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Direct numerical integration of the time-dependent Schrodinger equation is used to study the 
dynamics of a quantum system with a short-acting potential, subject to the action of a high- 
frequency electromagnetic field with superatomic field strength and a low-frequency field of 
moderate intensity. The results of the numerical experiments carried out in this work indicate the 
formation of a set of stationary states of the Kramers-Henneberger potential which 
describes the atom in a superstrong high-frequency field. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

The interaction of atomic systems with an intense elec- 
tromagnetic field has aroused great interest in connection 
with a number of unexpected results obtained quite recently.' 
One of these is the prediction of a stabilization effect of a 
quantum system in the field of a high-intensity electromag- 
netic wave. The stabilization is characterized by a decrease 
in the ionization probability of the system with growth of the 
intensity of the laser radiation. The first papers indicating the 
possibility of such behavior of the system were Refs. 2 
and 3. 

An analysis of the reasons for stabilization leads to two 
main mechanisms. One is connected with destructive inter- 
ference of the amplitudes of transitions to the continuum 
with nearby high-lying Rydberg  state^."^ The second 
mechanism is responsible for stabilization of the low-lying 
states and even isolated atomic states in the high-frequency 
limit of the laser radiation. The physical essence of the rel- 
evant processes may be conveniently illustrated by replacing 
the laboratory coordinate system by the Kramers coordinate 
system oscillating together with the atomic electron. In this 
case the initial atomic potential and the external laser action 
are replaced by some effective potential-the Kramers- 
Hemeberger potential, which describes the system "atom 
+field of the electromagnetic wave." '-I2 The emergent new 
quantum system, the Kramers-Hemeberger atom, is charac- 
terized by its own system of stationary states and corre- 
sponding wave functions, which differ substantially from the 
stationary states of the initial atom. At superatomic intensi- 
ties of the wave field the localization region of the electron in 
the Kramers-Henneberger potential turns out to be of the 
order of twice the amplitude of the oscillations of the free 
electron in the electromagnetic field and significantly ex- 
ceeds the size of the initial atom.13-l6 This leads to greater 
stability of such states with respect to the ionization process. 

However, from the point of view of a formal approach 
the description of the dynamics of the system in the basis of 
atomic wave functions and in the basis of Kramers- 
Henneberger states are equally valid. In this regard the ques- 
tion arises, which description corresponds to the real states of 

the system and, correspondingly, is preferable.15.'7918 
The question of the reality of the structure of the levels 

of the Kramers-Hzmeberger potentiai was rosed in the in- 
vestigation of the phenomenon of stimulated photocapture to 
bound states in the process of electron scattering by an atom 
in the presence of an intense, high-frequency electromagnetic 
field.17 The results of numerical calculations indicate a pro- 
cess of resonant population of the states of the Krarners- 
Hemeberger potential depending on the energy of the inci- 
dent electron. Thus, for superatomic field intensities 
photocapture proceeds not to a state of the initial atom'9920 
but to states of the Kramers-Hemeberger potential.17 An 
indirect proof of the formation in strong optical fields of 
stable states in the Kramers-Henneberger potential is the 
dichotomy of the electron wave function discovered and in- 
vestigated in Refs. 10, 12, 14, 15, and 21 and enhancement 
of the stability of such a formation against ionization as the 
radiation intensity is increased. 

The question of the physical validity of the choice of one 
or another basis of states of the quantum system can be most 
explicitly resolved by experimental means by examining the 
response of the system to some external action. As such an 
external action it is natural to choose electromagnetic dipole 
radiation of comparatively high intensity, allowing us to ex- 
amine the structure of the energy spectrum of the atom in the 
presence of a strong electromagnetic field. 

In the present paper we carry out direct numerical inte- 
gration of the time-dependent Schrodinger equation to inves- 
tigate the dynamics of a one-dimensional quantum system 
with a short-acting potential for simultaneous action of a 
strong, high-frequency field and a weak, low-frequency field. 
The results obtained are a direct proof of the real existence of 
the Kramers-Hemeberger potential and corresponding sta- 
tionary states for an atomic electron in the presence of an 
intense electromagnetic wave field. On the basis of the nu- 
merical experiments we have constructed a simple analytical 
model of an atomic system in a biharmonic laser field, al- 
lowing us a qualitative description of the physics of the pro- 
cesses taking place in the considered system. 
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2. QUANTUM SYSTEM IN THE FIELD OF AN 
ELECTROMAGNETIC WAVE: BASIS OF STATES OF THE 
UNPERTURBEDATOMANDKRAMERS-HENNEBERGER 
BASIS 

In the one-dimensional single-electron approximation 
the evolution of an atomic system in the field of an electro- 
magnetic wave can be obtained by solving the following 
equation: 

d* fi2 d2* ifi -=--- + V(x)*(x,t)- exEo cos wt$(x,t), 
dt 2m dx2 

(1) 

where $ is the wave function of the system, V(x) is the 
atomic potential, and Eo is the amplitude of the electromag- 
netic wave field with frequency w,. 

Equation (1) should be augmented by an initial condition 
of the form 

where cpo(x) is ,fhe wave function of the electron up to the 
start of laser action. It is usually assumed that cpo(x) is an 
eigenfunction of the atomic Hamiltonian 

i.e., that at the initial time the system is found in one of the 
stationary states, e.g., in the ground state. 

Representing the general solution of Eq. (1) in the form 
of a superposition of stationary states of Ho , i.e., 

(here p, and rp, are the eigenfunctions of the atomic Hamil- 
tonian of the discrete and continuous spectra, belonging to 
the eigenvalues E, and E,  respectively), it is easy to obtain a 
system of equations for the time-varying probability ampli- 
tudes of population of the atomic states of the discrete C, 
and continuous C ,  spectra. From a physical point of view, 
such an approach is interpreted as transitions between vari- 
ous stationary states of the atom under the influence of the 
electromagnetic wave. 

An alternative approach to the problem in the case of 
high-intensity electromagnetic fields consists in transforming 
to the Kramers coordinate system, oscillating with the free 
electron in the electromagnetic wave field. In this coordinate 
system the Schrodinger equation reduces to the form 

d* fi2 d2* 
ifi - = - - - + V(x+a, cos wt)$(x,t) 

dt 2m ax2 (5) 

(a,=eEolmw2 is the amplitude of vibrational motion of the 
electron in the wave field) and corresponds to motion of the 
electron in the field of the rapidly oscillating atomic shell. 
Expanding the oscillating potential V(x+a, cos ot) in a 
Fourier series 

V(x+a, cos wt)= VKH(x,a,)+ C ~ , ( x , a , ) e ' ~ ~ ~ ,  (6) 
n+O 

we rewrite Eq. (5) in the form 

Here VKH(x,a,) is the zeroth term of the Fourier series 
expansion-the Kramers-Henneberger potential-and 
GV(x,a, ,t) is the sum of all remaining harmonics. 

The solution of Eq. (7) can be represented in the form of 
transitions between the various stationary states in the 
Kramers-Henneberger potential, taking place under the ac- 
tion of the sum of harmonics ~ , ( ~ , a , ) e ' " ~ ' .  In strong fields 
the quantity SV can be considered as a small perturbation, 
falling off with growth of the intensity of the electromagnetic 
wave,16 which leads to an enhancement of the stability of the 
Kramers-Henneberger states and the phenomenon of stabi- 
lization. 

From a maihematical point of view, both considered ap- 
proaches are identically possible, and it becomes the ques- 
tion of convenience, which one of them is preferable. The 
results of direct numerical integration of the time-dependent 
Schrodinger equation are of course insensitive to the choice 
of basis. However, the physical interpretation turns out to be 
substantially different. In strong fields the localization re- 
gions of the atomic wave functions and wave functions of 
the stationary states of the Kramers-Henneberger potential 
differ substantially. Therefore, finding the system in one of 
the bound states of the atomic Hamiltonian means, with 
probability close to unity, an ionization state in the 
Kramers-Henneberger basis, and vice versa. 

3. NUMERICAL MODEL 

In the present paper, as our model atomic potential we 
will use the square-well potential 

with parameters Vo= 3.33 eV and d = 3  A.  In this well 
there is only one bound state, with energy E - 2.0 eV. For 
these potential parameters the "atomic intensity" of radia- 
tion Pa= 1014 wlcm2. Switching on a strong field with 
f i  w = 5 eV and superatomic intensity P , to a significant ex- 
tent deforms (destroys) the original atomic potential. The 
Kramers-Henneberger formalism in this case leads to the 
characteristic Kramers-Hemeberger double-well potential 
with width 2ae  (see Fig. 1) and a system of stationary states 
with energies cfH ( i= 1,2, . . . ). It is important here that the 
number of stationary states in the Kramers-Hemeberger po- 
tential grows as the radiation intensity increases. Table I 
gives the energies of the three lowest states of the Kramers- 
Hemeberger potential for different values of the radiation 
intensity, and Fig. 2 graphs the probability density distribu- 
tions lpyH12 for P 1  = 1016 w/cm2 for the three states exist- 
ing in this case. 
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FIG. 1. Atomic potential (1) and Kramers-Henneberger potential (2) for 
radiation with intensity 1016 w/cmZ and photon energy 5 eV. 

With the aim of revealing the real presence of such states 
of an atom in a strong field, we added a field with intensity 
P2= lo9 - 10'' w/cm2 in the infrared frequency range 
no2= 0.3-0.5 eV. For a certain value of n o 2  such an ac- 
tion can give rise to resonance transitions between the states 
of the discrete spectrum of the Kramers-Henneberger poten- 
tial. From the physical point of view, it is precisely the pres- 
ence of such resonances that allows us to determine the en- 
ergy spectrum and potential parameters of the system "atom 
+ high-frequency electromagnetic field. " 

In the coordinate system associated with the oscillating 
free electron in a strong field with frequency ol the Schro- 
dinger equation is written in the form 

d* fi2 d2* in-=-- --Z+[V(x+ae cos colt)-e(x 
dt 2m dx 

+ae  cos w1t)E2 cos 02t]q%(x,t), (9) 

a,=eEl lmo:, and E l  and E2 are the amplitudes of the 
high-frequency and low-frequency fields. 

By direct numerical integration of Eq. (9) we found an 
accurate exact solution for the wave function +(x,t) for 
P I=  1016 w/cm2. Using this solution, we calculated the 
population dynamics of the various stationary states of the 
Kramers-Henneberger atom Wi= Ici(t)l2, i = 1,2,3, and de- 
termined the probability of its ionization W as a function of 
the intensity and frequency of the probe pulse: 

TABLE I. Energy of the lower three stationary states in the Kramers- 
Hemeberger potential and their lifetimes for different values of the field 
intensity of the electromagnetic wave. 

HG. 2. Wave functions of the first (I), second (2), and third (3) stationary 
state in the Kramers-Hemeberger potential corresponding to Fig. 1.  

Here vY(x)  is the wave function of the bound stationary 
state in the Kramers-Hemeberger potential satisfying the 
equation 

4. RESULTS AND DISCUSSION 

4.1. Exponential decay of the Kramers-Henneberger states 
under the action of harmonics of the high-frequency 
electromagnetic fleld 

First we separately analyzed the dynamics of the quan- 
tum system in only the high-frequency field with 
nul = 5 eV for various values of the radiation intensity. We 
assume that at the initial time the system is in one of the 
stationary states of the Kramers-Hemeberger potential. Un- 
der this condition the probability of finding the system in this 
initial state as a function of time for P I=  1016 w/cm2 is 
shown in Fig. 3. As can be seen from the calculated results, 
the population of the states decays exponentially with char- 
acteristic time eH , which is different for each of the differ- 
ent Kramers-Henneberger states. The lifetimes of the sta- 
tionary Kramers-Hemeberger states 7FH are given in the 
table. The lifetimes and the corresponding widths of the 
states in the Kramers-Hemeberger potential can be obtained 
in another way, e.g., by the Sturmian-Floquet method, as 
was done in Ref. 22. However, in our case the exponential 
nature of the decay follows directly from the numerical cal- 
culations without any additional assumptions. The rate of 
decay of these states (7KH)-l is given approximately by the 
magnitude of the matrix element (il 8vleikx) (1 i)= cpY , k is 
the wave number of the electron in the continuum) and falls 
off in the stabilization regime with increase of the radiation 
intensity. Note that at the radiation intensity 
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FIG. 3. Dynamics of the decay of the three lower stationary states in the 
Kramers-Henneberger potential for P =  1016 w/cm2. The numbers labeling 
the curves correspond to Fig. 2. 

P I  = 1016 w/cm2 the decay times of the states in the 
Kramers-Henneberger potential satisfy the condition 

wji 1, (12) 

where wji= (EY- ~ $ H ) l f i  are the frequencies of the transi- 
tions between the different states of the Kramers- 
Henneberger atom. This condition makes it possible to inves- 
tigate the action of a low-frequency resonant field with 
frequency 02z w,i without taking account in the zeroth ap- 
proximation of the harmonics of the Kramers-Henneberger 
potential. 

4.2. Analytical model 

In the simplest case the action of a strong high- 
frequency field and a comparatively weak low-frequency 
field on the system under study can be treated in the approxi- 
mation of a two-level system with outflow to the 
continuum.23 The strong high-frequency field transforms the 
initial atomic potential into the Kramers-Henneberger po- 
tential with its set of states which decay under the action of 
the high-frequency harmonics of the strong field, each with 
its own characteristic decay time. The low-frequency field 
with frequency w2 singles out from the entire set of 
Kramers-Henneberger states two states, the frequency of the 
transition between which is close to the frequency of the 
low-frequency field (if such a field is present). Given this it 
is possible to limit the discussion to a two-level system in 
which the populations of the states vary due to possible tran- 
sitions under the action of the low-frequency field and be- 
cause of decay of the states under the action of the harmonics 
of the high-frequency field. In the case when the intensity of 
the high-frequency field PI = 1016 w/cm2 it turns out to be 
convenient to consider the transitions between the second 
and third states of the Kramers-Henneberger potential, the 
energy gap between which for the given value of P I  is 
~ 0 . 3 0  eV. In this case the frequency of the low-frequency 
field should be close to the indicated magnitude of the en- 
ergy gap. Thus, the dynamics of the amplitudes of the popu- 
lations of the second C2(t) and third C3(t) Kramers- 

Henneberger states after averaging over the rapidly 
oscillating terms is described by the system of equations 

where r2 and 7, are the characteristic lifetimes of states 
12) and 13) (see Table I), d32 is the dipole moment of the 
transition between these states, Eo is the intensity of the 
low-frequency field, and A o  is the detuning of the low- 
frequency field from the frequency of the transition between 
states 12) and 13). For hw, = 5 eV and p1 = 1016 w/cm2 
the matrix element of the coordinate X32=d32/e =5.55 A. 
Since the characteristic time r3% 7 2 ,  we can neglect decay 
of the state 13) under the action of the high-frequency har- 
monics. The desired solutions for the population amplitudes 
C2(t) and C3(t) can be represented in the form 

where 

and the coefficients A1,2 and B1,2 are found from the initial 
system of equations and the initial conditions for the popu- 
lations of the Kramers-Henneberger states. Since under our 
conditions A o  did not exceed 0.2 eV, we have 
A W / ( ~ T ~ ~ ~ ) < <  1. In this case 

This expression leads to oscillations superimposed on the 
decay of the populations W2(t) and W3(t) of the two states 
under consideration with characteristic frequency 2 a ,  where 
0 is given by formula (16). Note that in the case of exact 
resonance (Aw = 0)  and neglecting the decay of state 12) 
under the action of the harmonics (1 /2 r28a2 )  the popula- 
tion oscillations take place with twice the frequency a O ,  the 
expression for which coincides with the expression for the 
Rabi frequency in the two-level system in the presence of an 
electromagnetic field. For the parameter values used, the pe- 
riod of the population oscillations, calculated according to 
formula (17), is 105 fs for the intensity of the low-frequency 
field P2 equal to lo9 w/cm2 and 33 fs for 
P2=  10'' w/cm2. Allowing for the finite lifetime 7 2  under 
resonance conditions leads to population oscillations with 
0=2Cl,,  where 
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FIG. 4. Population dynamics of the second ( I )  and third (2)  bound state in 
the Kramers-Hemeberger potential, and also the continuum (3) in the pres- 
ence of a low-frequency resonant field (fiw=0.30 eV) with intensity 10' 
w/cm2. Harmonics of the the Kramers-Henneberger potential are not taken 
into account. 

For T2=32.6, fs, formula (19) leads to the value of the fre- 
quency of the population oscillations R,=5.2. 1013 s-', 
which corresponds to a period T,=2rr/flT= 120 fs. If we 
also take account of decay of state 12) and the detuning from 
resonance, the population oscillations will take place with 
frequency 2R [formula (16)], which leads to values of the 
oscillation periods T ,  = 40 fs for Ao= 0.1 eV and 
T2= 20 fs for Am= 0.2 eV. 

Thus, based on the two-level model, we have obtained 
values of the periods of the oscillations of the populations of 
the first and second Kramers-Hemeberger states for differ- 
ent intensities of the low-frequency field and different de- 
grees of detuning of the frequency of the low-frequency field 
from resonance. It is of interest to compare the results of this 
analytical model with the results of numerical calculations of 
the dynamics of the populations of the investigated 
Kramers-Henneberger states. 

4.3. Numerical calculations of the population dynamics of 
the Kramers-Henneberger states in the presence of 
a low-frequency probe field 

The dynamics of the populations of the Kramers- 
Henneberger states 12) and 13) and the time-dependence of 
the probability of ionization of the system when the energy 
of a field quantum coincides with the distance between the 
levels for P2= lo9 w/cm2 without allowance for the high- 
frequency harmonics of the Kramers-Henneberger potential 
are shown in Fig. 4. It turns out that such an action indeed 
causes population oscillations in the system with probability 
of transition from state 12) to state 13), and vice versa, close 
to unity, and characteristic period T =  110 fs. In this case, as 
a result of photo-ionization of state 13) under the action of 
the low-frequency field the total population of states 12) and 
13) gradually decays. The observed picture is in good agree- 
ment with the analytical two-level model with Rabi oscilla- 
tions appearing in it, including the value of the period of the 
oscillations calculated on the basis of this model. 

The results of an exact solution of Eq. (9) for an atom in 
a biharmonic field, allowing for the simultaneous action of 
the low-frequency field with intensity lo9 w/cm2 and 
h w2=0.30 eV and the harmonics of the high-frequency 
field on the populations W2(t) and W3(t), are shown in Fig. 
5a. These data were obtained for 100% population of state 
12) at time t = 0. Against the background of the decay of the 
states with decay times determined by the harmonics of the 
high-frequency field, the characteristic population oscilla- 
tions are visible, of Rabi oscillation type with period 
T =  115 fs, only a little longer in comparison with the case 
described above. Figure 5b plots the probability of ionization 
of the system as a function of time for the same conditions. 
The calculated curve has an undulatory character, which is a 
result of the different decay rates of states 12) and 13) (see 
Table I). 

The results of our numerical experiment indicate that the 
system "atom+electromagnetic field" is characterized by a 
resonant transition at the frequency ~ 0 . 3 0  eV. This means 
that the Kramers-Henneberger states correspond precisely to 
the real physical states of the system. Figure 6a displays the 
dynamics of the populations of states 12) and 13) for the case 
in which the frequency of the probe field does not coincide 

FIG. 5. Population dynamics of the second 
( I )  and third (2)  bound state in the 
Kramers-Henneberger potential (a), and the 
continuum (b) in the presence of a low- 
frequency resonant field ( fi w = 0.30 eV) 
with intensity 10' w/cmZ with harmonics of 
the the Kramers-Henneberger potential 
taken into account. 
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FIG. 6. Population dynamics of the second 
(I) and third (2) bound state in the 
Kramers-Henneberger potential (a), and the 
continuum (b) in the presence of a low- 
frequency resonant field with intensity lo9 
w/cmZ and frequency f i  w = 0.40 eV (a) and 
f i  w = 0.50 eV (b). 

with the frequency of the transition, w 3 ~ .  For the detuning 
A w  = 0.1 eV the oscillation period is 40- 45 fs, which is in 
good agreement with the dependence of on the detuning in 
formula (16). A decrease of the detuning A w  to a value 
~ 0 . 2  eV (Fig. 6b) leads to- further decrease of the oscilla- 
tion period and simultaneous decrease of the maximum value 
of the probability of finding the system in the state 13) down 
to a value on the order of 3 .  lo-'. As a result, the oscilla- 
tions of the population of state 12) are practically invisible 
against the background of monotonic decay under the action 
of the high-frequency harmonics of the Kramers- 
Hemeberger potential. In both cases with detuning from 
resonance, the period of the observed oscillations coincides 
with the value calculated from the two-level model. 

In Fig. 7 one can observe similar oscillations of the 
populations W2(t) and W 3 ( t )  for the case of exact reso- 
nance, but a different intensity of the low-frequency field: 
P 2 =  10" w/cm2. As could be expected, the oscillation pe- 
riod is decreased by roughly a factor of three in comparison 
with the results presented in Fig. 5a, which is in complete 
agreement with the calculational formula (17) for the Rabi 
frequency. 

The above-mentioned results were obtained under the 
assumption that at the time the low-frequency field is 
switched on, the system is found in one of the stationary 
states of the Krarners-Henneberger potential. In the real situ- 
ation the strong high-frequency field, which leads to the ap- 
pearance of the Kramers-Hemeberger potential, has a finite 
switching-on time, which causes all possible Kramers- 
Hemeberger states to be populated, each with a definite 
probability. Therefore the question is of interest, what are the 
dynamics of an atomic system subject to the simultaneous 
action of a strong high-frequency field and a weak low- 
frequency field when the high-frequency field is switched on 
smoothly. 

The question of the optimum duration of the front of the 
pulse to achieve the maximum probability of filling of the 
Kramers-Hemeberger states has been discussed in a number 
of papers (see, e.g., Refs. 16 and 24). It appears possible to 
say that the optimum duration of the front T~ is equal to 
roughly 2-6 periods of the wave field. Figure 8 plots the 
population dynamics of the states of the Kramers- 
Hemeberger potential for the case where the high-frequency 
field is switched on over three periods (= 2.5 fs). The popu- 
lations of the three states at the time the maximum of the 
amplitude of the field is reached turned out to be equal to 

FIG. 7. The same as in Fig. 5, but for intensity of the low-frequency field 
equal to 101° w/cmZ. 

FIG. 8. Population dynamics of the first ( I ) ,  second (2), and third (3) bound 
state in the Kramers-Henneberger potential after smoothly turning on the 
high-frequency field. 
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FIG. 9. The same as in Fig. 8, but in the presence of a low-frequency field 
with frequency fio=0.30 eV and intensity 10' w/cm2. 

W l  = 0.236, W 2  = 0.171, and W 3  = 0.145. Further evolution 
of the states is governed by their decay under the action of 
the harmonics of the Kramers-Henneberger potential with 
characteristic decay times 7fHg55.5 fs, GH=32.6 fs, and 
F ~ 2 7 3  fs. Figure 9 reflects the influence on the popula- 
tions of states (2) and 13) of the Kramers-Henneberger po- 
tential of the resonance field for the case in which it is turned 
on instantaneously at the time t=O. The high-frequency 
field, as before, takes a time r p 2 . 5  fs to reach its maxi- 
mum amplitude. The characteristic oscillations of the popu- 
lations, similar to those seen in Fig. 5a, are visible against 
the background of the decay of the states. Since the decay 
time of state 13) significantly exceeds the period of the os- 
cillations, transitions between the states 12) and 13) are able 
to take place a considerable number of times before the 
population of state 12) becomes small due to its decay. 

5. CONCLUSION 

The numerical experiments which we have performed 
convincingly demonstrate that an atom in the presence of a 
strong high-frequency electromagnetic field is indeed de- 
scribed by the Kramers-Henneberger potential. A study of 
the energy levels of such a system with the help of a low- 
intensity electromagnetic probe field reveals the discrete 
structure of the levels corresponding to the Kramers- 
Henneberger approximation and differing substantially from 
the original atomic states. Since the system is characterized 

by a set of new stationary states over the duration of the 
strong laser pulse, the representation of the current solution 
of the time-dependent Schrodinger equation (9) in the form 
of a superposition of the original atomic states is not reason- 
able and does not lead to a satisfactory explanation of the 
obtained results. Thus, while the pulse acts, it is the 
Kramers-Hennebergzr atom that accurately represents the 
real physical system, which in the final analysis determines 
the set of basis wave functions. 
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