -  to4Lclv and for large time intervals 
t-to%-Lclv. 

We select the correlation function I,b(kox) for the power- 
like spectrum of a small-scale random magnetic field in the 
form3' 

with ko= L; ' , where K,(kox) is a modified Bessel function 
of the second kind, and v is the spectral index of the corre- 
lation function of the random magnetic field. Expanding 
I,b(kox) in a power series for small values of the argument 
and substituting the expansion into Eq. (30), we finally arrive 
at the linear kinetic equation for small time intervals: 

To solve this equation for small time intervals we em- 
ploy the operator m e t h ~ d . ~ ~ - ~ ~  First we introduce the func- 
tion 

The equation for g l  can then be written as 

We apply the operator d2 to the exponential in this equa- 
tion and, considering first the case of small velocities 
(v 4 c and u< c), ignore terms in the result proportional to 
vlc and u2/c2. This yields 

The second term on the right-hand side of this equation 
is related to the decrease in the average particle velocity in 
the scattering process and has a small effect on the factor of 
p in the final dependence of the transport path A on p (see 
Refs. 35 and 36). The third is related to the correlation be- 
tween the particle's position in the r-space and the direction 
of the particle momentum p. The relative contribution of this 
term for small time intervals t - toGLc lv is fairly The 
last term is related to the diffusion over the angles and ab- 
solute value of momentum in p-space. Since the main pur- 
pose of this study is to examine diffusion processes in angle 
space over distances of the order of the correlation length 
L C ,  we can ignore this term, too, because (a) it is balanced 
by higher-order commutators of d and v and p, and (b) the 
accelerating processes over distances of order LC are weak. 
The last term provides a large contribution to the higher- 
order harmonics of the distribution function. 

Thus, in Eq. (33) we allow only for the first term on the 
right-hand side, the term that describes diffusion of particles 
in the r-space. If we allow only for this term, the solution of 
Eq. (3 1) can be written as 

where 
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When particle velocities are high (v - c )  , the above rea- 
soning concerning the relative value of the terms in Eq. (33) 
remains valid and Eq. (33) assumes the form 

In this case the solution of Eq. (31) for the Green's function 
differs only slightly from (34) for u e c ,  and the transport 
path obtained in this approximation coincides with (42) (see 
Sec. 4.3 below). 

4.3. The coefficient of diffusion in the phase space and the 
transport path 

The linearized kinetic equation (25) can be written in 
differential form as follows: 

where 

Coll G=D, drldpldtlB,p(r,t;rl , t l )  I 

This linearized equation allows for processes of weak small- 
scale scattering and simple processes of small-scale scatter- 
ing (26) in combinations that provide the largest contribution 
to the collision term in Eq. (24). 

Let us examine the widely encountered case of an iso- 
tropic small-scale random magnetic field with the correlation 
tensor1-' 

where 

and r= i ( r l  + r2). We write the collision term in (35) as'-5 

where 

(v-u),(u-v)p 
TaB=IoSaB+I~ (v- u ) ~  

Allowing for the relation between Bap(r,t;rl ,t and 
Bmp(r,k) (see Refs. 1-3) and substituting Bap(r,k) and the 
function Gl(k,t- t,) (Eq. (34)) into the collision term 
CollG (Eq. (37)), we first calculate the sum SapTap, which 
can be transformed into 

- - kix} 
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In the last factor we replace x with the value 

which we find from the condition that the expression in 
braces in the integrand is at its maximum, since at such val- 
ues x, the exponential factor provides the largest contribu- 
tion to the integral (38). Then for the sake of simplicity we 
replace one r in the last factor in (38) with ?=(vkO)-', 
which has a small effect on the final result (cf. Ref. 35). 

We then perform transformations in the sum S,pT,p 
that are the inverse of the previous transformations. As a 
result we get 

where p= or l&kolv- ul. Note that the method used for 
calculating (39) is a refinement of the stationary phase 
method. 

Similar calculations can be done for the sum 

with the final expression substituted into the formula for 
1 0 .  

As a result of transforming the collision term we arrive 
at a kinetic equation for the distribution function with an 
averaged collision term: 

dF  d F  
-+v--&DF= dt dr  Coll F, 

where 

p2x(01 4 )  
Coll F =  -2 

e c2 ( D 2 ~ o l v - u l  D) F(r,p,t) ,  

with the additional function x ( o l  ,u) having the form 

and A. being the transport path with allowance for processes 
of moderate random scattering,'-' 
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The transport path with moderate random scattering can 
be found by passing to the diffusion approximation in the 
kinetic equation (40). Substituting the expansions of the dis- 
tribution function 

and the additional function 

into the kinetic equation (40) and allowing only for terms 
proportional to N ,  u N ,  u * ~ ,  J ,  and u J ,  we arrive at a system 
of equations for the particle number density N and the cur- 
rent J.  This system coincides with the one for the same quan- 
tities but derived with allowance only for weak small-scale 
random scattering.'" What changes is only the formula for 
the transport path A, which with allowance for the above 
approximations in the velocity u is u-independent and has 
the form 

We see that at high particle energies ( P A W )  the trans- 
port path A is proportional to p 2 ,  while for low particle 
energies (p 40) it is proportional to p .  Such a transition to 
a smoother A vs p  dependence (A p )  occurs when the 

Larmor radius of particles in a random magnetic field, R , is 
of the order of the inhomogeneity size L C .  

5. STRONG PARTICLE SCATTERING IN A SMALL-SCALE 
RANDOM MAGNETIC FIELD 

5.1. Solvlng the equation for the vertex operator 

The description of strong random scattering of charged 
particles occurring at low energies and at average angles of 
scattering (a) by a single magnetic inhomogeneity 2 1 re- 
quires using the vertex operator f  y ( @ ,  which takes into ac- 
count the higher-order approximations in the random mag- 
netic field. To this end one must solve the exact equation for 
the vertex operator (22), allowing for the terms on the right- 
hand side proportional to the correlation tensor of the small- 
scale random magnetic field. 

To simplify the solution process, we assume that the 
distribution of the small-scale random magnetic field is 
Gaussian. In solving Eq. (22) for the vertex operator we use 
the iteration method. The final result shows that such an 
approach yields a solution that is close to the exact solution. 
If we allow for these approximations, the last two terms on 
the right-hand side of Eq. (22) contribute nothing. Then dia- 
grammatically Eq. (22) for the vertex operator 
f  ?(x,x ; r l  . t l)  without the last two terms on the right-hand 
side can be represented as 

The vertex operator obtained as a result of solving this 
equation must be substituted into Eq. (17) for the Green's 
function. At 5=0 Eq. (17) can be expressed diagrammati- 
cally as 

This equation allows for complex processes of strong 
random scattering. Passing in (44) from the integral form to 
the differential, we obtain 

( $ + ~ o ) G ( x , x o ) = S ( x - x o ) - o .  I dr'dt '  I 

We begin the iteration procedure of solving Eq. (43) for 
the vertex operator by substituting into the right-hand side of 
this equation the vertex operator in the zeroth approximation 
in the small-scale random magnetic field ~ ( x , x l ; r l , t l )  in 
the form (23). Instead of the two vertex operators f, and 
f p  we can substitute into the right-hand side of Eq. (43) the 
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initial operators in the zeroth approximation, c. Continua- 
tion of this iteration procedure leads to an approximate itera- 
tion equation of the type (51). 

It is more convenient, however, to substitute the initial 
operator f; into the integral convolution instead of substitut- 
ing the operator f ,(x5,x4;r1,t') into Eq. (43). The result is 
a linear equation for the vertex operator: 

At low particle energies a plurality of collisions with 
inhomogeneities of the small-scale random magnetic field 
occur with the particles being scattered at large angles. Thus, 
the fraction of the random magnetic field scattering the par- 
ticles at small angles diminishes. The distance traveled by a 
particle between collisions with large-angle scattering de- 
creases, too. This makes it possible to use in the integrand of 
Eq. (46) for the vertex operator f, the free-particle Green's 
function at & = 0: 

We also note the asymptotic nature of this behavior of 
the scattering-particle Green's function in the integrand, i.e., 
as p-+ 0, 

This resembles the asymptotic freedom of quarks in QCD 
(see Refs. 38-40). 

Substituting the simplest vertex operator f; (Eq. (23)) 
and the Green's function Go(H,,)=O (Eq. (47)) into the 
right-hand side of Eq. (36) and integrating, we obtain 

Next, substituting the zeroth-approximation vertex op- 
erator ts for pp on the right-hand side of this equation for 
the operator f , ,  we arrive at an expression for the first-order 
vertex operator f: . To refine this expression for f we sub- 
stitute it into the right-hand side of Eq. (45) for the Green's 
function. When integrating over internal variables and trans- 
forming the resulting collision term, we ignore in the inte- 
grand the action of the operators D on the velocities of the 
particles moving between two collisions in which a particle 
is scattered by a large angle. Here we assume that the path 
that a particle traverses between two collisions is fairly short, 

v(t- tl)<L,, so that as the particle energy decreases an 
ever increasing number of small-scale and low-strength mag- 
netic inhomogeneities of the random magnetic field scatter 
the particles by a large angle. 

We write the intermediate integrals of the correlation 
functions in the form 

Then the function C ,  can be expressed as 

Setting the magnetic field velocity u to zero in the above 
expression for the operator f!, and using the commutation 
relations for the d operators, 

[d, ,dp]=m-'eap+i, at u=O, 

and the duality relations 

where eap, is the Levi-Civita symbol, we arrive at an ex- 
pression for the vertex operator in the first iterative approxi- 
mation: 

For the next iteration we substitute the vertex operator 
f obtained in (50) into the right-hand side of Eq. (48) and 
carry out transformations similar to those just discussed. The 
result is an expression for the vertex operator in the second 
iterative approximation: 

Allowing for (50), we can write the above expression as 
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Substituting this expression for f t  into the right-hand 
side of Eq. (48) and performing the necessary transforma- 
tions, we arrive at the operator f; expressed in terms of 
f?. We can assume that by continuing this iteration proce- 
dure indefinitely we arrive at a situation in which the left- 
and right-hand sides of equations like (51) contain the same 
vertex operators e, where n* 1. Thus, for the vertex opera- 
tor we have an equation similar to the Dyson 
equation.34 The solution of this equation has the form 

x Q ( x , x l  ; r ' , t r ;u=0),  (52) 

where L= - i [ p ( d / d p ) ] .  When this operator equation used, 
it is convenient to employ the integral transformations and 
relationships of Ref. 37. 

5.2. The diagrammatic technique and microprocesses of 
strong random scattering 

Let us write the equations for the Green's function and 
the vertex operator in diagrammatic form. The iterative so- 
lution of Eq. (46) for the vertex operator in which we allow 
for the first four terms in the expansion in the random mag- 
netic field can be represented diagrammatically as 

Substitution of this vertex operator into Eq. (44) transforms it into a closed equation for the Green's function only, and in 
diagrammatic form the equation becomes 

/-\ ,/*-;x;--,, = + a +  =- 

Allowing for the correspondence that exists between the elements of the diagrammatic technique and the averaged 
elementary scattering microprocesses (12)-(14), we obtain the following types of processes taken into account in the expan- 
sion (53) of the vertex operator and in Eq. (54): 
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The first two processes in expansion (55) are allowed for 
by the kinetic equation in the small-angle approximation and 
ensure the transition of the small-scale collision term at high 
energies to the small-angle expression. The other processes 
are related to complicated strong small-scale random scatter- 
ing. 

As the diagrammatic representation (55) shows, the mo- 
tion of particles in strong random scattering is of a "trap- 
ping" nature, since in the latter two processes a particle 
moves between inhomogeneities of the random magnetic 
field along almost closed paths; for the two-dimensional case 
this feature of random scattering was discussed in Ref. 41. 

From (55) we also see that strong scattering processes 
corresponding to diagrams with an even number of correla- 
tion tensors (the third and fifth processes) result in particle 
scattering into the forward hemisphere, while processes with 
an odd number of correlation tensors (the fourth process) 
result in scattering into the backward hemisphere. 

5.3. The transport path with strong scattering 

Equation (45) for the Green's function requires substi- 
tuting into its collision term the vertex operator for a nonzero 
magnetic field velocity, u # 0. To find this operator we must 
solve Eq. (46) iteratively, using the vertex operator 
f ;(x,xl ; r l  , t r  ), the correlation tensor BUp(r,t;r2 ,t2), and 
the operator D at uZO. But since the vertex operator ob- 
tained from (46) is substituted into the collision term in Eq. 
(45) in which conversion to the diffusion approximation has 
been achieved, in one of the vertex operators, precisely 
f;(x, ,x4;r',r1), we can ignore terms proportional to u in 
the second term on the right-hand side of Eq. (46), as well as 
in the operator D and in the correlation tensor 
Bffp(r,r;r2,t2). This is possible because with the adopted 
system of approximations in the velocity u, the particle num- 
ber density N, and the current J, the magnetic field velocity 
u in the above-mentioned operators f, and D and the tensor 
Bap contributes nothing to the final collision term in the 
diffusion approximation. 

Assuming that all the above approximations are valid, 
we can write the following expression for the vertex operator 
substituted into (45): 

Substituting this vertex operator into the collision term 
in Eq. (45), replacing the Green's function G with 
Go(x,xl ,&=O), and integrating, we arrive at a kinetic 
equation for the distribution function F of type (40) with the 
collision term 

Thus, in momentum space the resulting collision term does 
not usually coincide with the diffusion term, especially at 

small angles of deviation of a particle from the initial direc- 
tion, in which case large eigenvalues of the operator L~ play 
an essential role. 

For large time intervals t- to% LC lv  and small gradients 
of Ho, u, and A, we can pass to the diffusion approximation 
in the kinetic equation for the distribution function 
F(r,p,t) of type (40) with a collision term (57). As a result 
we arrive at the ordinary diffusion equation in the small- 
angle approximation.1-5 Only the formula for the transport 
path will change: with allowance for strong random scatter- 
ing we have 

where 

while without strong random scattering the transport path is 

The formulas for A2 show that at high particle energies 
(p+m) we have A2+Ao, and A. cc P2- When the particle 
energy is low (p +O), the transport path A2 tends to 

which is a quantity of the order of the size LC of an inhomo- 
geneity in the small-scale random magnetic field. Such be- 
havior of the transport path A, for low particle energies 
agrees with the phenomenological results obtained by Dolgi- 
nov and ~ o ~ t ~ ~ i n , ' - ~  the main model results: and the ex- 
perimental data9 for nonresonant scattering of charged par- 
ticles in a random magnetic field. 

6. THE TRANSPORT PATH WITH MODERATE AND STRONG 
RANDOM SCAlTERlNG 

The foregoing discussion implies that when moderate 
and strong small-scale random scattering are taken into ac- 
count in the diffusion approximation, the equation for the 
particle number density retains it form, 

dN a - aN 8N p dN 
K -- u-+-divu- ,  

dt dr, "pdrS dr  3 d~ (60) 

and the spatial diffusion coefficient does not change form 
either: 

The one thing that does change is the expression for the 
transport path A: at low particle energies A a p for moderate 
random scattering and A-LC for strong small-scale random 
scattering. 

As the particle energy decreases, moderate random scat- 
tering is transformed into strong scattering, with the result 
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that when the particle energy varies over a wide range we 
need to allow for all types of small-scale scattering pro- 
cesses. This can be done approximately if one takes into 
account the fact that in the phenomenological theory with 
magnetic inhomogeneities of different scales, the transport 
scattering cross sections on the inhomogeneities of each 
scale can be with each transport cross section be- 
ing inversely proportional to the respective transport path. 
Here, taking into account (42) and (58), we add the transport 
paths. 

Thus, an interpolation formula for the transport path A 
that allows for moderate and strong random scattering can be 
approximately written as 

The concentrations of inhomogeneities in the random mag- 
netic field, which give rise to moderate and strong random 
scattering, are assumed equal. 

The function x ( w l )  (Eq. (41)) contains integrals that can 
be expressed in terms of the Struve function H - " ( y )  and the 
Neumann function Y - , ( y )  (see Ref. 42), which are cumber- 
some for analysis. Hence we express ~ ( o  using Laguerre's 
interpolation quadrature formula?3 which is transformed into 
an exact expression at the extreme values of parameter q: 

The maximum error introduced by the formula amounts to 
several percent. 

After applying this formula, we arrive at a simplified 
expression for the transport path with moderate and strong 
small-scale scattering: 

Using this formula for A,  we examine the anisotropy of 
the spatial diffusion tensor K,O, which is important in ex- 
plaining the high degree of isotropy in the distribution of 
cosmic rays in quiet periods in interplanetary and interstellar 
space.3'7-9 

We start with the case of a strong regular magnetic field 
( R o 4 A ) .  To this end we use Eq. (61) for the spatial d i f i -  
sion tensor with a transport path (63). In deriving Eq. (3) we 
assumed the effect of the regular magnetic field on the mo- 
tion of particles between collisions with strong scattering to 
be weak (see Sec. 5.1). However, the formula for the trans- 
port path at low particle momenta ( p + O )  should not change 
too drastically in the case of a strong regular magnetic field, 
since in the presence of such a field basically only the system 
of random magnetic "traps" yielding strong scattering 
changes. 

Thus, using (61), we can find the ratio between the part 
of the diffusion tensor transverse to the regular magnetic 
field K, and the longitudinal part K I ~  : 

Substituting the path A from (63), we find that K, / KII  attains 
its maximum at 

w l  = v,=, 

where vc= v l L ,  is the random collision rate. This means that 
in the event of strong small-scale random scattering with the 
Larmor frequency in a regular magnetic field being close to 
the random scattering rate there is quasiresonant scattering, 
which leads to an increase in the transverse diffusion of par- 
ticles and additional isotropy of scattering. 

In the presence of a weak regular magnetic field 
(Ro%-A) ,  we define the ratio of the transverse part of the 
diffusion tensor to the total diffusion tensor as 

In this case, at w l = v c a  the ratio K, / ( K I I +  K ~ O  is at its 
minimum, which explains the increase in the magnetization 
of particles in a regular magnetic field as the particle energy 
decreases to a point where the frequencies w l  and v C m  
coincide. 

7. DISCUSSION AND CONCLUSION 

The method of functionals and the diagrammatic tech- 
nique show that as the energy of particles scattered in a 
small-scale random magnetic field decreases in the presence 
of a regular magnetic field, there is a transition from weak 
scattering to moderate small-scale random scattering, in 
which a particle scatters from a single magnetic inhomoge- 
neity at an average angle 5 1. A further decrease in the par- 
ticle energy radically changes the scattering: it is transformed 
into strong small-scale scattering, with scattering angle 2 1. 
However, the diffusion equations for the particle number 
density N and the current J and the expression for the spatial 
diffusion tensor K , ~ ,  which now allow for moderate and 
strong scattering, do not change. Only the expression for the 
transport path A changes. 

When moderate small-scale scattering is present, there is 
random "broadening" of the integrand Green's function in 
the diffusion coefficient in momentum space, with the trans- 
port path becoming proportional to p at low particle mo- 
menta. 

When strong small-scale scattering is present, the inter- 
action of a particle with the random magnetic field acquires a 
"trapping" nature, with the particles moving between the 
inhomogeneities, which form the traps, along almost closed 
paths. In this case as the particle energy decreases, the trans- 
port path asymptotically tends to a quantity of order LC, and 
the expansion of the iteration solution for the vertex operator 
in the random magnetic field is similar, as the diagrammatic 
technique implies, to the expansion of the total interaction in 
the interactions with an increasing number of magnetic traps. 

The solution of the equation for the vertex operator also 
implies that at low energies the strong small-scale scattering 
is "parton-like" i.e., a particle moves freely between colli- 
sions with strong scattering. This is probably a feature of the 
interaction of a particle and a random magnetic field that 
makes it possible to use the iteration procedure in solving the 
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equation for the vertex operator. The case at hand bears a 
strong resemblance to the asymptotic freedom of quarks in 
QCD, where when the momentum transferred to a quark 
tends to infinity, the interaction with one-gluon exchange 
becomes infinitesimal and the iteration procedure can be em- 
ployed to obtain the renormalization f a ~ t o r . ~ ' - ~  

Also, for strong small-scale scattering the collision term 
(57) is not of the diffusion type in the momentum space 
because of the presence of inverse momentum operators, 
with the result that the kinetic equation in the phase space 
cannot be reduced to the Fokker-Planck equation. When a 
strong regular magnetic field is present and the Larmor fre- 
quency in a regular magnetic field coincides with the strong 
random scattering rate, transverse diffusion of the particles 
increases and additional isotropy of scattering emerges. 

In view of the large number of processes leading to the 
stochastization of particle scattering, the small-scale random 
magnetic field can be defined as an effective random mag- 
netic field with characteristics determined by comparing the 
averaged scattering characteristics derived analytically with 
the experimental data. 

Since in obtaining the iteration solution for the vertex 
operator we ignored the magnetic field velocity u in the in- 
tegrand of (46), we therefore ignored the accelerating pro- 
cesses on distance of order of the inhomogeneity size L C ,  

processes related to strong small-scale random scattering. 
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