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A study is carried out of the evolution of the classical phase portrait of the density operator of 
nonlinearly amplified light. A single-mode optical amplifier is considered, with quantum- 
statistical fluctuations of the two-level active medium and the light being amplified. The 
Heisenberg-Langevin equations for the field operators are obtained by adiabatic 
elimination of the atomic variables in the van der Pol approximation. The Fokker-Planck 
equation for the P-function, corresponding to the Heisenberg-Langevin equations, was solved 
numerically using the polynomial-expansion method. The initial quasiprobability 
distribution function corresponded to a pure coherent state. The Wigner quasiprobability 
distribution was calculated with the help of an integral transform of the P-function. Such quantum- 
statistical parameters of the amplifier radiation as the mean photon number and its variance, 
the Mandel parameter, and the mean field and the variance of the phase-amplitude quadratures of 
the field were calculated. O 1996 American Institute of Physics. [S1063-7761(96)00405-21 

1. INTRODUCTION 

The search for light sources possessing nonclassical 
properties, i.e., obeying sub-Poisson statistics of the photon 
number or squeezed in amplitude or phase, is presently one 
of the most active problems of quantum optics. The math- 
ematical apparatus of the quantum theory of open systems 
developed in the last 30 years, which is to say, of systems 
possessing fluctuations and dissipation, allows us to quanti- 
tatively investigate the quantum-statistical properties of ra- 
diation arising from such well-known nonlinear optical pro- 
cesses as laser generation, parametric scattering, optical 
bistability, four-wave mixing, etc. 

An analysis of the quantum-statistical properties of laser 
radiation based on the P-representation of the Glauber- 
Sudarshan density operator was carried out in Refs. 1-3. The 
authors of Ref. 1, who used the polynomial-expansion 
method to solve the Fokker-Planck equation for the field 
variables, found steady-state distribution functions for the 
quasiprobability of the field amplitude for the two-level 
model in the case of exact resonance, and also developed a 
scheme for calculating the dynamics of the P-function under 
these conditions. The Fokker-Planck equation for the P dis- 
tribution function of the quasiprobability of the field ampli- 
tude for population inversion in the two-level model was 
solved with the help of the polynomial-expansion method in 
Ref. 2 for the case of exact resonance. An analysis of the 
influence of resonance detuning on the quantum-statistical 
properties of the radiation of a two-level laser under steady- 
state conditions near lasing threshold was carried out in Ref. 
3. However, so far there have been no detailed studies of the 
evolution of the quasiprobability distribution function of the 
radiation from a laser or nonlinear optical amplifier-at least 
not any that are known to us-although changes in the sta- 
tistics of a quantum field accompanying nonlinear amplifica- 
tion are an urgent problem of quantum optics, which has as 
its proper object of study, in addition to the aforementioned 

nonclassical properties of light, the quantitative characteris- 
tics of the coherence properties and quantum-noise param- 
eters of optical sources. 

It is well known that for a number of states of light the 
interpretation of the Glauber P-representation of the radia- 
tion density operator as a distribution function is possible 
only under certain conditions, since the P-function is not in 
general positive-definite. In addition, the Fokker-Planck 
equation for it often does not have solutions in the class of 
integrable functions, or the solution is a singular function 
expressible in terms of the 8-function or its  derivative^.^ The 
use of other representations of the density operator in classi- 
cal phase space, e.g., the Wigner representation, allows us in 
some cases to find distribution functions possessing the nec- 
essary properties and suitable for calculating the observable 
mean quantities. 

The field observables corresponding to any one of the 
different ways of representing the density operator, where 
this mode of representation corresponds to a choice of how 
to order the creation and annihilation operators a+ (a )  of the 
field, are calculated with the help of the quasiprobability dis- 
tribution function F(cu,cu* ,t,s) by means of c-number inte- 
gration in the cu phase plane 

where the notation { . . . means that the s-type ordering 
procedure has been applied to the operator enclosed in 
braces. Among the various quasiprobability distributions in 
wide use at the present time, we may cite the Glauber- 
Sudarshan for normal ordered operators, the 
Q-function for antinormal ordering of the operators?* and 
the Wigner for symmetrized ordering of the op- 
erators. The two-dimensional Fourier transform of the fol- 
lowing generalized characteristic function can serve as a for- 
mal definition for all three types of quasiprobability 
distributions: 
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where s= 1 corresponds to the Glauber-Sudarshan qua- 
siprobability, s = 0 to the Wigner function, and s = - 1 to the 
Q-function. 

If the photon detector relies on photon absorption, then 
the operators corresponding to the measured quantities 
should be normal ordered, since such a detector should not 
give any readings in the absence of photons. The Glauber- 
Sudarshan representation of the density operator in the clas- 
sical phase plane corresponding to this situation can also be 
obtained with the help of a theorem about the trace, accord- 
ing to which the trace of the product of two arbitrary opera- 
tors, one of which is in normal ordered form, and the other in 
antinormal ordered form, is equal to the integral over the 
phase plane of the product of the corresponding classical 
functions obtained by replacing the operators with the corre- 
sponding c-numbers: a+--+ a* ,  a -  t a .  In this case, accord- 
ing to Eq. (1.1), we obtain for the Glauber-Sudarshan qua- 
siprobability distribution P (Ref. 10) 

where 8 " is an arbitrary normal ordered operator. Equality 
(1.3) means that the quasiprobability distribution function 
can be obtained from the density operator written in the an- 
tinormal ordered form by replacing the creation and annihi- 
lation operators with c-number variables, with the propor- 
tionality coefficient needed to maintain normalization. 

We use the above definition of the quasiprobability dis- 
tribution function (1.3), (1.4) in the present work to derive 
the Fokker-Planck equation for the P-function of the field in 
a nonlinear optical amplifier, starting with the Heisenberg- 
Langevin equations. The procedure used here to make the 
transition from the operator equations to the equations for the 
c-number variables was realized within the framework of 
normal ordering of the operators entering into the quantum 
equations, which allows us to obtain the classical Fokker- 
Planck equation for the commuting variables, thereby pre- 
serving all of the quantum-mechanical properties of light. By 
means of a numerical solution of the generalized Fokker- 
Planck equation obtained by expanding the solution over the 
full orthonormal basis of Laguerre polynomials and a Fourier 
series expansion, we have found the quasiprobability func- 
tions of light propagating in an inverted active medium with 
saturation. 

2. FOKKER-PLANCK EQUATION FOR THE 
QUASIPROBABILITY DISTRIBUTION FUNCTION AND THE 
HEISENBERG-LANGEVIN EQUATIONS 

In the present paper we use a method in which the 
Glauber-Sudarshan quasiprobability function is calculated 
by solving the Fokker-Planck equation, whose form in turn 
is obtained from the Heisenberg-Langevin equations for the 
field operators. 

Let the Heisenberg-Langevin equation of motion for the 
creation and annihilation operators in the presence of fluc- 
tuations and dissipation have the general form 

where A!") is the shift operator and fi is the operator of 
random sources, due to the interaction with the reservoir, 
i = a ,  a'. 

In the Markov approximation for the Gaussian random 
sources fa(t) and fa+(t) we take them to be 8-correlated: 

In the case under consideration of normal ordered operators 
of the drift vectors of the Heisenberg-Langevin equations, 
corresponding to the definition of the Glauber-Sudarshan 
quasiprobability, we find the equation of motion for the 
mean of the normal ordered operator: 

In this case the normal ordered characteristic function gen- 
erating the Glauber-Sudarshan quasiprobability function, ac- 
cording to Eq. (1.2), can be expressed in terms of the opera- 
tor (2.3) as follows: 

The complex c-function associated with the operator @can 
be obtained with the help of the operation of normal ordering 
according to 

Here : . . . : means that the operator @ can be obtained by 
replacing the numerical variables in the normal ordered 
c-function by the creation and annihilation operators: 
a*+a+, a t a .  

Applying the method presented in Ref. 10, pp. 221-225, 
and assuming that the random processes are Markovian and 
the random sources fa+ and f a ,  containing contributions 
from fluctuations from a large number of independent par- 
ticles of the active medium and the reservoir, are Gaussian, 
we arrive, directly from the Heisenberg-Langevin equations 
containing the normally ordered drift vectors A, + and A, and 
diffusion coefficients DM,, (2.2), at the following equation 
of motion for (@, i.e., for the characteristic function we 
have 

where the differential operator on the right-hand side is 
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a a d2 d2 
L=A, -+A,* -+Do, - 

dff* 
+ 2D,*, - 

d a  d a d a  da*da  

The functions A,, A ,* , and D,, I here were obtained from 
the corresponding operators A, , A,+, and DYM I by the sub- 
stitution a+--+ a*,  a -+a .  Equation (2.7) takes into account 
that as a consequence of the aforementioned normal ordering 
of the operators in the diffusion coefficients we have 

Equality (2.8) means that in the case under consideration, 
only the normal ordered diffusion coefficients are present in 
the equations. According to the definition of the quasiprob- 
ability function [Eq. (1.3)], in the case of a normal ordered 
characteristic function we have 

Thus, the expression for the quantum-statistical mean (2.9) 
contains only c-number expressions. From Eq. (2.4). taking 
into account Eq. (2.6), we find 

Substituting the expression for the operator (2.7) in Eq. 
(2.10) and integrating by parts, assuming in so doing that 
P(a,a*, t )  decays rapidly with increasing IaI, i.e., that it is 
small outside the limits of integration, we immediately find 

d 2 a @ " ) ( a * , a ) L + ~ .  (2.11) 

From the last equality in Eq. (2.11) it follows that 

d L + =  - - d d2 
A,--A,*+- 

d a  da* d a d a  

Equation (2.12) is the Fokker-Planck equation for the 
Glauber-Sudarshan quasiprobability function, since every- 
where above we assumed that A, and D,,, are in normal 
ordered form. The use in the above procedure of the charac- 
teristic function x( t ,v , t )  in antinormal form (in the field 
operators) leads to the corresponding generalized Fokker- 
Planck equation for the Q-function, and using symmetric or- 

dering we arrive at the equation for the Wigner function. 
Here, as was shown in Ref. 11, the Wigner function is related 
to the Glauber-Sudarshan function by the following equa- 
tion: 

3. FOKKER-PLANCK EQUATION FOR AN OPTICAL 
AMPLIFIER 

We have considered the propagation of an electromag- 
netic plane wave in an active medium containing two-level 
atoms fixed in space and inverted by an external incoherent 
pump. The Hamiltonian of the system of NA atoms with 
transition frequency wA , interacting with a monochromatic 
wave of frequency w, and with the corresponding reservoirs 
residing in a stationary state of thermodynamic equilibrium 
and being sources of fluctuations and dissipation, has the 
form 

The first two terms of the Hamiltonian (3.1) characterize the 
free energy of the normal mode of the field and the system of 
atoms, where a + (a) are the creation (annihilation) operators 
of the normal mode of the field, and a: is the diagonal Pauli 
operator for the ith spin-112 atom: 

4=(I2) (2I - I l ) ( l I ) i+  (3.2) 

The third term of the Hamiltonian describes the interaction 
of the field with the atom, with coupling constant g, in the 
dipole approximation, where this coupling constant is pro- 
portional to the projection of the matrix element of the tran- 
sition between the levels of the two-level atom onto the po- 
larization direction of the field mode, and inversely 
proportional to the square root of the quantization volume of 
the normal mode of the field oscillator, assumed in what 
follows to be infinitely large. The off-diagonal Pauli opera- 
tors a; (a') represent the polarization of the ith atom 

and at all times satisfy 

where Zi is the position of the ith atom and k =  w,lc. 
The next two terms of the Hamiltonian describe the in- 

teraction of atoms with their reservoirs; the first term char- 
acterizes fluctuations of the medium and thus describes spon- 
taneous emission. The operators r' and ri here correspond 
to the reservoir of the ith atom and possess the properties of 
a Markov random process. The next term, proportional to 
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4, corresponds to interaction of the atoms with the reser- 
voir, leading to phase jumps of the dipole moment due to 
elastic collisions with the particles of the reservoir. The next 
two terms, containing the field operators, are that part of the 
Hamiltonian that describes the zero-point fluctuations of the 
electromagnetic vacuum acting on the field mode under con- 
sideration. The term HR is the free energy operator of the 
reservoirs. In the Heisenberg picture, the equation of motion 
for any operator of the system M ( t )  has the form 

Within the framework of the Markov approximation used to 
describe the reservoirs of the atomic and field subsystems, it 
is possible to obtain from the exact equation of motion (3.6) 
approximate effective equations of motion for the system 
operators, effectively taking into account the influence of the 
unobservable reservoirs with the help of the dissipative and 
fluctuational terms arising as a result of eliminating the res- 
ervoir  operator^'^ and including the fluctuation sources in the 
so-obtained equations of motion. The approximations em- 
ployed here require that the correlation times of the random 
sources be much smaller than the characteristic dissipation 
times of the subsystems. Using the results of Ref. 10, for the 
above-described Heisenberg-Langevin equations it is pos- 
sible to obtain 

where H,(t) is that part of the Hamiltonian (3.1) correspond- 
ing to the observable system of atoms and field, D M ( t )  is the 
dissipative term of the equation of motion, and F M ( t )  are 
Gaussian random operators, 3-correlated when taking the 
mean over the reservoir variables: 

Writing the equation of motion for correlation functions of 
the form (3.8), it is not hard to obtain the corresponding 
relation for the diffusion coefficients ( 2 D M M # ( t ) ) :  

For the collective operators of the model, defined as 

we find the following Heisenberg-Langevin equations of 
motion from Eq. (3.7): 

where ck is the dissipation constant of the field, c  is the 
speed of light, yII = w 12+ w Z I ,  yl = yPH+ y1112. Here w 12 

and w 2 ~  are the pump and relaxation rate constants of the 
two-level atom. We next introduce the slow system operators 

for the amplitude of the light field, and for the polarization of 
the medium 

thus assuming that under steady-state conditions the fre- 
quency of the oscillations of the light field is close to R and 
in general differs from both the frequency of the quantum 
mode of the quasi-monochromatic traveling plane wave and 
the resonant frequency of the atomic transition. Substituting 
Eqs. (3.13) and (3.14) into Eq. (3.12), we obtain 

Restricting ourselves to the case y,, , y, %- kc/2= we adia- 
batically eliminate the variables P ( t )  and D ( t )  in the opera- 
tor equations (3.15) (we drop the tilde), setting dPldt and 
dDldt equal to zero. We arrive at the following equations 
for the field operators: 

where f = y, 1 yll and 

Assuming that 
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and noting that (G(t))),=O, we find for the field operator 
( a ) R  averaged over the reservoir 

In the case when condition (3.18) is fulfilled, we write 
the equations of motion for the mean field operators in nor- 
mal ordered form. 

Reduction of the equations of motion for field operators 
of the form (2.1), (2.2) corresponding to Eqs. (3.19) to nor- 
mal ordered form and application of the normal ordering 
procedure to the diffusion operators allows us, in the calcu- 
lations that are to follow, to go from non-commutative field 
operators to c-number variables a + +  a*, a--+a and to 
c-number stochastic equations of motion for a* and a ,  
treating these variables as formally independent. 

We introduce the following dimensionless variables: 

Removing the average over the reservoir in Eqs. (3.19) 
and including the c-number Langevin sources in the result- 
ing stochastic equations, we arrive, with the help of the vari- 
ables (3.20), at equations of the form 

Assuming that the diffusion coefficients depend weakly on 
5, according to Refs. 12-14 we may set 

In order to find the Fokker-Planck equation correspond- 
ing to the resulting stochastic process, we use the procedure 
presented in Sec. 2 of this paper, and the correspondence 

between the quantum and classical quantities for the drift 
vectors and second moments (diffusion coefficients): 

From Eqs. (2.14) and (2.15) with the help of Eqs. (3.21) and 
(3.22) we find the following Fokker-Planck equation for the 
quasiprobability distribution P ( P , P * ,  5 )  : 

The mean values determined by the statistics of the field of 
the nonlinear amplifier, found with the help of the Glauber- 
Sudarshan quasiprobability distribution, are given according 
to Eq. (1.1) by 

4. SOLUTION OF THE FOKKER-PLANCK EQUATION 

We calculated the quasiprobability distribution function 
P(P ,P* ,  5 )  numerically by expanding the solution of the 
Fokker-Planck equation over a complete basis of orthogonal 
functions. To determine the dependence of the quasiprob- 
ability distribution function on the dimensionless length of 
the amplifier 5,  we expanded the solution in generalized La- 
guerre polynomials, which give the dependence on the inten- 
sity I, and in a Fourier series in the phase of the field, 4: 

where a is an arbitrary constant. 
Upon substituting the expansion (4.1), (4.2) into the 

Fokker-Planck equation (3.25) and invoking completeness 
and orthogonality of the Laguerre polynomials and Fourier 
harmonics, and then applying some well-known relations be- 
tween the generalized Laguerre polynomials,1~15 we obtain 
the following system of differential equations for the in- 
general complex expansion coefficients of the quasiprobabil- 
ity function: 
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Invoking the orthogonality properties of the Laguerre 
polynomials, we arrive at the following relations for the 
mean values characterizing the field of the amplifier: 

Here we have used the boundary condition +(0) =O. 
We assume that the radiation entering the optical ampli- 

fier is in a pure coherent state 

and that the corresponding quasiprobability distribution 
function in the Glauber representation has the form 

In intensity-phase variables we then obtain 

Using relation (4.13) in expansion (4.1), we directly find the 
following initial conditions for the solution of system (4.3), 
setting 4(0)  = 0: 

As was shown in Refs. 1 and 16, varying the scaling param- 
eter of the intensity a > O  allows us in the course of the 
numerical calculations, after we have found the optimal 
value of a, to improve the convergence of series (4.1) and 
reduce the number of terms of the expansion n,,, m,, 
needed to reach the required accuracy. 

As we have seen above, in the case of an initial pure 
coherent state of the radiation entering the amplifier, the ini- 
tial quasiprobability function is a singular function of the 
field variables, and consequently, strictly speaking, all of the 
expansion terms (4.1) should be present in a calculation of 
the exact solution of the Fokker-Planck equation, at least in 
the immediate vicinity of [=0. This kind of practical com- 
plication in the numerical solution is absent in the case of 
antinormal or symmetrized ordering of the field operators 
generating the Q quasiprobability function and the Wigner 
function and the generalized Fokker-Planck equations cor- 
responding to them. In these cases the initial values of the 
quasiprobability function are smooth functions. 

5. RESULTS OF NUMERICAL CALCULATION 

We solved the system of equations for the expansion 
coefficients of the Glauber-Sudarshan quasiprobability (4.1) 
numerically, using the Runge-Kutta method. For the initial 
state of the radiation entering the amplifier, we used the pure 
coherent state (4.1 1) with a singular quasiprobability func- 
tion of the form (4.12). With the help of the well-known 
Glauber-Sudarshan integral transform (2.10), we found the 
Wigner quasiprobability function. Invoking relations (4.4)- 
(4.10), we calculated such quantum-statistical characteristics 
of the amplified radiation as the Mandel parameter 

For radiation in a pure coherent state or in a mixed coherent 
state with indeterminate phase, the Mandel parameter is 
equal to unity. In a nonclassical sub-Poisson state, the Man- 
del parameter becomes less than zero: - 1 <Q(<)<O, i.e., 
(: (AI(L))~:)<O. 

Another statistical characteristic of the amplifier is the 
variance (of which there are two) of the amplitude-phase 
quadratures of the field 

The initial field is in a minimum-uncertainty coherent 
state, for which the two quadratures (5.2) are equal to 114. A 
field in a nonclassical (quadrature-squeezed) state has one of 
the quadratures less than 114. 

In the calculations of the quantum-statistical properties 
of the nonlinear amplifier we took the mean photon number 
and the phase at the amplifier input to be (n(O))= 1 and 
(4(0))=0. Figures 1-4 present contour plots of the 
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FIG. 1. Isolines of the Glauber-Sudarshan quasiprobability distribution 
function P(P,b*,5) and the Wigner function W(P,P*,5) of an optical 
amplifier for various values of the dimensionless length of the amplifier 4' 
for detuning 6= 0 and gain coefficient p= 1. Field intensity at the input: 
( I , ) =  1, phase of the field at the input: (do)=O; c=0.01, (n) = 1.04, 
Q =0.07, ((AX+)') = 0.27, ((AX-)') = 0.27. 

Glauber-Sudarshan quasiprobability functions P(P,P*, l)  
and the Wigner function W(P,P*,l) in the complex 
P=plane. The initial stage of the evolution of the quasiprob- 
ability function in the case of exact resonance is shown in 
Fig. 1 for the small value [=0.01. Since the initial Wigner 
quasiprobability function, in contrast to the initial Glauber- 
Sudarshan function, is not singular at 5=0, but a smooth 
function for purely coherent light, for small < the magnitude 
of the field already possesses a large spread in the 
P-density, whereas the Glauber-Sudarshan function remains 
localized near Io .  With increasing 5 the difference between 
the Wigner and Glauber-Sudarshan functions diminishes; 

FIG. 2. Same as in Fig. 1 ,  but for g= 1.0, (n)= 1.58, Q=0.69, 
((AX,)') =0.93, ((AX-)') = 1.0. 

however, for (> 1.5 the shape of these functions begins to 
differ fundamentally: the Wigner function, as a result of dif- 
fusion in the P-plane, spreads into a larger region of the 
P-plane, all the while preserving its Gaussian shape, while 
the P-function, with increasing 5, acquires a more compli- 
cated shape and a local minimum appears in the region 
Re P<O. 

In the first stage of the evolution of the quasiprobability 
function the main process determining its shape is diffusion 
of the field intensity in the P-plane. In the second stage, 
diffusion of the phase brings the quasiprobability function 
into a phase-isotropic form. With increasing 5, the mean 
value of the field (P(5)) tends to zero and the position of the 
minimum observed in the P-function tends to P=O. The 
final form of the P -  and W-functions at 5= 3.5 is depicted in 
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FIG. 3. Same as in Fig. 1, but for 5=2.0, (n)= 1.58, Q=0.69, FIG. 4. Same as in Fig. 1, but for {=3.5, (n)= 1.58, Q=0.69, 

((AX,)') = 1.03, ((AX-)') = 1.04. ((AX,)') = 1.04, ((AX-)') = 1.04. 

Fig. 4. From the figure it is clear that the shape of the 
P-function differs fundamentally from that of the 
W-function in the steady state; the P-function is a "pillow" 
centered at P= 0. i.e., it is a sum of the spontaneous noise, or 
coherent vacuum with mean (n) = 0, and the superposition of 
coherent states with (n) # 0 and (E) = mei4 for all values 
of 4. But the Wigner function in this low-gain case gain has 
the Gaussian shape characteristic of noise, i.e., the coherent 
vacuum. 

Figures 5-8 depict the P and W quasiprobability func- 
tions in the case of high gain p = 10 and exact resonance. 
Comparison with Figs. 1-4 shows that the evolution of the 
quasiprobability functions in the low-gain case differs quali- 
tatively from the high-gain case. For small values f> 0.1, the 
uncertainty region of the radiation is already prolate along 
the Im p axis, i.e., ( ( A X - ( f ) ) 2 ) > ( ( ~ ~ + ( f ) ) 2 ) >  114, and 

the Mandel parameter Q([) for the high-gain case turns out 
to be significantly smaller than the corresponding value for 
the case. Since the mean intensity (photon number) of the 
radiation is large in the high-gain case, the intensity fluctua- 
tions are reduced due to saturation, and by the early stages of 
evolution the variance of the photon number becomes sig- 
nificantly smaller. Diffusion of the modulus of the field in 
the P-plane is characteristic of low gain, and is compara- 
tively small in the high-gain case. On the other hand, diffu- 
sion of the phase is the dominant process determining the 
evolution of the quasiprobability at high gains, while at low 
gains, diffusion of the modulus of the field is the dominant 
process. It is clear from Fig. 8 that for a high gain in the 
steady state the P- and W-functions coincide, and as a result 
of the evolution a state of the field is formed which has 
super-Poisson statistics Q( f) > 1 and arbitrary phase, with 
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FIG. 5. Same as in Fig. 1, but at a gain p=  10 for {=0.1, (n)=4.78, FIG. 6. Same as in Fig. 1,  but at a gain p= 10 for {=0.8, (n)= 10.0, 
Q=0.73, ((Ax+)')=O.48. ((AX-)')=0.66. Q = 0.2, ((AX,)') = 0.60, ((AX-)2) = 2.3 1. 

amplitude-phase quadratures ((AX, ( ( )12)  - 1/4+(n(5))/2. 
At both low and high gain, the main step in the forma- 

tion of the quasiprobability distribution function takes place 
after reaching complete saturation of the gain, i.e., at an un- 
varying mean photon number. 

Figures 9-12 present the results of calculations in the 
case of finite detuning of the frequency of the radiation from 
the frequency of the atomic transition of the active medium. 
As can be seen from the plots, the detuning injects a funda- 
mentally new character into the evolution of the quasiprob- 
ability function. In the first stage of linear amplification for 
5<0.02, detuning is manifested by a rotation of the maxi- 
mum of the quasiprobability function about the origin with- 
out any change in the symmetry of the distribution. At large 
6 the quasiprobability function acquires a spiral shape, as a 

result of the fact that diffusion of the phase takes place faster 
for fields of lower intensity than for fields of higher intensity. 
On the other hand, such a shape of the quasiprobability dis- 
tribution is indicative of the phase sensitivity of the amplifi- 
cation in the presence of detuning. Nonlinear amplification 
with saturation leads to the result that a signal with larger 
phase experiences less amplification, which leads to the for- 
mation of the spiral shape of the quasiprobability distribution 
(see Fig. 11). The quasiprobability functions in this case are 
a superposition of coherent states characterized by the entire 
spectrum of the parameters ( n )  # 0, ( 4 )  # 0, and ( ( d n 1 2 )  
# 0. In this case, comparison shows that the evolution of the 
Wigner function takes place substantially faster than the evo- 
lution of the P-function so that by 5~0.07, the W-function 
reaches a state close to steady-state. 

The calculations show that the direction of rotation of 
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FIG. 7. Same as in Fig. 1, but at a gain p= 10 for 6=2.5, ( n ) =  10.0, FIG. 8. Same as in Fig. 1. but at a gain p= 10 for c= 12.0, (n)= 10.0, 
Q=0.2, ((AX+)*)= 1.21, ((AX-)') =4.27. Q = 0.2, ((AX,)') = 4.51, ((AX-)2) = 5.22. 

the quasiprobability distribution function in the case of finite which the van der pol oscillator approximation is applicable 
positive detuning depends on the magnitude of the detuning -turn out to be substantially super-Poisson. 
and on the gain. Thus, for p = 5, S= 5 the rotation is coun- In all of the calculations for LB0.1, either the Glauber- 
terclockwise: d(q5)ldl>0, and for p =  1, S= 10 it is clock- Sudarshan function is positive, or the absolute value of the 
wise: d(q5)ldc<0. negative values is small in comparison with the maximum 

In all of the calculations at small [<0.01, we observed positive values. 

negative values of the Glauber-Sudarshan quasiprobability 
distribution. Such a nonclassical state of light in the earliest 6. CONCLUSION 
stages of amplification is due, in our opinion, to the idealized We have investigated the evolution of the Glauber- 
initial conditions of the calculation, since it is assumed that Sudarshan quasipmbability distribution function 

the field entering the amplifier is in a pure coherent state with (p-function) and the wigner w-function for a nonlinear op- 
singular P-function. However, the calc~lations show that in tical amplifier. The Fokker-Planck equation for the 
these cases, there are no values of the amplifier Parameters Glauber-Sudarshan P-function has been solved numerically 
for which sub-Poisson or quadrature-squeezed states of the with the help of the polynomial-expansion method. The 
field are realized. The field statistics even at high gains-for Wigner function was found with the help of the well-known 
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FIG. 9. Same as in Fig. 1 ,  but for a detuning S=5 and gain p=5 for 
c= 0.01, (n )  = 1.12, Q= 0.08, ((AX,)')  =0.27, ( (AX-) ' )  = 0.27. 

Glauber-Sudarshan integral transform. We calculated 
quantum-statistical means characterizing the amplifier radia- 
tion, such as the mean photon number, the mean field ampli- 
tude, the variance of the photon number, the Mandel param- 
eter, and the variances of the phase-amplitude quadratures 
of the field. 

A study of the quantum-statistical properties of the field 
of an amplifier with saturation has been carried out for dif- 
ferent values of the gain and detuning of the field from the 
frequency of the transition of the two-level atom. We have 
uncovered a qualitative difference in the evolution of the 
quasiprobability function at exact resonance for low and high 
gains. At low gain, the dominant process governing the 
shape of the quasiprobability function is diffusion of the 
modulus of the field in the phase plane. At high gain, fluc- 
tuations of the modulus of the field, i.e., of the intensity, are 

FIG. 10. Same as in Fig. 1 ,  but for a detuning S=5 and gain p=5 for 
6=0.1, (n)=2.35, Q=0.59, ( ( A X + ) ~ ) = O . ~ ,  ((AX-)')=0.46. 

significantly weaker and the dominant process governing the 
shape of the quasiprobability function is phase diffusion. In 
the first stage of evolution at low gain, the field intensity 
fluctuations grow, and in the second stage after stabilization 
of the intensity the phase fluctuations begin to grow. The 
variance of the intensity and the Mandel parameter grow 
monotonically with increasing amplifier length. At high 
gains, phase fluctuations dominate in the first stage; the vari- 
ance of the phase grows much faster than that of the inten- 
sity. At later times, for long amplifiers the variance of the 
intensity is reduced. 

Detuning has a large effect on the evolution of the qua- 
siprobability. A nonlinear amplifier with detuning exhibits 
phase sensitivity; as in the case of the Kerr nonlinearity,17 
the degree of amplitude gain depends on the magnitude of 
the phase of the field, but in contrast to the Kerr nonlinearity, 
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FIG. ll .  Same as in Fig. but for a detuning and gain p=5  for FIG. 12. Same as in Fig. 1, but for a detuning S=5  and gain p = 5  for 

(=0.3, (n)= 4.22, Q=0.63, ((Ax+)')=2.03, ((AX-)*)=2.34. 4'=0.9, (n)= 4.99, Q=0.4, ((Ax+)')=2.74, ((AX-)')=2.74. 
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