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A wave function possessing the correct asymptotic behavior in the region of configuration space 
where two particles are only slightly separated and a third is located far away is constructed 
for a system of three nonrelativistic asymptotically free charged particles. It is shown that the effect 
of the long-range Coulomb field of the third particle on the motion of the weakly separated 
pair of particles modifies the momentum of their relative motion-the momentum becomes a three- 
particle momentum which depends on the position and characteristics of the motion of the 
third particle. In addition, the modification of the momentum is different for terms in the expansion 
of the wave function which do and do not account for the rescattering of the third particle 
by the particles in the pair; this is important in order to obtain the correct asymptotic behavior of 
the wave function. The wave function constructed is used to calculate the profile of the 
(2s2) 'S and ( 2 ~ 2 ~ ) '  P autoionization resonances excited in the helium atom by protons, 3 ~ e +  
ions, and antiprotons with energies from 10 to 50 keV. The effect of the three-particle 
postcollision interaction on the shape of the resonance lines for small angles of ejection of the 
autoionization electrons is investigated. It is shown that the additional peak observed 
experimentally in the low-energy wing of the (2s2)'s resonance in the spectra of the electrons 
ejected at an angle of 5" in collisions of 10 keV 3 ~ e +  ions with He atoms is due to the 
interference of waves corresponding to electrons which are and are not rescattered by the 3 ~ e +  
ion. A new three-particle interference effect was discovered-under certain kinematic 
conditions an additional structure can also appear in the low-energy wing of the nonisotropic 
resonance for negatively charged particles (antiprotons). Q 1996 American Institute of 
Physics. [S1063-7761(96)00605- 11 

I. INTRODUCTION tron with the residual target ion is traditionally not consid- 

Inelastic collisions of charged particles are often accom- 
panied by the excitation of autoionized states or the forma- 
tion of vacancies in the inner electronic shells of the atoms. 
The emission of an autoionization or Auger electron occurs 
with high probability as a result of nonradiative decay of the 
highly excited states which are formed. Under certain kine- 
matic conditions the charged particles formed in the final 
state can interact strongly with one another, which greatly 
affects their angular and energy distributions. Characteristic 
manifestations of the interaction are a broadening and shift 
of the resonance lines in the autoionization-electron svectra. 
first observed by Barker and Berry in slow collisions of 
~ e +  and ~ e +  ions with He atoms.' The diverse manifesta- 
tions of the interaction of charged particles in the final state 
for processes proceeding via intermediate resonance states 
were subsequently investigated intensively both experimen- 
tally and theo~-eticall~.~-~ In the literature such studies are 
known postcollision interaction (PCI) investigations. 

Various theoretical models for taking into account the 
PC1 have been proposed to describe the observed postcolli- 
sional phenomena. For example, near threshold, when the 
velocity v of the scattered particle is much lower than the 
velocity u,  of the autoionization electron (vev , )  and the 
angle of divergence of the particles is large and their inter- 
action with one another can be neglected, the PC1 is deter- 
mined by the interaction of the scattered particle and the 
residual target ion (the interaction of the autoionization elec- 

ered to be a PCI, which is determined by the interaction of 
the scattered particle with the products of the decay of the 
ionization resonance). For this reason, the theoretical models 
developed in this field for taking into account the PCI, such 
as the classical Barker-Berry model,' the semiclassical 

the quantum-mechanical model? the quasimolecu- 
lar adiabatic approach: and others, are limited to a descrip- 
tion of the two-particle postcollision effects. 

As the velocity of the scattered particle increases or for 
small angles of divergence of the charged particles, their 
motion is strongly affected by the interaction of the autoion- 
ization electron and the scattered particle. This makes it nec- 
essary to take into account the three-particle Coulomb dy- 
namics in the final state-three-particle PCI, most strongly 
manifested when the velocities of the diverging particles are 
close in magnitude and direction. The key point in the solu- 
tion of this problem is describing correctly the wave function 
of the final state of the system. 

In Refs. 9-1 1 an asymptotic wave function consisting of 
the product of three-particle plane waves and distorting Cou- 
lomb factors, expressed in terms of degenerate hypergeomet- 
ric functions, and describing the relative motion of the inter- 
acting pairs of particles in the continuum, was used to 
describe the final-state scattering dynamics of the three par- 
ticles formed in the decay of autoionization resonances. The 
use of such a wave function for describing the final state is 
justified in the case when all distances between the pairs of 
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particles approach infinity, except in directions for which one 
or more vectors determining the relative position of the par- 
ticle pairs are parallel to the corresponding canonically con- 
jugate momenta. In Refs. 12 and 13 an analogous wave func- 
tion obtained in the continuum distorted wave (CDW) 
approximation was used to describe the three-particle PCI. 

For slow collisions, in which the interaction of an auto- 
ionization electron and the scattered particle can be ne- 
glected, the analytic expression obtained in Ref. 9 for the 
amplitude of autoionization decay of atomic resonances sim- 
plifies to the form obtained in Ref. 8. For sufficiently large 
angles of divergence of the charged particles in the final 
state, when the interaction energy of the receding particles is 
less than the kinetic energy of their relative motion, the auto- 
ionization amplitude obtained in Ref. 9 simplifies to the ex- 
pression obtained previously in Refs. 14 and 15 in the sim- 
plest semiclassical eikonal approximation. When the effect 
of the three-particle PC1 is large (an electron is ejected close 
to the direction of the receding scattered particle with veloc- 
ity higher than the projectile velocity), the quantum- 
mechanical descriptian of the ionization9-" predicts large 
changes, which are absent from the semiclassical eikonal 
theory of Refs. 14 and 15, in the intensity and shape of the 
resonance line:9 The intensity of the resonance increases 
sharply at small ejection angles as a result of the capture of 
an autoionization electron in the continuum of the scattered 
particle and an additional peak appears in the left-hand wing 
of the resonance for small ejection angles 8,= 1 - 5O as a 
result of the rescattering of some autoionization electrons by 
a scattered particle.10 

Recent experimental investigations of au to i~n iza t ion~~~ '~  
and ~ u ~ e r "  resonances in ion-atom collisions have con- 
firmed the existence of these three-particle PC1 effects. In 
Ref. 16 the increase in the intensity of electrons in the for- 
ward direction is interpreted as being the result of "focus- 
ing" of electrons in the Coulomb field of the receding ion 
and in Ref. 17 the appearance of the additional peak in the 
left-wing of the resonance is interpreted as resulting from the 
interference of two coherent amplitudes corresponding to 
two possible different classical trajectories of the autoioniz- 
ation electron in the field of the receding ion. It should be 
kept in mind, however, that even though the quantum- 
mechanical models of Refs. 9-13 predict a sharp increase in 
the intensity of the resonance at small ejection angles, the 
increase found in the electron emission in some directions is 
not accompanied by a decrease in the electron emission in 
other directions with the integrated yield of the resonance 
being conserved, i.e. the theoretical models which take into 
account the P C I ~ - ' ~  are substantially nonunitary. A quantum- 
mechanical model of the PC1 that is unitary in the diagonal- 
ization approximation and reproduces the "Coulomb focus- 
ing" effect was developed in Ref. 19. In addition, to describe 
the "Coulomb focusing" effect systematically the PC1 in the 
final and intermediate resonance states must be taken into 
account simultaneously. 

Moreover it turns out that the theoretical models devel- 
oped for taking into account three-particle P C I ~ - ' ~  predict 
the appearance of additional structure on the left-hand wing 
of the resonance only for positively charged scattered par- 

ticles. When a negatively charged particle, for example, a 
scattered electron or antiproton, is present in the final state 
no additional structure appears in the profile of the reso- 
nance. At the same time such structure was observed in an 
experimentZ0 where the shape of the L~ - M & ( ~ D ~ )  line in 
the spectra of Auger electrons ejected from an argon atom in 
a collision with electrons was investigated. The authors at- 
tributed this effect to the strong interaction between the ini- 
tially ejected electron (as a result of whose ejection a va- 
cancy is formed in an inner shell of the atom) and the Auger 
electron, since the energy of the ejected electron (Eej= 207 
eV) was chosen to be close to the energy of the Auger elec- 
tron (EAug= 203.4 eV), and the energy of the scattered elec- 
tron was much higher (E,,=750 eV). In the calculations 
performed in Ref. 21 on the basis of the approximations used 
in Refs. 9-13 no structure was found on the low-energy 
shoulder of the Auger line. This discrepancy between theory 
and experiment is motivating the further elaboration of our 
ideas about the dynamics of the PC1 of the receding particles. 

A serious deficiency, characteristic of all preceding theo- 
retical models which take into account the three-particle PCI, 
should be noted in this connection: A wave function that has 
the wrong asymptotic behavior in the region of configuration 
space where two particles are close to one another and a third 
particle is located far away from the pair is used to describe 
the final state. At the same time, in calculating the decay 
amplitude of the autoionization resonance the integration 
over the coordinates of the separating receding was per- 
formed over the entire configuration space of the system, 
including the asymptotic region where the particle pair-the 
autoionization electron and the residual target ion-are close 
to one another the scattered particle is located far away from 
their center of mass. It appears that this region make the 
main contribution to the amplitude is present in the decay 
matrix element, since the decay matrix element contains the 
exponentially decaying wave function of the excited bound 
state of the autoionization electron and the residual target 
ion. In Refs. 22 and 23 an attempt was made to construct the 
asymptotic solution of the three-particle Schrodinger equa- 
tion in the indicated asymptotic region. As will be shown 
below, however, the wave function obtained in Refs. 22 and 
23 taking into account the Coulomb rescattering of the par- 
ticle pairs has the wrong asymptotic behavior in the region of 
configuration space which is of interest to us. 

Our objective in the present work is to construct the 
wave function of a system of three asymptotically free 
charged particles that possesses the correct asymptotic be- 
havior in the region of configuration space where two par- 
ticles are located close to one another and the third particle is 
located far away, to calculate, using the wave function ob- 
tained, the profile of the lowest autoionization resonances 
excited in the helium atom by ions, and to investigate the 
effect of the three-particle PC1 on the shape of the resonance 
lines. 

In Sec. 2,  first, a more precise formulation of the prob- 
lem is given and then the correct asymptotic solution of 
Schrodinger's equation is constructed. It is found that when 
the effect of the long-range Coulomb field of the distant 
particle on the motion of the weakly separated pair of par- 

840 JETP 82 (5), May 1996 Sh. D. Kunikeev and V. S. Senashenko 840 



ticles is taken into account, the "local" momentum of the 
relative motion of the particles in the pair is different from 
the asymptotic value. In Sec. 3 the stationary-phase method 
is used to calculate the decay amplitude of the autoionization 
resonance. In Sec. 4 the expression obtained for the decay 
amplitude of an isolated resonance is used to investigate 
quantitatively the effect of the three-particle PC1 on the 
shape of the (2s2)'s and ( 2 ~ 2 ~ ) ' ~  autoionization reso- 
nances excited in the helium atom in a collision with 10-50 
keV protons, 3 ~ e +  ions, and antiprotons for small ejection 
angles. It is proved directly that the additional peak observed 
experimentally in Ref. 17 on the left-hand wing of the 
(2s2)'s resonance for small ejection angles and 10 keV 
3 ~ e +  is associated with the rescattering of some autoioniza- 
tion electrons by the scattered ion. In addition, the effective 
charge Zeff of the 3 ~ e +  ion, determined by the incomplete 
screening of the nuclear charge of the ion by the bound elec- 
tron in the process of rescattering of autoionization electrons 
by the 3 ~ e +  ion (if Zeff=l, then no additional structure 
arises in the profile of the resonance), plays a large role in 
the formation of this structure in the profile of the resonance. 

An investigation of the effect of the sign of the charge of 
the incident particle on the ionization of the atom is a rapidly 
developing direction of study of the dynamics of different 
elementary processes in atomic-collision physi~s.24-26 The 
dependence of the profile of the autoionization resonances on 
the sign of the charge of the exciting particle (p') is inves- 
tigated in Sec. 4. For antiprotons, a new effect due to the 
three-particle PCI, which does not occur in previous PC1 
models, has been observed9-13: for small angles of ejection 
of the electron, an additional interference peak appears on 
the low-energy side of the profile of the nonisotropic reso- 
nance. It is shown that this effect arises as a result of the 
influence of the scattered charged particle on the motion of 
the autoionization electron at the moment it is transferred 
into the continuous spectrum. 

Some of the results obtained in the present work in ap- 
plication to Auger processes were reported at the 19th Inter- 
national Conference on the Physics of Electronic and Atomic 
Collisions (ICPEAC).'~ The atomic system of units is used 
throughout this work, with the exception of some explicitly 
indicated cases where different units are employed. 

2. CONSTRUCTION OF THE WAVE FUNCTION OF THREE 
ASYMPTOTICALLY FREE CHARGED PARTICLES 

Let us consider a system of three nomelativistic quantum 
particles with charge Zi and mass mi (i = 1,2,3). The Hamil- 
tonian of the system has the form 

where mij=mimjl(mi+mj) and ,ul=ml(m2+m3)l 
(m + m2+m3) are the reduced masses, rij are the relative 
coordinates of the particle pair (i, j), and R, are the coordi- 
nates of particle 1 with respect to the center of mass of the 
particle pair (2,3). In the region no where all three particle 
pairs are well separated (r12- r22- rl3& 1). the asymptotic 

wave function 'Pis away from the direction of three-particle 
forward scattering can be determined in factorized form:28 

3 

*,=ex~(ik23r23+iK1R1) II Fq(vij,tij)r 
i<j= 1 

where kij and K, are the momenta which are canonically 
conjugate to the coordinates rij and R1 ; lF1(a,c,z) is the 
confluent hypergeometric function that is regular at the ori- 
gin; and, r ( z )  is the gamma function. We operate on the 
wave function W, with the operator k -E ,  where 
E = k:3/2m23 + is the total energy of the system. As a 
result, we obtain the following expression for 
H - E  (if the solution is exact, then 
N!is=0): 

where the symbols F231 and F321 are cyclic permutation op- 
erators in the particle numbers. We represent the quantum- 
mechanical distortion factor of the continuum states for a 
pair of particles as the sum 

where 

FqO(v,()=exp - G(iv,l,- i t ) ,  ( 7)  

Here G(a ,c,z) is the confluent hypergeometric function that 
is irregular at the origin. We note that all three functions in 
the expansion (4) are solutions of the same confluent hyper- 
geometric equation, two of the three solutions being linearly 
independent. It follows from the asymptotic behavior of the 
function G(a,c,z) in the limit Izl  -)m that to terms - 6-' 

F , ( v 9 t ) = F e o ( ~ 1 t ) + F e 1 ( ~ . t )  

The asymptotic expansions (5) give the eikonal representa- 
tions for the quantum-mechanical functions: Fqo( v, 6) 
-+Feocl,(v,~).  The term Fqo(v,t), which makes the main 
contribution to the asymptotic behavior of Fq(v,6), repre- 
sents particles which have not been rescattered, and the term 
F,, ( v,(), which is asymptotically proportional to the Cou- 
lomb two-particle rescattering amplitude, describes single 
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collisions of a pair of particles. We underscore the fact that if 
Feo(v,5) = O(1)  compared to F , ~ ( V , [ )  = 0 ( 5 - ' ) ,  then their 
derivatives dFeo(l)(v ,c) ld5 are infinitesimals of the same 
order in 5-' . Since 

we obtain from Eqs. (3) and (5) that 
( H - E ) w ; = o ( ~ - ~ ) ,  if all 5ij-5-103, i.e. the function (2) 
is an asymptotic solution of the Schriidinger equation in the 
region no away from the singular directions. 

In the region a23, where the variable is bounded or 
does not approach infinity rapidly enough, 
IVr23~q(v23,523)1-0(1)  or -0(eVE), where OSEC 1 is 
sufficiently small, and the function (2) is no longer an as- 
ymptotic solution, since mi- 0 ( 5 - 1 - E )  decreases with 
distance relatively slowly (for E = 0 as the Coulomb interac- 
tion potential). The terms FqO and Fql in the expansion (4) 
make contributions of the same order of magnitude to the 
slow decrease of N,. -refore in constructing the as- 
ymptotic wave function ?, in the region Ktz3 the contribu- 
tion of the corresponding terms responsible for waves that 
are and are not rescattered must be taken into account at the 
same time. 

In the region 0 2 3  an asymptotic solution exists in the 
form 

which is obtained by expanding the interaction potentials in 
the Schrodinger equation with respect to the small parameter 
rZ3lR1 in the region R23: V12+V13=Z1(Z2+Z3)/  
R1 + 0 ( r Z 3  I R  ,'). However, the asymptotic solution (7) 
does not "match" the asymptotic solution (2) at the bound- 
ary of the regions Kto and 0 2 3 .  Therefore it must be ensured 
that the asymptotic wave function in the region is a 
direct continuation of the function (2). 

Using the expansion (4), we seek an asymptotic solution 
of the Schrodinger equation in the region 0 2 3  in the follow- 
ing form: 

where 

Here we have collected terms referring to unscattered ?il 
and scattered ?; waves. We neglected the term correspond- 
ing to double rescattering of the particle pairs (1,2) and (1,3), 
since in the asymptotic region 0 2 3  (away from the singular 
directions, where 112= - G l 2  andlor t 13=  - k13), 
512-513-R181 and, as follows from Eq. (5), 
Fq1(v12 ,5L2)Fql(v13 , 5 1 3 )  = o ( R ; ' ) - ~  second-order infini- 

tesimal, while Fqo( v12 ,~12)F70(v13 ,513) = O( 1 )  and 
F ( v 1 2  r 5 1 2 ) F q O ( ~ 1 3  ,t13) = O(R ; )-a first-order infini- 
4 ! 

tesrmal. The wave function @iT,,(rz3) = exp(ik2, 
er23)Fq(~23,523)  in Eqs. (9) and (10) satisfies the Schro- 
dinger equation for the particle pair (2,3) 

To simplify the calculations, in what follows, without 
loss of generality, we shall take into account rescattering 
only for the particle pair (1,2), dropping the analogous terms 
corresponding to the rescattering of the particle pair (1,3). 
Using the asymptotic representation (5), we write the wave 
functions ?\Ira, and ?; away from the singular directions up 
to terms - R ,  in the form 

Using the relations between the coordinates 

we write variables t12 and 513  in the asymptotic region Q23 
up to terms - r23 / R  as 

613=513(R1)+( - m 2 3 ) k 1 3 ( k 1 3 f  ~ l ) ~ 2 3  r (13) 

where 512(R1) = k12R1 -k12. RI and 513(Rl)=kl3R 1 

+k13 'R1 .  Using the relations (13), we now expand the Cou- 
lomb logarithmic phases in Eq. (12) up to terms - r23 /R1 .  
The result is 

xFe0(v13  ,513(R1)) ( i=OJ)?  (14) 

where 

keo(Rl)=k23+Ak,o(Rl) 

In deriving the expression (14), following Refs. 22 and 23 
we redefined the product of the wave function of the particle 
pair (2,3) and the additional phase factor arising in the ex- 
pansion of the expressions for the phases in the distorting 
factors Fei(v12,512) and Feo(vl3.513) UP to terms 
- rZ3lR1:  
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+i2,(r23>ex~(iAkei(Rl)r23)4 $&3+Ak,i(Rl)(r23)' (I6) 

In Refs. 22 and 23 it is shown that = O(R; '). We shall 
now show that &I-- O(RL2). We note first that a - (V13+V12)*;=O(R; ) and that the operator VR1 acting 
on the functions $ie,lRl)(r23) and exp(+- vij In Si,{R1)) gives 

quantities - O(R; I), and therefore the contribution of these 
terms to 84'; will be - 0(Ry2). Accordingly, we have 

(H-E)w;=(E,(R,)- E)W; + o(R;~), (17) 

where 

k:l(Rl) ( ~ 1 -  ~ke l ( f j l ) lm23)~  
E ~ ( R ~ ) =  - + 

2m23 2 ~ 1  

In Eq. (17) we dropped the part of the "local" momentum 
kel (R1) that is proportional to R; , since its contribution to 
&I; is -o(R;~). It can be shown by direct calculation 
that for any direction of the unit vector R, 

i.e. E ~ ( R ~ ) = E .  Therefore we have constructed an asymp- 
totic wave function, taking into account the scattered waves 
away from the singular directions of the region Ct23, which 
by construction "matches" to leading order the asymptotic 
wave function (2) in the region Cto. 

The present results differ from those of Refs. 22 and 23 
mainly by the fact that the "local" momentum is defined 
differently for the unscattered keo(Rl) and scattered 
kel(Rl) waves. In addition, this difference is important for 
determining correctly the asymptotic wave function in the 
region aZ3. For example, a serious error can result if the 
overall "local" momentum keo(Rl) = ke,(Rl) = kz3(Rl) in 
Eq. (14) is defined as in Refs. 22 and 23. For example, if 
kZ3(R1) = keO(R1), then (H-E)W; = o(R;') in the region 
Ct23 and the wave function (8) has the wrong asymptotic 
behavior. We note that the "local" momenta keo(R,) and 
kel(R1) are no longer two-particle momenta, but rather they 
become three-particle momenta, since they depend on the 
position and the kinematic and dynamic characteristics of the 
third particle. The asymptotic values of the three-particle 
momenta keo(R1) and kel(R,) are different in the limit 
R + w: keo(R1) = kZ3-the asymptotic momentum of 
the particle ,. pa$ (2,3) and k e l ( ~ I ) = k I ( ~ I )  
=k23-m23k12(k12-R1). If the particles 1 and 3 are heavy 
(for example, the scattered ion and the residual target ion, 
respectively) and the particle 2 is light (electron), then 
m23rmlz'l and the asymptotic local momentum 
kl(Rl)  = v+ I V : I R ~  , where v is the velocity of the scattered 
ion and v: = ve- v is the velocity of the electron relative to 
the scattered ion, i.e. in the coordinate system tied to the 
scattered ion, and the "local" asymptotic momentum of the 
electron k i ( ~ ~ )  = v :Rl. Then the presence of the scattered 
wave in *; can be interpreted as follows: an electron mov- 
ing in the direction R1 with velocity v: in the coordinate 
system of the scattered particle is elastically rescattered by it 
in the direction i: and acquires as a result the asymptotic 
momentum kZ3=ve in the laboratory coordinate system. 

In the singular directions, the eikonal asymptotic solu- 
tions (14) are invalid. As a result, the Coulomb logarithmic 
phases in the solutions (14) and the "local" momenta 
kel(RI) become singular for R1=kl2 ,. ,. and Rl=C13. Near a 
singular direction, for example, R1 -- k12, the singular part of 
the "local" momentum is 

Let cos 6 = C 1 2 ~ ,  and let n be an arbitrary unit vector. Then 

1 
kei(R1)n- - 

R l 6  
for 6+ 1, n~ C12 (kei(~l)C12- 1 1 ~ ~ )  

and the measure of the set of directions where the eikonal 
asymptotic solutions (14) are invalid obviously approaches 
zero in the limit Rl-+w. In this sense the eikonal asymptotic 
solutions (14) are valid in almost all directions of the con- 
figuration space CtZ3 (with the exception of a set of measure 
zero). For applications it is important to construct the general 
analytic expressions which have the correct asymptotic be- 
havior in almost all directions of configuration space, with 
the possible exception of separate special directions where, 
even though its asymptotic behavior is not entirely correct, 
the approximate wave function has no unphysical singulari- 
ties. In this case it can be expected that in specific calcula- 
tions such an approximate wave function will give a smaller 
error in the final results. 

Formally replacing the eikonal distorting factors in the 
eikonal asymptotic formulas (14) and (15) by the corre- 
sponding quantum-mechanical factors Fee( ,)(v i j  , $ij(Rl)) 

4 Fqo( vij , cij(R)) gives the following generalization: 

where 

(19) 

We note in the limit R,+w that away from the singular 
directions the generalized formulas (18) and (19) pass into 
the corresponding eikonal expressions (14) and (15). In the 
singular directions, however, the "local" momenta (19) are 
singular, since the distorting factors Fqi(u,() diverge loga- 
rithmically as (+O. Nor does the generalization of Refs. 22 
and 23 that suggests the following general expression for the 
"local" momenta in Eq. (18): 

give the desired result, since even though the momentum is 
finite in the singular directions, the wave functions (18) with 
the general "local" momentum (20) have the wrong asymp- 
totic behavior in the limit Rl+w away from the singular 
directions. 
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The reason why unphysical divergences appear when the 
eikonal distorting factors are formally replaced in Eq. (19) 
by the quantum-mechanical factors is that the "amplitude" 
distortions arising in the continuum states as a result of the 
Coulomb interaction of the particle pairs (1,2) and (1,3) is 
included in the definition of the generalized "local" momen- 
tum. To determine the correct quantum-mechanical generali- 
zation of the "local" momenta, we employ the relation be- 
tween quantum and classical mechanics. Let 

be the Coulomb wave describing the scattering of any par- 
ticle pair (1,2) or (1,3) (to simplify the equations we do not 
indicate the suffices j and k characterizing the particle pair). 
Here we explicitly separated the amplitude a ( r )  and phase 
S(r) of the distorted wave. If the term (-Aa/2ma),  which 
is a second-order infinitesimal in the limit r- tm, is neglected 
in the Schrodinger equation (1 1) for the particle pair, then we 
obtain for the phase S(r)  the equation 

which has the form of the classical Hamilton-Jacobi equa- 
tion for the abbreviated action S(r)  of the particle, and the 
amplitude a(r )  satisfies the continuity equation 

div a2 - = O .  ( :I 
It follows from Eq. (21) that the "local" momentum of the 
particle k(r)  5 VS(r)  is of a quasiclassical nature and is re- 
lated to the phase of the wave function by the gradient op- 
erator. The continuity equation (22) shows that the probabil- 
ity density a2(r) of finding a particle at any point "moves" 
according to the laws of classical mechanics with the classi- 
cal velocity v ( r )  = VS(r)/m at each point. 

Therefore if the distorting factors Fqi(vjk , t j k ( R 1 ) )  for 
the particle pair ( j , k )  are written in the form 

then Eq. 18, in which the three-particle generalized momenta 
ki (R, )  are defined as 

gives the correct generalization of the asymptotic eikonal 
formulas (14) and (15). With this generalization the "local" 
momenta (24) are finite in the singular directions and away 
from the singular directions the expressions (18) and (24) in 
the limit R1--+a pass into the corresponding eikonal repre- 
sentations (14) and (15). In addition, since in a singular di- 
rection kqo(R,) = kq l (R , )  the total asymptotic wave func- 
tion Tis= + contains no singularities in the singular 
direction. The logarithmic singularities in the distorting fac- 
tors F q , ( ~ 1 2 , ~ , 2 ( R , ) )  in the limit ~ ~ - + k ~ ~  cancel in the sum 

Equations (18) and (24) give the quantum-mechanical 
generalization of the corresponding eikonal expressions ( 1  4) 
and (15). However, the relative simplicity of the expressions 
characteristic of the eikonal approximation is now lost. For 
applications it may be important to obtain the corresponding 
semiclassical expressions that retain their relative simplicity 
and at the same time reproduce the important characteristic 
features of the quantum-mechanical description. To this end, 
we now solve the semiclassical equations (21) and (22). 

We seek the solution of Eq. (21) in the following form: 

where k .  r  is the plane-wave part of the phase, @,(v,5)  is 
the part of the phase that is due to the interaction of the 
particles, the suffix "c" in Eq. (25) indicates that the corre- 
sponding quantities are semiclassical, v is the Coulomb in- 
teraction parameter, and t = k r + k - r .  Substituting the ex- 
pression (25) into Eq. (21) gives the following equation for 
d@, ld t :  

Similarly we have for the amplitude a,(v,.$) the equation 

Neglecting the quadratic term in Eq. (26) gives an equation 
for the phase in the eikonal approximation. The quadratic 
equation (26) has two solutions: 

+ J 1 - 4 v / 5 -  1 (%Io,,= 2 7 (28) 

where the indices 0 and 1 on the left-hand side correspond to 
the + and - signs, respectively, on the right-hand side of 
Eq. (28). Integrating Eq. (28) gives 

(29) 

We now integrate Eq. (27), substituting Eq. (28). This gives 
the following expressions for the semiclassical amplitudes: 

where Co,,( v )  are integration constants. The complete solu- 
tion of the system (26) and (27) can be represented as a 
superposition of the semiclassical solutions 

Fci(v,5)=aci(v,S)exp(i@ci (v ,O)(i=0.1):  

Here the plane-wave part of the solution has been dropped. 
We note that in the limit 5-+0 the semiclassical phases in the 
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expression (32) have a finite value Qci(v,e= 0)  and the am- 
plitudes have the power-law singularity a c i ( v , ~ ) - +  (- 'I4 

characteristic of classical WKB solutions. It follows from 
Eqs. (30) and (31) that 

i.e. the semiclassical solution Fco(v,() corresponds to the 
unscattered waves, and FCI(v,() corresponds to the scattered 
waves. If the integration constants in Eqs. (30) and (31) are 
set equal to 

1 
Co(v)= - exp(iv(1 -ln(- v))), 

v2 

T(-iv) 
C1(v)=f iv  - 

T(iv) 
exp(i v( - 1 + ln( - v))), (34) 

then the semiclassical representation (32) passes in the limit 
[+m into the corresponding eikonal representation (5). A 
one-to-one correspondence is established between the eiko- 
nal semiclassical (WKB) and quantum-mechanical solutions: 
F e i ( v , ~ ) * F c i ( v , ~ ) w F q i ( v , ( ) ,  i =  0,l. Using this result 
and Eqs. (24) and (28) we obtain the following explicit ex- 
pressions for the semiclassical "local" momenta: 

kcO,l(~l)= k23-m23k12(Rl-i12)(+ d1-4~12/612(~1) 

Away from the singular directions, when 41 vijl 4 tij(R1), 
the expressions (35) pass into the corresponding eikonal ex- 
pressions (15) for the momenta. We shall now consider the 
behavior of the semiclassical momenta (35) near the singular 
direction %=iI2, where (,2(Rl) t 41 u121. Let 
cos 8=iil .  k12 and R1 = cos k12+ sin &I,, where n, is a 
unit vector pointing in the direction of the azimuthal compo- 
nent of the vector Rl.  Then for fixed R l  and 8 4 0  we have 

i.e. the semiclassical momenta (35) are finite in the singular 
direction Rl = i12. We note that the semiclassical approxi- 
mation becomes invalid near the turning points, where the 
semiclassical momenta become complex. The quantum- 
mechanical description must be used near these points. 

3. AUTOIONIZATION AMPLITUDE 

We now consider the resonance ionization of an atom 
A(i) in a collision with an incident particle pZ1 with charge 
Z1, proceeding with the formation of an intermediate auto- 
ionization state a of the atom A ** ( a )  

as a result of the decay of which three charged particles form 
in the final state: 1) a scattered particle (ion) pZ1, 2) an 
autoionization electron e-, and 3) a residual target ion 
A+(f 1. 

Using the expressions (8), (18), and (24) for the wave 
function of the final state, the amplitude of the resonance 
process (37) can be represented as follows in the diagonal- 
ization approximation:19 

Here A,, is the excitation amplitude of the autoionization 
state at the time r = 0;  

is the amplitude for the autoionization state Q, to decay into 
the final state A[& qf], as a result of which an electron with 
momentum k is in the continuum and the residual target ion 
is in the state qf ;  A is the (anti)symmetrization operator 
with respect to the electron coordinates; fee is the interelec- 
tron interaction operator; E, is the energy of the autoioniza- 
tion electron, E,,(t) = E,(t) - (i/2)T,(t) is the time- 
dependent complex energy of the a-th autoionization state 
(quasistationary electronic term); and, E,( t )  and r,(t) are 
the real energy and the total width of the autoionization reso- 
nance, taking into account the PC1 in the intermediate state. 
The coordinates R1 in Eqs. (39) and (40) are related to the 
time t of the motion of the scattered electron by R ,=  vr, 
where v is the velocity of the ion. 

The distorting factors Fqi(vjk,ejk(R1)) in Eq. (39) ac- 
count for the PC1 of the particle pairs (1,2) and (1,3) in the 
final state. The interaction of the particle pair (2,3) is taken 
into account in the decay amplitude (40) and is ordinarily not 
included in the PCI, which takes into account the effect of 
the scattered ion. In the general case, however, when the 
effect of the scattered ion on the motion of the particle pair 
(2,3), the autoionization electron, and the residual target ion 
is taken into account, the "local" momenta ki(R1) of the 
autoionization electron are different from the asymptotic 
value ke= ve , and the effects due to the interaction of the 
particle pair (2,3) cannot be isolated in a separate decay ma- 
trix element that does not depend on the characteristics of the 
scattered ion. The autoionization decay probability deter- 
mined by the matrix element (40) depends on the time and 
position of the scattering ion: at a fixed time t the autoion- 
ization electron undergoes a transition from a bound to a 
continuum state with momentum kl(t) or ko(t), depending 
on whether or not it is rescattered by the receding ion. 

Using the representation (23) for the distorting factors, 
we find that the integrands in Eq. (39) are proportional to the 
phase factor exp(iSJ{t)) ( j  = 0, l )  , where 
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The points t, where the phase is stationary, Sj(tc)=O, deter- where 
mine the region making the main contribution to the time 
integral, i.e. the time interval when the transition probabili- z1 2 1  

ties are maximum. The stationary-phase condition can be VL t) = V13(t) + V12(t) = -- - 
vt v i t '  

expressed as 

where Eprior= ( V + V : + ) ~ / ~ ,  Epost= Ee= v:/2. 

~ f j ( t ) = ~ ~ - & ~ j ( ~ l 2  ,612(vt))-&~o( ~ 1 3 , 6 1 3 ( ~ ~ ) )  Here VXt) is the potential energy of the three-particle PC1 of 

is the time-dependent energy of the autoionization electron 
in the final state, i.e. transitions occur at the moment the 
electronic terms in the intermediate (resonance) and final 
states cross. The transition points are displaced from the real 
axis into the complex plane, since the intermediate state is 
quasistationary . 

If the effect of the PC1 in the intermediate state is ne- 
glected, then the energy of the resonance state does not de- 
pend on the time and is an atomic parameter, defined for an 
isolated atom to be Eca= Ea- (iI2)r,. The effects due to 
the influence of the PC1 in the intermediate state were stud- 
ied in Refs. 19,29, and 30. In addition, if the PC1 in the final 
state of the particle pair (1,3) is described in the eikonal 
approximation and the pair (1,2) is described in the semiclas- 
sical approximation, then the expression (2) simplifies to 

where 

The + or - signs in Eq. (43) correspond to the indices 
j = O  or 1 in Eq. (42). The complex root in Eq. (43) is de- 
termined so that P = z .  Solving Eq. (43) for z, we obtain 
two roots: 

where 

In the kinematic region, where the interaction of the par- 
ticle pair (1,2) is weak, the parameter 1 and Eq. (44) 
simplifies to 

the receding particles; Ebefore and Eaf,, are the asymptotic 
kinetic energies of the autoionization electron in the labora- 
tory coordinate system before and after the electron is elas- 
tically rescattered by the angle 8,(cos 8,=ie-?) by the re- 
ceding ion. It follows from Eq. (45) that if the imaginary part 
of- the resonance energy is neglected, then 
tco= v/(E,- E,), i.e. the semiclassical correspondence be- 
tween the most likely moment of the transition of an auto- 
ionization electron into the continuous spectrum and its en- 
ergy can be established: Away from the center of the 
resonance line, in the far wings, we enter the region of the 
spectrum that is formed as a result of the decay of the auto- 
ionization state at short times. The equation (45) also makes 
it possible to explain qualitatively the asymmetry that is ob- 
served in the resonance line when the PC1 is taken into ac- 
count: depending on the sign of the three-particle Coulomb 
interaction parameter V, a "tail" appears in the profile of the 
resonance to the right or left of the center of the resonance 
line. For example, for v>0 and E,<E, (the classically al- 
lowed energy range) the point of stationary phase t,,>O 
falls within the region of integration (O,m), while for 
E,>E, (the classically forbidden energy range) tco $ (0,m) 
and electron transitions into the continuous spectrum are 
suppressed on the right-hand wing of the resonance line. 

At the transition points determined from Eq. (43) the 
"local" momenta (35) are complex: 

where n= (v:i+ vi:)(lnl= 1 ). We note that the momenta 
(47) do not depend on the magnitude and sign of the charge 
Z1. The scalar moduli of the vectors equal 

where 

cos( 8: - 8,) sin( 8: - 8,) 

'( Oe ":)= sin( 8: - 8.) - sin 8, 1 - cos 8: ' 

cos 8,= i,?, cos 8: = i:i, 

and the direction cosines of the vectors are 
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For the long-lived autoionization states T, is a small 
parameter; for example, the width of the lowest (2s2)'s 
resonance of the helium atom T,= 5.07. Since the an- 
gular function (p(8,, 0:) has no singularities, to terms - T, 
we can set k (s )=ve .  Then k(s) can differ substantially 
from v, only in the remote wings of the resonance, where 
I sl - l/TffS=- 1. Away from the singular direction i: = i, the 
parameter 1, and in the zeroth approximation we can 
set ho(P) = ho(0) = 0, h,(P) = hl(0)= 1 in Eq. (47), i.e. the 
"local" momenta are h(O)  = v, and kl(0) = v,n, respec- 
tively. 

We now use the peaking approximation to extract from 
the integrand in Eq. (39) the matrix element determining the 
decay amplitude at the points tco and tCl , respectively, for 
j = 0 and 1. In this approximation we obtain 

where the integrals 

can be calculated analytically:31 

where Sc(v12) = arg r ( l  +iv12) and 2Fl(a,b,c,z) is the hy- 
pergeometric function. 

We note that the interaction of the particle pairs (1,2) 
and (1,3) in the final state is described in Eq. (50) in the 
quantum-mechanical and eikonal approximations, respec- 
tively. The semiclassical WKB approximation is used to de- 
scribe the interaction of the particle pair (1,2) in determining 
the "local" momenta kj(/3) and the transition points tcj. 
The terms I, and Z l  describe, respectively, the contribution 
of the waves which are and are not rescattered by the reced- 
ing ion to the total resonance-ionization amplitude. The con- 
tribution of the waves which are not rescattered dominates 
for a12% 1: 

where ztk is the corresponding expression for the amplitude 
in the eikonal approximation.14~'5 The contributions Zo and 
Zl  are comparable in the kinematic region where a12- 1. AS 
a12-+0, the quantities Zo and Z l  diverge logarithmically, but 
in the sum Zo+ I, these divergences (Isi,- In alz) cancel and 
lo + Z l  remains finite for a12= 0. 

Separating out the angular dependence, we represent the 
decay amplitude of the autoionization state in the form 

where L and M are, respectively, the total orbital angular 
momentum and the magnetic quantum number of the auto- 
ionization state. The width of the resonance is determined by 
the expression r,=2Tv,lAf,(ve)12, where v, is the veloc- 
ity of the autoionization electron at the resonance point 
(v,= m). It follows from Eq. (54) that for small ejection 
angles the state with M=O makes the main contribution to 
the transition amplitude. Therefore, neglecting the contribu- 
tion of the states with M#O and using the expression (54), 
we shall write the relative intensity of the autoionization 
electrons for an isolated resonance in the form 

where K,= I~f,(k(s))l~f,(v,) l 2  and cos Bo,l is determined 
by Eq. (49). In the general case the coefficient K,(s)# 1 and 
the direction cosines cos 80,1# cos Oe, and they take into ac- 
count the effect of the scattered ion on the momentum of the 
autoionization electron at the moments of its transition into 
the continuous spectrum, which differ somewhat from one 
another depending on whether or not the electron is subse- 
quently Coulomb-rescattered by the receding ion. Setting 
K,(s) = 1 and PL(cos %)=PL(cos e1)=PL(cos e,), in Eq. 
(55) the expression (55) can be transformed into the corre- 
sponding expressions obtained previously in Refs. 9-13. In 
contrast to the corresponding representations in Refs. 9-13, 
however, the separation (55) makes it possible to investigate 
in detail the relative contribution of the waves that are and 
are not rescattered to the electronic intensity as well as the 
possible interference between them. 

4. DISCUSSION OF THE COMPUTATIONAL RESULTS 

To demonstrate the effects of rescattering of the autoion- 
ization electrons by the scattered particle, we calculated for 
small ejection angles 8, the electron energy spectra near the 
(2s2) IS resonance of the helium atom, excited in a collision 
with ions with velocity v less than the velocity v, of the 
autoionization electrons. For the long-lived isotropic S reso- 
nance we must set L =0, K,(s) = 1, and 
Po(cos Bo)= Po(cos el)= 1 in Eq. (55). The results of the 
present calculations according to Eq. (55) for 10-keV 3 ~ e +  
ions with the effective charges Z1 =Zeff= 1 and 2 and ejec- 
tion angle 8, = 5 are presented in Fig. 1. To compare with 
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I ,  arb. units I, arb. units 

the experimental data of Ref. 17, the result of convolving the 
theoretical profile of the resonance with the spectrometric 
Gaussian energy-resolution function with FWHM= 0.3 eV is 
also presented in Fig. 1. The relevant experimental data from 
Ref. 17 were normalized so that the maximum intensities of 
the experimental and theoretical resonance profile would be 
the same. 

The line obviously has a pronounced asymmetry-the 
"Coulomb tail" in the electron energy distribution is ob- 
served to the left of the maximum of the resonance. The 
contribution of the rescattered waves leads to the appearance 
of an additional "rescattering" peak in the left-hand wing of 
the resonance. In addition, interference between the waves 
that are and are not rescattered plays a large role in the for- 
mation of the "rescattering" peak in the complete calcula- 
tions. A minimum appears in the contour of the line as a 
result of destructive interference of the waves. If the inter- 
ference of the waves is neglected, then the rescattered waves 
contribute only some additional increase in the intensity of 
the electrons in the left-hand wing of the resonance. 

The calculations showed that the form of the resonance 
depends strongly on the magnitude of the effective charge in 
whose field the electrons are rescattered. For example, for an 
asymptotic charge of the 3 ~ e +  ion Zeff=l (or for protons 
with the same velocity) the relative intensity of the waves 
that are not rescattered is high and the interference of the 
waves that are and are not rescattered is weak-the addi- 
tional peak does not appear in the (convolved) resonance 
profile. As the effective charge increases to Zeff=2 (the 
nuclear charge of the 3 ~ e +  ion), the maximum intensity of 
the waves that are not rescattered decreases and the interfer- 
ence structure in the profile of the resonance is pronounced. 
Hence it follows that the interference structure observed in 
Ref. 17 in the low-energy wing of the resonance results from 
the incomplete screening of the nuclear charge of the 3 ~ e +  
ion by a bound electron in the process of rescattering of the 
autoionization electrons in the field of the 3 ~ e +  ion. As an 
experimental check of the dependence obtained in the 
present calculations of the line shape on the magnitude of the 

FIG. 1. Energy dependence of the 
relative intensity I(E,) of electrons 
ejected at angle 8,= 5' during the 
decay of the autoionization ( 2 s ' ) ' ~  
state excited in a helium atom in a 
collision with 10-keV 'He' ions. 
The results of the present calcula- 
tions with effective 'He+ ion charges 
ZB= 1 (a) and Z,,=2 (b) are shown: 
Curve I-complete calculation with 
Eq. (55); curves 2 and 3-separate 
contribution of waves that are and 
are not rescattered, respectively; 
curve 4 was obtained by convolving 
the theoretical profile (curve I) and a 
Gaussian energy-resolution function 
with FWHM=0.3 eV. The experi- 
mental points were taken from 
Ref. 17. 

charge d the scattered particle, a comparative analysis could 
be made of the experimental spectra of the autoionization 
electrons produced under identical (just as in the experiment 
of Ref. 17) kinematic conditions in a collision of helium 
atoms with protons and 3 ~ e +  nuclei. 

As the ejection angle increases, the electrons rescattered 
by the receding ion lose more energy in the process and the 
"rescattering" peak shifts toward lower energies. The inten- 
sity of the peak decreases according to Eq. (53) as 
- l l a ~ , = ( I ' $ 2 ~ ~ , , ) ~ ,  and the line shape is determined by 
the contribution of waves that are not rescattered. Con- 
versely, as the ejection angle decreases, the "rescattering" 
peak shifts in the direction of higher energies and the inten- 
sity of the peak increases. As the ejection angle decreases 
from 5 to 0°, the positions of the maxima in the intensity 
distributions of the waves that are and are not rescattered 
converge toward one another. In this case the interference of 
the waves is constructive, the line shape does not change, 
and as a result the overall intensity of the resonance increases 
on account of the trapping of electrons in the continuum of 
the receding 3 ~ e +  ion. For lack of space, we do not present 
the corresponding plots, which reflect the dynamics of the 
change in the shape and intensity of the resonance line as a 
function of the ejection angle. We merely note that the re- 
sults obtained agree qualitatively with the relative experi- 
mental data of Ref. 17. However, the present interpretation 
of the appearance of the "rescattering" peak at 5' is differ- 
ent from the corresponding "interference of Coulomb 
paths" mechanism proposed in Ref. 17 and confirms the 
conclusions drawn in Ref. 10. 

Interference plays an important but not always decisive 
role in the formation of the "rescattering" peak in the elec- 
tron spectra. A kinematic situation in which the intensity of 
the waves that are not rescattered is low near the "rescatter- 
ing" peak is possible. The computational results for 50 keV 
protons and ejection angle 8 , = 2 O  are presented in Fig. 2. 
For comparison, the computational results for the resonance 
profile in the semiclassical eikonal approximation are also 
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FIG. 2. Energy spectrum of autoionization electrons ejected at angle 
8,=2" accompanying the decay of an autoionization ( 2 s Z ) ' S  state excited 
in a helium atom in a collision with 50-keV protons. The curves 1-3 are the 
same as in Fig. la, b. The curve 4-was calculated in the semiclassical 
eikonal appr~ximation.",'~ 

presented in the It is obvious that as the collision 
energy increases, the character of the asymmetry of the reso- 
nance, determined by the sign of the three-particle Coulomb 
interaction parameter v, changes: the waves that are not res- 
cattered form the "Coulomb tail" in the right-hand wing of 
the resonance. The intensity of the waves that have not been 
rescattered is lower in the left-hand wing of the resonance 
than the intensity of the waves that have been rescattered. In 
this situation the "rescattering" peak is formed in the com- 
plete calculations mainly on account of the contribution of 
the rescattered waves. Interference does not change the pic- 
ture qualitatively; it merely changes somewhat the intensity 
and shape of the "rescattering" peak and leads to small os- 
cillations of the line contour in the region where the waves 
that have and have not been rescattered have the same inten- 
sity. 

It is of great interest to investigate the relative contribu- 
tion of the waves that have and have not been rescattered as 
a function of the sign of the charge of the incident particle. 
The results of analogous calculations of the shape of the 
( 2 s ' ) ' ~  resonance in the case of a collision with 10-keV 
antiprotons and ejection angles 6,= 5 and 10" are displayed 
in Fig. 3. It is obvious that for antiprotons no additional 
structure arises in the profile of the resonance. The surprising 
result of the calculations for antiprotons is the unexpectedly 
high intensity of the waves that have and have not been 
rescattered (curves 2 and 3) as compared with the corre- 
sponding intensities obtained for protons. As a result of de- 
structive interference of the waves, the total electronic inten- 
sity (curve 1) llo(&) +ll(&)1'4 110(&)12, 11,(&)12. AS the 
ejection angle increases, the intensity of the rescattered (not 
rescattered) waves drops rapidly (by an order of magnitude; 
see Fig. 3), but these sharp changes have virtually no effect 
in the complete calculations. 

We note that the effects of electron rescattering by an 
antiproton can be manifested for nonisotropic resonances. 

I, arb. units 
6 I 

Ee, ev 

FIG. 3. Spectra of autoionization electrons ejected at angles 8,= 5 (a) and 
lo0 (b) in a decay of the autoionization (2s') '  state excited in a helium 
atom in a collision with 10-keV antiprotons. The curves 1-4 are the same as 
in Fig. 2. The ordinate for the curves 2 and 3 in a) is plotted on the right- 
hand side of the figure. 

For S0,1(~)=~10(~)+11(~)~2/~~0,1(~)~2 the total intensity of 
the electrons is determined by the expression 

2 
I(E, ,6,) = (2L + 1 ) - I PL(cos 01) 

mra 

-Pdcos  ~0)121~1(~)129 

where, for example, for a P resonance 

(P~(COS el)-p,(cos eO)l2= (COS B ~ - C O S  e0l2 
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FIG. 4. &files of the autoionization ( 2 ~ 2 ~ ) ' ~  resonance excited in a 
helium atom in a collision with 30 keV (a) and 40 keV (b) antiprotons for 
ejection angles 0,=5 and 8". respectively. Curve I--complete calculation 
with Eq. (55); curve 2--calculation with Eq. (55). where cos O,,=cos 0,; 
curves 3 and 4 (the ordinate is plotted on the right-hand side of the figure) 
represent the separate contribution of waves that are and are not rescattered, 
respectively. 

We note that if r, is a small parameter, then the angular 
functions PL(cos eo, l (~,ee))  in Eq. (55) with 8:4 1 differ 
from PL(cos 8,) by a small amount. In addition, as follows 
from ~ q .  (57) 1 cos el - cos e0l - Jv= o:/IQ for 
8:4 1, i.e. the total intensity of the electrons (55) is finite at 
e:=oO. 

The results of model calculations of the profile of a 
nonisotropic ( 2 ~ 2 ~ ) ' ~  resonance of a helium atom excited 
in a collision with antiprotons with energy E,= 30 and 40 
keV and ejection angles Oe= 5' are presented in Fig. 4. One 
can see that a qualitatively new effect is obtained when the 
effect of the antiproton on the motion of an autoionization 

electron at the moment it makes a transition to the continu- 
ous spectrum is taken into account: an additional structure 
appears in the left-hand wing of the resonance (curve I); this 
structure does not occur in the calculations performed in the 
approximations of Refs. 9-13, i.e. neglecting this effect 
(curve 2). In addition, as the collision energy increases, this 
effect becomes more pronounced as the electron-antiproton 
interaction in the final state increases: it is essentially unob- 
servable at E p =  10 keV and it is quite weak at E p =  30 keV, 
whereas at E, = 40 keV it is quite pronounced. This energy 
dependence of the effect is explained by the increase in the 
intensity of waves that are and are not rescattered with in- 
creasing collision energy: at E p =  30 keV C!I~,~(E)-~ - 
whereas at E p =  40 keV ~ 5 ~ , ~ ( ~ ) - 5 .  Since 
1 cos el-cos dO1-+O as 8:+0, the effect vanishes as the ejec- 
tion angle decreases, and by virtue of the relation (53) it also 
vanishes as the ejection angle increases. 

The qualitatively different sign-charge dependence ob- 
tained in the calculations for the ratio between the total elec- 
tronic intensity ( I ~ + I ~ ( ~  and the separate contribution 
Il(o,l12 of the waves that have (have not) been rescattered to 
the intensity at small ejection angles has a simple physical 
explanation-electron~ are focused in an attractive field and 
defocused in a repulsive field, i.e. close electron trajectories 
in the field of a negatively (positively) charged particle will 
diverge (converge), and as a result small variations in the 
initial conditions as an electron moves along its trajectory 
will increase (decrease). As a result, a small difference in the 
direction of motion of the electrons at the moment the auto- 
ionization state decays (cos OO=cos 8, for 8:4 1) will have a 
stronger effect on the final results of electron scattering in a 
repulsive field than in an attractive field. The computational 
results completely confirm this conclusion. 

The structure observed in the low-energy wing of the 
nonisotropic resonance for negatively charged particles is a 
substantially three-particle interference effect caused by the 
influence of the long-range Coulomb field of the scattered 
particle on the relative motion of the autoionization electron 
and the residual ion, which are weakly separated at the mo- 
ment the electron makes a transition to the continuous spec- 
trum. This qualitative three-particle Coulomb effect should 
be observable experimentally, being strongest for small (but 
not zero) ejection angles and low velocities of the scattered 
particle (e-, p-), close to the velocity of the ejected elec- 
trons. The structure observed in Ref. 20 for the more com- 
plicated atomic system e i -  e;- e&- A?+ in the low- 
energy wing L 3 - ~ ; , 3 ( 1 ~ 2 )  of the Auger resonance of an 
argon atom can serve as an indirect experimental confirma- 
tion of the existence of this effect. This structure may be due 
to the interference of waves corresponding to Auger elec- 
trons, e L g ,  that are and are not rescattered by the initially 
ejected electron, eG . Since, however, the wave interference 
is a subtle effect that can only be interpreted when the am- 
plitudes and phases of the interfering waves are determined 
accurately, it will be possible to draw final conclusions about 
the origin of the structure observed in Ref. 20 only after a 
separate careful investigation of the shape of the Auger line, 
including a theoretical analysis of the effect of the PC1 of all 
four charged particles, as well as the effects arising from the 
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possible interference of the resonance with the background not scattered by the ion, and the incomplete screening of the 
formed by direct transitions. nuclear charge of the ion by the bound electron play an im- 

portant role in the formation of the "rescattering" peak. 
5. CONCLUSIONS 2. A kinematic situation in which the intensity of the 

The wave function constructed in the present work for 
the three asymptotically-free charged particles possesses the 
correct asymptotic behavior in the region of configuration 
space where two particles are located close to one another 
and a third particle is located far away from the pair, and it 
can be used to describe bound-free transitions. The wave 
function determined by Eqs. (8), (18), and (24) is one of the 
main results of this work. 

Taking into account the effect of the long-range Cou- 
lomb field of the third particle on the motion of the weakly 
separated particle pair in the wave function (8), (18), and 
(24) leads to a modification of the two-particle relative 
momentum-the momentum becomes a three-particle mo- 
mentum, which depends on the position and the kinematic 
and dynamic characteristics of the motion of the third par- 
ticle. In contrast to the results of Refs. 22 and 23, the modi- 
fication of the momentum is different for the waves that are 
rescattered k,(R1) and waves that are not rescattered 
ko(R1); this is important in order to obtain the correct as- 
ymptotic behavior of the wave function. The field-modified 
momenta ko(RI) and kl(Rl) exhibit different asymptotic 
behavior in the limit R -+m. 

As an application, the nonradiative decay of an atomic 
autoionization resonance in the field of the scattered charged 
particle was studied. The amplitude obtained for the process 
(37) by the stationary-phase method was used to analyze the 
effect of the three-particle PC1 on the shape of the resonance 
line. The main result here-Eq. (55)-makes it possible to 
investigate in detail the relative contribution of the waves 
that are and are not rescattered to the electronic intensity as 
well as the possible interference between them. The three- 
particle effects associated the effect of the scattered charged 
particle on the momentum of the autoionization electron at 
the moment it makes a transition to the continuum are con- 
tained in the coefficient K , ( E ) ,  which takes into account the 
change in the modulus of the momentum, and in the angular 
functions PL(cos f90,1). which take into account the varia- 
tions in the direction of motion of the autoionization electron 
under the action of the field of the scattered particle. For 
long-lived autoionization states the corrections introduced by 
the field of the scattered charged particle are small and, as a 
rule, can be neglected. For short-lived autoionization states, 
however, these corrections can be large, since in this case 
there is not enough time for the scattered particle to move far 
away from the atom at the moment the electron is ejected. 

The quantitative investigation of the effects of the three- 
particle PC1 in the spectra of the autoionization (2 s ' ) ' ~  and 
( 2 ~ 2 ~ ) ' ~  resonances excited in the helium atom in colli- 
sions with 10-50 keV protons, 3 ~ e +  ions, and antiprotons 
with small ejection angles established the following: 

1. The structure observed in Ref. 17 in the low-energy 
wing of the (2s ' ) '~  resonance with 10 keV 3 ~ e f  ions and 
ejection angle 8,= 5' is associated with the rescattering of 
some of the autoionization electrons by the scattered 3 ~ e +  
ion. In addition, the interference of waves that are and are 

waves that have not been rescattered is low near the "rescat- 
tering" peak and the peak can be observed in its "pure 
form" is possible. 

3. A new sign-charge interference effect was detected- 
additional structure can also appear in the left-hand wing of 
the resonance for negatively charged particles when the ef- 
fect of the scattered particle on the motion of the autoioniz- 
ation electron at the moment it makes a transition to the 
continuous spectrum is taken into account. 

The possibility of small variations in the direction of 
motion at the moment of ejection is associated with the to- 
pologically different character of the trajectories of an elec- 
tron in an attractive field (electrons are focused) and a repul- 
sive field (electrons are defocused). Using the optical- 
mechanical analogy, the positively charged scattered 
particles can be represented as a unique converging lens and 
the negatively charged particles can be represented as a di- 
verging lens. The diverging lens plays the role of an instru- 
ment that makes it possible to resolve very fine details of the 
dynamics of the PC1 at the moment of ejection of an elec- 
tron. In this connection it is of great interest to study further 
the three-particle effects in the PC1 in processes in which 
negatively charged particles participate: both light 
particles-(e - ,2e-) processes and heavy particles- 
( p P , p - e - )  processes. The three-particle effects should be 
especially pronounced in the direct processes, where the 
electron ejection process is instantaneous 
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