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We consider a simplified model of finite-size anyons, that is, particles coupled to a gauge field 
the Lagrangian of which contains the Chem-Simons term. We analyze the two-particle 
problem, show that under certain conditions there is a strong effective attraction, and discuss 
possible consequences. O 1996 American Institute of Physics. [S 1063-7761(96)00205-31 

It is well known that particles coupled to a Chem- 
Simons gauge field in (2+ 1) dimensions undergo an effec- 
tive change of statistics, i.e., become anyons.'92 Just as for 
bosons and fermions, it makes sense to speak of an "ex- 
change interaction" of anyons, which tends to be attractive if 
the statistics is close enough to bosonic, and repulsive if it is 
close enough to fermionic, although the classical interaction 
force is equal to ir~ro. A more general situation is that in 
which the gauge field Lagrangian is a sum of the Chern- 
Simons term and other term(s) of non-topological nature. In 
this case there is always a characteristic scale length (the size 
of the gauge field cloud created by a particle), and the be- 
havior of such finite-size anyons depends on whether they 
are close to each other or far away on this scale. In the two 
limit cases they behave like ideal anyons, but with different 
values of the statistical parameter. It therefore makes sense to 
speak about the effective "distance dependence of statistics" 
for such particles.3 This distance-dependent statistics 
emerges in various models, examples being Maxwell- 
Chem-Simons e lec t ro~l~namics~~~ and the Dorey- 
Mavromatos model for high-T, superconductivity.6 In this 
situation, as opposed to ideal anyons, the interaction force is 
always present. 

In a previous work3 the two-body problem for finite-size 
anyons-on particles with distance-dependent statistics- 
was considered, special attention being paid to the high- 
temperature behavior. It was shown that in the semiclassical 
approximation, a general formula for the second virial coef- 
ficient of such particles could be derived, which gives in 
limiting cases the result of Ref. 2 for ideal anyons. In this 
paper we study the same system in the low-temperature re- 
gime, emphasizing the ground state, and show in a simplified 
model that under certain conditions there is a strong attrac- 
tion between particles. 

Thus, we consider a conserved current jp coupled to a 
gauge field ALL, the total Lagrangian being 

where So depends on A, and its derivatives. The corre- 
sponding field equations read 

where Qp=Cl,,(d9dd(dJ1,)) - dZddA, . In accordance 
with these equations, a static charge in the origin, 

gives rise, in general, to an electric field (due to Qp) as well 
as to a magnetic field (due to ~ ~ ' ~ d f i ~ ) .  If So does not 
depend explicitly upon time and polar angle cp, which is a 
natural assumption, then the solution of (2) with the right- 
hand side as in (3) depends only on r. In the Lorentz gauge 
one therefore has A,=O. The temporal component A, corre- 
sponds to the usual charge-charge interaction, screened in 
the presence of the Chern-Simons term, and in any case 
irrelevant to statistics. The angular component can be always 
written 

The function A(r) possesses a clear physical meaning: 
Q(r)= - ( 2 ~ l e ) A ( r )  is the magnetic flux created by the 
charge through a circle of radius r. Therefore in any real 
model the above-mentioned function should be continuous, 
and its limiting values 

should be finite. If A(r)-const (this is the case if So=O), Eq. 
(4) describes the conventional Aharonov-Bohm potential, 
making the particles effectively anyons. In the general case, 
there is always a chariicteri~tic distance scale d, which is 
essentially the size of the magnetic field cloud created by the 
charge, so that A(r) may be replaced by &(Am) if 
r e d ( r S d ) .  

According to common quantum mechanical rules, the 
Hamiltonian of the relative motion of two particles under 
consideration is 

V(r) being the mechanical interaction potential. Assuming 
the latter to be central, the relative wave function is to be 
searched for in the usual form, 

and the levels E{ (f is the angular momentum, n the radial 
quantum number) are determined from the radial equation 
for the partial wave 
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*x= E ~ X ,  

where 

the effective potential energy being, as usual, a sum of the 
centrifugal energy and the interaction potential, 

ue(r) = we(,) + ~ ( r ) ,  (10) 

and / being even (odd) for bosons (fermions). Equation (8), 
of course, cannot be solved exactly for arbitrary A(r) and 
V(r); however, if they are such that uL(r) takes the oscilla- 
tor form, 

hen the exact solution is available; in particular, the partial 
wave ground-state energy is 

and the mean square radius in this state is 

With regard for this let us assume the external potential to be 
harmonic: 

We will investigate the behavior of the system with o chang- 
ing. As a measure of interaction we take the pressure, which 
we define as 

where the "area" is A = llmo. 
If within some approximation a constant A may be sub- 

stituted for A(r), then uL(r) takes just the form (12) with 
Uo=O, M=/+A, O=w, so that 

the true ground state is achieved for that / which gives 
minimal [/+A\, and the result then corresponds to the well- 
known formula for anyons:' 

Eo=( lS l+l )o ,  (18) 

where S is the statistical parameter ( 1 4 ~ 1 ) ;  the mean square 
radius is 

and the pressure is 

p=(16(+ l)mo2.  

Excluding the trivial case, in which A(r)--const for all 
OSr<w, substitution of constant for A is legal in two cases 
only: when < d (in which case A(r)=Ao over the 
whole region in which, the wave function is concentrated, 
and when $ d(A(r) = A, in that region). Thus, at dis- 
tances much less than the cloud size the particles behave like 
anyons with statistical parameter A. mod 2, and at distances 
much more than that size-like anyons with statistical pa- 
rameter A, mod 2 (Ref. 3) (the "bare" particles ar assumed 
to be bosons; the changes Ao-+Ao+ 1 and A,+A,+ 1 are to 
be made if they are fermions). 

At intermediate distances, a special consideration is re- 
quired. Since the qualitative picture should not depend cru- 
cially on the shape of A(r), we introduce a simplified model 
(called "extended anyons" in Ref. 7) which allows one to 
carry on the analytic treatment. In this model 

The physical meaning is obvious: a magnetic field is associ- 
ated with each particle, uniformly distributed within a circle 
of radius d centered on the particle. The results for ideal 
anyons are to be recovered in the limit d-0. The function 
uL(r) for OSrad  has the form (12) with 

where 

and for r a d ,  still the same form but with 

Consider the behavior of the ground state under the fol- 
lowing assumptions: 1) the "bare" particles are bosons; 2) 
A91; 3) %A mod 2<1 (the latter is exclusively for simpli- 
fying the formulas). Let us determine where the minima of 
uL(r) can be located. The derivative of the centrifugal en- 
ergy is 

(at r =  d it is of course discontinuous), and the equation for a 
minimum reads 

A priori there are three possibilities: a minimum can exist at 
r>d ,  at O<r<d or at the cusp point r=d .  At r > d ,  the 
second line of (26) being substituted in (27) yields 
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For arbitrary value of o one can choose / in such a way that 
ro>d. However, for large o the needed values of / are also 
large, and then neither of the relevant states with energies 
(17) will be the ground state. One of them certainly will be if 
w e t ,  in which case ro+d even for 11 + AI- 1. In this case 
the wave function is concentrated in the region r%d, so the 
partial wave ground-state energy and the mean square radius 
are indeed given by Eqs. (17) and (14) with M and fl as in 
(24), respectively. If D denotes the entire part of A (so that 
A=D + 8, D being an even number) then the true ground 
states corresponds to 1 = - D,  and Eqs. (18)-(20) take place. 

On the other hand, taking the first line in (26), we have 
for the minimum point 

with R as in (22), and assuming the wave function to be 
concentrated at r e d ,  Eq. (13) yields 

this is minimal for /=0, and in that case the above assump- 
tion is true because the mean square radius equals d m ,  
and R ~ l l m d ~  always, as is seen from (22) and (23). We 
conclude that a state with /=0 and 

does always exist. The relevant mean square radius is 

and the pressure is 

this corresponds essentially to bosons in a harmonic potential 
with the "effective" frequency J- 

Let us now assume that wS6. As long as f is such that 
ro from (28) is greater than d, the energy of the partial wave 
ground state decreases with decreasing l/+Al.But it does 
not go this way beyond ro = d since the potential energy has 
another form for r < d. 

Consider the situation in more detail. One has 

Since wS6, one may neglect 114 everywhere. Let /=-A 
- k. The minimum is shifted to the point r = d when k = wl 
25. (In fact, k can only take discrete values since / is quan- 
tized, but for AB1 one may pay no attention to this.) The 

energy of the relevant state is certainly not less than U1(d); 
therefore it can be the ground state only if 6 6 ,  other- 
wise the energy (31) is less than this. The last relation im- 
plies w4A5, which means k 4 A ;  in such an approximation 

u<' = - 2Awld (the term with w2 is much less). The first 
derivative on the right vanishes, while the second one equals 

This means that in the adopted approximation 

The lowest level of such a "one-sided oscillator" obviously 
coincides with the first excited level of the relevant "nor- 
mal" oscillator: 

(remember that the mass is m12). From this answer, one sees 
that the first line in Eq. (37) is justified, since the right clas- 
sical turning point is at r = d ( l  + m) while the left one 
is at r=d(l-3/2A), and 1lA 4 G. Now, the mean 
square radius in this state can be written as 

and the pressure equals 

(here and in what follows one may neglect the second term 
in (38)). The energies given by (31) and (38) become equal 
for 

For o<wcr, the energy in (31) is less than in (31), for 
w>wcr, vice versa. Consequently, the ground state changes 
its structure as w passes through wcr. Let w ( ' ) - - ~ ~ / ~ 5 .  Then, 
from (38), ~ f , ' ) - - A ~ / ~ 5  and, from (40), p ( ' ) - - r n ~ ~ / ~ 5 ~ .  Now 
let W ( ~ ) - A ~ / ~ &  then, from (31) and (33), ~ f , ~ ) - - A t  and 
p(2)-m~7'8[2. Thus, w ( ~ ) / ~ ( ~ ) - A ' ~ ~  but at the same time 
p(2)lp(1)-~-114. Now, the mean distance between the par- 
ticles is (r2)(')-dS 1/= and (r2)(2)--dl 6 6 1 1 6 ,  
respectively. 

This is a "van der Waals-like" picture (for the two- 
particle system): in a certain region, decreasing the area 
(- llw) results in a decrease of pressure. This means that the 
interaction of the particles takes the character of a strong 
attraction. A possible consequence of this would be a van der 
Waals-like phase transition in a gas of particles under con- 
sideration. To see whether this is indeed the case, one has to 
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