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The Coulomb-excitation total cross section and the distribution of decay producrs originating 
from a resonant state of a nucleus interacting with a crystal lattice has been calculated 
for the case of a single inelastic collision (with respect to internal degrees of freedom in a nucleus). 
These obsewables have been expressed in terms of time-dependent correlators which 
describe thermal oscillations of lattice nuclei and the motion of the center of mass of a nucleus 
propagating across a crystal target in the channelling mode. An expression generalizing 
the spectrum of equivalent photons calculated by the Weizsacker-Williams method is given. 
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I. INTRODUCTION gating across a crystal in a resonant state in the approxima- 
tion of a single inelastic collision (with respect to internal 

In order to describe the excitation and frag- nuclear degrees of freedom). By comparing the formula for 
mentation of atomic nuclei, and creation of particles in the the total cross section of. the ~ ~ ~ l ~ ~ b  interaction with E ~ .  
strong Coulomb field of colliding heavy ions, the method of (I), we can derive a generalized spectrum for the equivalent 
equivalent photons is widely used, in which the total cross photons, m i s  result is ulseful since it can be applied to a 
section u,(E) of the reaction is presented in a concise and variety of problems ranging from the Coulomb dissociation 
physically explicit form: of neutron-rich nuclei, such as "~ i , "  to the efficiency of the 

Here a y ( w )  is the absorption cross section of a real photon 
with the energy h w ,  and dN, (w ,E) ldo  is the spectrum of 
equivalent photons generated by electromagnetic fields due 
to nuclei colliding with energy E.'-4 A detailed investigation 
of this method, however, demonstrated that its domain of 
applicability has well defined boundaries. One of its limita- 
tions, for example, is the assumption that in the center-of- 
mass reference frame the colliding nuclei move along a 
straight-line trajectory, which allows one to save calculation 
time. The method of equivalent photons should be also 
modified to analyze the interaction between nuclear beams 
and lattice nuclei5 In this case the efficiency of coherent 
excitation in a propagating nucleus strongly depends on the 
synchronization of the electromagnetic fields due to ther- 
mally oscillating lattice nuclei5 The effect of the thermal 
motion on the averaged potential, which defines trajectories 
of propagating nuclei in the lattice, was thoroughly investi- 
gated by Kagan and Kononets, who studied the effect of 
~hanne l l i n~ .~  But their model does not fully take account the 
effect of lattice thermal oscillations in the case of Coulomb 
resonant excitation of nuclei. The direct unification of the 
results by Okorokovs and by Kagan and ~ononets? and the 
analogy with the Mijssbauer effect778 must be justified. A 
consistent approach to the problem can be formulated in 
terms of the two-potential model? in which one component 
of the potential affects the wave incident on the target and 
the other excites internal degrees of freedom of the colliding 
nuclei. This paper gives quantum-mechanical expressions for 
the total cross section for resonant Coulomb excitation and 
the distributions of fragmentation products of nuclei propa- 

Coulomb excitation of nuclei with a view to designing a 
y-laser.''.'2 Section 2 gives general formulas needed for the 
solution of the problem. Section 3 describes the calculation 
of the total cross section fbr the Coulomb excitation of nuclei 
propagating across a crystal lattice. Section 4 deals with ex- 
pressions for the distribu~ions of decay products of an inter- 
mediate resonant state generated in an incident nucleus. The 
results are discussed and summarized in the Conclusion. Our 
model is limited to the nonrelativistic approximation with 
only one relativistic correction, namely, the rest mass of a 
particle is replaced with its relativistic value. 

2. PROBLEM STATEMENT. SOME DEFINITIONS AND 
GENERAL RELATIONSHIPS 

We represent the Hamiltonian of the projectile nucleus 
( P )  plus crystalline target (T) as a sum 

Here H ~ O ) ( R ~  , { t p ) )  is the free-nucleus Hamiltonian, R p  is 
the radius-vector of its center of mass, { tp}  is the set of 
parameters which describe the internal motion in the projec- 
tile nucleus, f iT( {RT} , { tT) )  is the crystal-target Hamil- 
tonian, {RT} are center-of-mass coordinates of lattice nuclei, 
itT} are parameters which describe internal motion of nuclei 
and electrons in the lattice, and V is the potential of the 
interaction between the traveling nucleus P and target T. 

First let us restrict our consideration to the processes in 
which the nuclei and electron shells of the crystal atoms are 
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not excited. In this approximation, lattice nuclei act only as 
sources of a screened Coulomb field, undergoing thermal 
motion at a temperature To: 

Here EF' is the sum of the ground-state energies of nuclei 
and electron shells of the lattice atoms. Assuming that elec- 
tric charge distributions of interacting nuclei do not overlap, 
we can separate from the potential energy 
V(Rp r{~P};{RT)) the monopole component Ve(Rp ,{RT}) , 
which does not affect the internal coordinates {tp) of the 
nucleus P, i.e., 

In what follows, we will ignore, unless otherwise stated, the 
effect of exciting of internal degrees of freedom in the 
nucleus P on its center-of-mass motion. In this case, the fine 
structure of the shift and deformation of a resonance lineI3 
are excluded from our consideration. In this approximation, 
the center-of-mass motion of the nucleus P across the lattice 
is described by the Hamiltonian 

where fp  is the kinetic energy of the nucleus P. 
This complicated problem of the motion of a nucleus in 

the ground state through a channel in a single crystal was 
solved by means of the theory of the channelling 
effe~t.~""'~ For simplicity, we will take the Hamiltonian in 
Eq. (5) instead of an effective one-particle Hamiltonian 

where Veff(RP) is the "optical" potential, which takes into 
account the effect of thermally oscillating lattice nuclei on 
the center-of-mass motion of the nucleus P. This Hermitian 
potential is derived in most simply by averaging 
Ve(Rp ,{RT}) with respect to the thermal oscillations of lat- 
tice nuclei and then over the crystal axes (or planes) of the 
target.'"I6 

In order to save effort, it is convenient to separate the 
variables in the term H ~ , ( R ~  , i tP)  ,{RT}) in Eq. (4). To this 
end, let us use the Fourier transform. We express the 
internal-motion Hamiltonian as 

protons in the nucleus, RI is the coordinate of the l-th 
nucleus of the target lattice, N is the total number of nuclei in 
the lattice, and 

The prime in Eq. (7) means that the monopole component of 
interaction between the nucleus P and 1-th lattice nucleus is 
omitted. Let us introduce the following notation: 

is the density operator of the lattice nuclei, and 
bp(r) = S(r- Rp) is the density operator of the projectile 
nucleus P. Since 

N ,- 

ZP 

exp( - iqRp) = Tp( - q), j= 2 1 exp( - iqrj) = 47r 

X YZp( oj , ' ~ j ) *  

we can derive the following expression for H&: 

where G= qlq. 
If we use the simplest form of the screened potential in 

i ( r ) :  

L(r) =z,e2exp(-pr)lr, (9) 

where p- ' - 0 . 8 8 5 3 ~ ~ ( ~ ~ ~ +  2F2) -u3- 0.8853a,(~:~ 
+ zU3 - 112 

) is the screening radius due to electrons, and a, is 
the first Bohr radius, then 

v^b(q) = 47rzTe21(p2+ q2). (10) 

In the simplest case of the E 1 electric-dipole transition, 

H&(RP -{rj),{R11) 

[ j= l  J 
1 

47r ZP 
Here rj is the cooidinate of the j-th proton in the nucleus 
P with respect to its center of mass, Zp is the total number of 

X-q 3 i  ,=-I  C ylP(G)C J =  I erjYTP(0j ,~j)-  (1 1) 
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3 TOTAL CROSS SECTION OF RESONANT COULOMB 
EXCITATION 

The probability of a two-step transition from the state 
Ji) with energy E~ to the state If) with energy E~ via the 
intermediate resonant state /A)  with energy EL, where the 
full width of the resonance is rA(Ei) ,  is determined by the 
squared absolute value of the appropriate t-matrix element:17 

Here HLt is the Coulomb potential of the interaction between 
the nucleus P and target lattice nuclei (see the previous sec- 
tion), and HRt is the operator of the interaction between 
nucleons of the nucleus P (or between the nucleus P and 
electromagnetic field), which leads to the transition 
Ih>+lf). 

According to the optical theorem, the total cross section 
of the Coulomb excitation is determined by the formula 

where V L  is the velocity of incident particles in the labora- 
tory reference frame and f l  is the normalizing volume. 

From Eqs. (12) and (13) we derive 

We introduce the following notation: Emo and Imo) 
(Em# and Im')) are the energy and wave function of the 
center-of-mass motion of lattice nuclei in the initial (inter- 
mediate) state; E ,  , la) and E B  , I b) are similar parameters 
for the motion of the nucleus P as a whole; and Is) and 
I r) are the wave functions which describe the internal motion 
of the nucleus P in the ground and intermediate states. We 
assume that the nucleus P has only one excited state with an 
energy gr. In the case of the E l  transition, to which our 
discussion will be limited, we obtain the following quantity 
in calculating the matrix element with respect to the wave 
functions of the internal motion of the nucleus P: 

where 

is the electric dipole moment of the nucleus P. Assuming 
that the width T(Ei) is independent of the center-of-mass 
motion of the nucleus P, we derive from Eq. (15) 

We substitute Eq. (11) into Eq. (16) and transform the 
energy denominator in Eq. (16) in accordance with the for- 
mula 

We take the operators in the Heisenberg representation, 

and calculate the sum over the entire system of functions 
Im') and 1 b). After averaging the resulting expression over 
the distribution of initial states Imo) and la), we obtain 

Here B ( E  1 ) is the reduced probability of the E 1 -transition 
resulting from averaging M (E 1 ,p )  M*(E 1 ,,ul) over projec- 
tions of the spin of the nucleus P," and 

is the Fourier transform of the time-dependent correlator of 
target nuclear density, 

In Eq. (17) 

is the Fourier transform of the time-dependent correlator of 
the density of the projectile nucleus P. This conelator con- 
tains information about the center-of-mass motion of this 
nucleus in the target: 

The Fourier transform is performed with respect to the spa- 
tial coordinates. In deriving Eq. (17), we assumed that the 
beam of incident nuclei is uniform in space, so it contains a 
factor [ ( 2 ~ ) ~ / f l ] S ( q - q ' )  that allows us to integrate with 
respect to dq'l(2.rr)3 . . . The notation (( . . . means av- 
eraging over states of the target nuclei at the temperature 
T o .  Similarly, (( . . . ))p means averaging over states of the 
projectile nucleus P in terms of the center-of-mass motion 
across the target. The correlator zT(q,t) was investigated in 
detail in studies of the inelastic scattering of neutrons in mat- 
ter and the Mossbauer effect. Generalized expressions for - 
KT(q,t) for an arbitrary structure of a crystalline target are 
given in Ref. 19. 

Let us consider lattice vibrations in the harmonic ap- 
proximation and write an analytical expression for the corre- 
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lation function KT(q,t). The position of the j-th atom in the 
lattice is represented as the sum of vectors Rj= n +  pa+ u,, , 
where n is the crystal-cell vector, pa is the equilibrium po- 
sition of the nucleus with respect to a certain point in the 
cell, and u,, is the displacement of the nucleus from its 
equilibrium position. Thenlg 

W W 

Here w is the number of atoms in the crystal cell, N1 is the 
number of elementary cells in the crystal, and 

where 

The summation with respect to A incorporates all phonon 
modes with frequencies w, , polarization vectors e i  , and 
quasimomenta fi K, N = N w is the total number of atoms in 
the crystal. 

Equation (19) is easy to simplify in the limiting cases 
t-rm and t+O. In the first case 

and, correspondingly, 
W W 

lim zT(q,f)= C C exp[iq(p,-~a~)l 
r-+m a=l  a '=l  

The last factor on the right of Eq. (22) is the traditional 
Debye-Waller factor 
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Equation (22) also holds at arbitrary t if oscillations of dif- 
ferent atoms j #  j' are not correlated, whereas the component 
with j= j' ("incoherent component") is a complicated func- 
tion of t (see below). One can easily prove that for t+O 

fiw, 
lim X,, , ,~I ,~(~)  = exp - -x - coth- 
?-to [ i13 ; A  

The first exponent in Eq. (23) is 

In the case of a monatomic lattice (Ma= Mar = M, 
Nl = N) the right-hand side of Eq. (23) can be simplified: 

1 3N n lqeY2 n o A  
- -z - - coth- [ 1 

N 2w, M 2 k ~ T o  

1 3N filqeA12 
-cos(~(n-n ' ))]  ) exp [ -itFx 2Mc0s(in 

no, ) 1 L3r 2M 
fiwx - n')) exp - --x -lqeA12 coth- 

2 k ~ T 0  

For the incoherent component (n= n') we have 
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3N 
h 

x C -lqeAI2 coth- 
x 2M 

The comparison of Eqs. (23)-(25) with Eqs. (19)-(22) indi- 
cates that in the limit t+O the Debye-Waller factor reduces 
only the interference term with j# j'. Furthermore, even for 
j# j' this reduction is partly cancelled by the factor 

i.e., the expression for the cross section of the coherent Cou- 
lomb excitation contains a term which is not accounted for in 
the traditional approach (see Introduction). This term is simi- 
lar to the expression for the cross section of diffuse coherent 
scattering of X-rays in crystals.20 It may partly compensate 
for the decrease in contributions from higher harmonics 
when their order increases.5r8 In the case of a cubic Bravais 
lattice, the parameter 

can be calculated using the Debye model. We have a series 
of obvious identities: 

1 3N h 
= -2 - hwx 

IqeY2 coth-[1 -cos(K(n-n'))] 
N A 2Mox 2ksTo 

q2 3N 
= -c n hwx 

coth-[1 -cos(~(n-n ' ))]  
3 x 2Mwx 2kBTo 

= $I,"- g(w)dw= h ~0th- no [ 1 
2ksTo 

-cos(K(n-n'))]. (26) 

Here g(w) is the distribution function of the phonon fre- 
quencies. In the Debye model 

and h~ is the phonon quasi-momentum. In this case, after 
simple transformations we have 

3N 
h a *  

1qeY2 coth-[1 - cos (~ (n -  n'))] 
2 k ~ T 0  

3 hq2 @/To xdx 1 

Here O = h ~ ~ ~ ~ l k ~  is the Debye temperature, 
KD=~,,/co, 

and CII and cI are the group velocities of longitudinal and 
transverse phonons. 

In the Case of a simple cubic lattice, we have the follow- 
ing compact expression for the "incoherent" component 
&(q,t) in the Debye model: 

Here we have introduced the notation 

Now let us calculate the correlator fp(q, t )  for the pro- 
jectile nucleus P. We will consider only those penetration 
depths of the nucleus into the target at which the transient 
processes to the channelling regime are terminated and the 
fast longitudinal motion along a crystal axis or plane is de- 
coupled from the slow transverse motion. With this assump- 
tion, the function fp(q, t )  is factorized: 

where 

is the correlation function of the longitudinal motion of the 
nucleus P, and z-axis is aligned with the channelling direc- 
tion of the nucleus P. Hence 

The longitudinal motion can be described as free propagation 
(see the comment about Eq. (6)). In this case, given that 
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where fibz(0) is the operator of z-component of the nucleus 
P momentum, we have 

Xexp ( - t  22: 2- ij . 
The last factor on the right of Eq. (34) accounts for the 
spread of the z-component of the P nucleus momentum 
around its average fipoz since the beam of incident nuclei is 
not monochromatic: (2 5,)- ' = ((Ap,12). 

The effect of inelastic collisions on the propagation of 
nuclei in the channel (motion at a constant energy) can be 
taken into account using the multiple-scattering theory 
through the imaginary component of the effective potential 

where l,(r) is the free path with respect to inelastic colli- 
sions, and W,(r) is the probability per unit time of an in- 
elastic transition. The loss of the incident flux due to 
ImVeft(r) mainly tends to diminish the value of the reso- 
nance excitation cross section. This approach, however, does 
not take into account excitations due to several inelastic col- 
lisions. In order to describe the total contribution of all pro- 
cesses leading to the resonance excitation, we should use an 
expression for the reaction cross section averaged with re- 
spect to the energy distribution of beam particles, penetration 
depth 2-20 in the target, where zo is the coordinate of the 
exposed target surface, and the impact parameter Bp : 

Here @(z,Bp ,E,Eo) is the flux of particles, which satisfies 
the kinetic equation.6 If the target is sufficiently thin so that 
the redistribution of particles over the energy E, of trans- 
verse motion can be neglected, then 

Here K(E[~ ,Bp) = - (dEldz) is the deceleration efficiency of 
the target and Ell is the energy of the longitudinal motion of 
a beam particle. In the limit 1i'--to, we have a simple equa- 
tion for a uniform target1' 

Here AE= K ( E ) ~  and h is the target thickness. The reso- 
nance broadening due to the beam deceleration can be esti- 
mated assuming that 

As a result, we have two overlapping resonances shifted with 
respect to each other by AE. For example, in the case of 
" ~ i  ions with an energy Eoll = 1.6 GeVInucleon and h = 0.1 
mm, we have AE-0.37 MeV (see also Conclusion). 

In order to describe the transverse motion of particles 
propagating in the channelling mode across a target, we can 
use the model of a harmonic oscillator with frequency oo. 
Then fpp,(q,t) in Eq. (33) can be expressed as (see Eqs. 
(28)-(30)) 

( "0)]'.("1[2 Xexp -- 
2 k ~ r 0  MP wo 

Here 70 is the quasi-temperature of the channeled beam2' 
Approximate estimates can be derived by neglecting the 

transverse motion and using a certain distribution function 
@(Bp) of impact parameters. In the case of a flat distribution 
of Bp over an interval (Bmi, ,B,,) and channelling along an 
axis, we have 

where 0(x) is the step function. 
Unbounded transverse motion of particles with energies 

above the barrier is described in two limiting cases by the 
following functions fpl (q, t) : 

A. Free motion: 

(38) 
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B. Classical (not quantum) diffusion in the transverse 
plane: 

where D p  is the diffusion coefficient of the nucleus P. 
Equation (17) for the total cross section a, for 

Coulomb excitation can be simplified in limiting cases of 
long-lived and short-lived (with respect to the characteristic 
times t; and t,* of correlators fp and f T )  excited states of 
the nucleus P. In the former case ( r +  0, gS== gr) ,  expres- 
sions for the correlators fp (q , t )  and ZT(q,t) at t-+m can be 
substituted into Eq. (17). Then 

In the case of the diffusion model (Eq. (39)), Eq. (40) should 
be modified: 

Thus the diffusive motion of the nucleus P in the transverse 
direction leads to an additional broadening of the resonance. 

In this case of either short-lived states ( r j m )  or 
Igs- gri;19(filt$ ,hit;). we substitute into Eq. (17) the ex- 
pressions for the correlators Ep(t) and (for the incoherent 
component) ET(t) derived from Eqs. (28), (29), (35), and 
(36) at t j O :  

- fL9zPoz 
Kp(q,t) = exp it- 

~ Q L P O L  

1-0 ( Mp )exp(itp) 

Here 

Then we have 

Thus the position of the resonance in the integrand on the 
right of Eq. (43) is shifted with respect to gr. Terms pro- 
portional to t2 in the exponents of Eq. (42) should, evidently, 
cause broadening of the resonance described by Eq. (43). 

To conclude this section, let us try to convert our result 
expressed by Eq. (17) to a fonn similar to Eq. (1). To this 
end, we use the expression for the total cross section for 
absorption of a real photon with an energy EY=hp  ,c in a 
lattice We obtain 

Here 

uo= Ga(Ey= 6- 8') in the case of an isolated nucleus P, 
&,(EY ,py) is the total cross section for resonant absorption 
of a virtual photon (Ey# hpYc) in a target whose nuclei 
have the same resonances as P, but dynamic lattice param- 
eters are the same as in the real target. Here we have intro- 
duced the notation 

The latter equality in Eq. (46) is valid when the longitudinal 
and transverse motion of the nucleus P are decoupled. As- 
suming that the longitudinal motion is free, let us totally 
ignore its transverse motion. Given Eq. (34) and that - 
Kpl(q,w- wl)=  2ms(w- o') in this case, we derive from 
Eq. (44) 

Here 

2Mpw VLMP n o  
q!1.2)- - Poz + - jpiz- T =  -II + Jl - 

n 
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Usually the longitudinal motion of a fast particle is de- 
scribed in terms of classical mechanics. In this case we 
should retain only one root, i.e., q ? ) ~  wlvL. In the limiting 
cases r+O and T+ m we have 

~ ~ ( r 1 2 f i ) ~  
6a(E7q)=zd-q'0) (B- a:++K+Ar)21h2+(~/2h)z' 

respectively. Given Eqs. (47) and (48), we can write the final 
result as 

Even in the limiting cases r-+0 and r+a the expression 
for a, cannot be written in a form similar to Eq. (I), which is 
used in the method of equivalent photons. To achieve this 
end, we must impose additional conditions ~ ~ ( q , q ~ " ' ) = 0  
and q ~ " ) ~ ~ / v L .  In this case 

Here t * should be extrapolated either to infinity or to zero in 
order to obtain equations for the two limiting cases, T+m 
and r--10. From the comparison between Eqs. (50) and (I), 
we derive the following expression for the equivalent photon 
spectrum: 

Thus, our analysis has demonstrated that the equivalent pho- 
ton method can be applied to resonant Coulomb excitation of 
nuclei propagating across a crystal target only if several con- 
ditions are satisfied, namely, 

1. The transverse and longitudinal motions of a nucleus 
are decoupled. This condition holds when the target thick- 
ness is sufficiently large that the transverse motion in the 
channel should become quasi-equilibrium.6.2' 

2. The motion along the channel should be free. This 
means, primarily, that we neglect both the energy loss of the 
particle propagating along the channel and the spread of its 
energy (see the discussion of the approximation concerning 
energy loss in Eq. (34) and Conclusion). Besides, this con- 
dition implies that we use the approximation that the con- 
tinuous potential Veff does not vary as a function of z along 
the channel axis. In the case of short-lived resonances, the 
error of this approximation can be estimated as follows. We 

A 

write the operator Rp(t) as a power series in t: 

The last term contributes to the correlator of the propagating 
particles in Eq. (34) an additional factor 

In our estimate we take 

where a, is the lattice constant along the z-axis and is the 
resonance width. Then we obtain at ZT=80, Zp=3, 
Bp=lO-' cm, q,= 10' cm-I, Mp=2.10-23 g, and 
to=0.3- lo-'* s an estimate of the exponent in the additional 
exponential function: 

In the case of long-lived intermediate states, the model of a 
continuous potential VeH which does not vary with z means 
that a small correction to Veff is ignored: 

AVeff is also constant with z .  At the parameters given above, 
Av/veffs 

Thus in the two limiting cases of short-lived 
(to = a, lv ps hlr)  and long-lived (to<hlr) resonances, the 
model of the continuous potential Veff independent of the 
coordinate z yields an adequate description of the channelled 
particle longitudinal motion. 

3. Quantum effects can be ignored in the description of 
the fast ion longitudinal motion. This condition is not essen- 
tial for vL20.1c, when the contribution due to the root 
q ( ' ) = 2 ~ ~ v ~  /h can be neglected because this parameter is 
larger than any other characteristic inverse length of the 
problem; as a result, the term with v =  1 in Eq. (49) is very 
small. But the classical description of the longitudinal mo- 
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tion lacks the resonance shift due to the momentum imparted 
by a virtual photon. In the formalism used to solve our prob- 
lem, this effect is purely quantum-mechanical. Even in the 
case of a broad resonance the parameter APz= (hqZ)212~p  
may be comparable to the resonance width r. For example, 
at hPoz= 1 GeVIc, Mp= 2. g, ?Yr- ?Ys= 100 keV, and 
r =0.1 keV we have (hqz)2 /2~p-0 .4r .  

4. The method of equivalent photons does not describe 
shifts of the resonance and deformations of the Lorentzian 
curve of the photon absorption cross section a,(@) caused 
by thermal motion of lattice nuclei and oscillations of the 
channeled ion in the direction perpendicular to the channel 
(see Eqs. (43) and (49)). 

4. DIFFERENTIAL CROSS SECTIONS FOR RESONANT 
COULOMB EXCITATION 

The differential cross section of the reaction 

when the final state I f )  includes fragments of the nucleus 
P with momenta p, , . . . ,p, has the form 

The matrix element of the transition (f It li) via an inter- 
mediate resonant state was determined above (see Eq. (12)). 
The transformation to the time representation of the inclusive 
transition probability, described in the preceding section, al- 
lows us to express the target cross section (dufWi) summed 
over all initial and final states of the target through an inte- 
gral formula with four-time correlation functions for the tar- 
get nuclear coordinates. This result is a natural generalization 
of multiple time correlators previously used to describe reso- 
nant scattering of photons and slow n e ~ t r o n s . ' ~ ' ~ ~  Such com- 
plicated formulas necessarily emerge when center-of-mass 
coordinates of target nuclei are involved in both the first and 
second stages of the transition 1 i)  --+ 1 A)  -t If). One example 
of such transitions is elastic scattering of the P nucleus in a 
Coulomb field due to target nuclei (the process is elastic in a 
sense that the state of internal degrees of freedom remains 
unchanged). In those cases when the reaction I A)+ I f )  in the 
lattice proceeds as in free space (for example, fragmentation 
of the nucleus P), the expression for the differential cross 
section is somewhat simpler. Consider as an example a dis- 
integration of the nucleus P into two fragments. Then for a 
fixed center-of-mass momentum Pf and a fixed momentum 
of the relative motion of the fragments pf, the differential 
cross section can be expressed as follows: 

- t r )  exp i-- 
d q  ] [ a'siq(t-tl)]/  m l ~ h ) ~ 2 G  

This formula includes mostly parameters introduced in Secs. 
2 and 3. The additional notations are: lu) and gU are the 
wave function and energy of the relative motion of the 
nucleus P fragments, Ic) and E ,  are the wave function and 
energy of the center-of-mass motion in the final state, and 

Equation (53) takes into account that in the final stage of 
the process the lattice state and the center-of-mass motion of 
the nucleus P do not change. If the final state of the center of 
mass is not fixed, the summation over I c) and averaging over 
la) in Eq. (53) yields 

( 2 ~ ) ~  n n 1 1  
. )  = .,i 0" (2Th)'d~f 5 

The correlation function gp(q,t) of the nucleus P was 
determined in the previous section. It can be modified by 
taking into account the difference between the center-of- 
mass Hamiltonian % of the excited nucleus P and the simi- 
lar Hamiltonian Ejp of the nucleus in the ground state: 
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The evolution of the operators ~ ~ ( t )  in the last factor on the 
right of Eq. (55) is determined by the Hamiltonian H; . 

Integrating Eq. (54) with respect to pf and taking into 
account the relations 

we obtain an equation for the total cross section of the Cou- 
lomb excitation due to interaction of all electric moments 
with electric field: 

Noting that 

lomdt'exp[- = ( t+ t t )  1 F(t- t ') 

we derive from Eq. (56) 

In the case of the dipole E 1 -transition, when 

Eq. (17) directly follows from Eq. (57). 
Now let us consider Eq. (53). In the previous section we 

demonstrated that for t t  GO 

- - 
KT(Q,~) -+KT(Q,~)  = Const, 

and for t -+O 

Substituting these expressions into Eq. (53), we obtain 

If the P nucleus propagates along a crystal axis 
(pla=pLc=O) and the range of the impact parameters 
Bm*GBPSB,, is bounded, then we should substitute into 
Eq. (58) 

Pro- Pzc 
1 ( c l F ~ ( q ) l a ) 1 2 = y a ( ~ - 9 ~ )  

Here N is the total number of channels in the target, 
s = T(B~,- B;,), and J l (x)  is the Bessel function. 

To conclude this section, note that in the equations for 
the distribution functions of the fragmentation products of 
the intermediate resonant state, the width of this state can be 
expressed through respective vertex functions that would al- 
low us to go beyond the perturbation theory." 

5. CONCLUSION 

This paper gives a more or less detailed analysis of equa- 
tions for the total cross section a, for the Coulomb excitation 
of intermediate resonant states and for distribution functions 
of products of the fragmentation of these excited states when 
a nucleus propagates through a crystalline target. When the 
final states of the center-of-mass motion of the incident 
nucleus are not fixed, the proposed technique allows us to 
express the total cross section a, and differential cross sec- 
tions of inclusive reactions in terms of integrals of correla- 
tion functions which describe the motion of the target nuclei, 
g T ,  and the center of mass of the projectile nucleus, fp . 
The functions fT have been studied in detail both theoreti- 
cally and experimentally because the interaction of photons 
and slow neutrons with condensed media has been investi- 
gated for many years. The conelator fp of a nucleus propa- 
gating along a channel in a crystalline target can be calcu- 
lated using simple models, or expressed through the density 
matrix or the quantum Green's function, which can be de- 
rived using powerful techniques.6s21 Note that electronic de- 
grees of freedom and resulting dynamic screening of Cou- 
lomb interaction between colliding nuclei can be similarly 
included in the scheme. Let us write the operator for the 
Coulomb interaction of the nucleus P with nuclei and elec- 
trons of the crystal target: 
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Here Rp are center-of-mass coordinates of the nucleus P, 
rj are coordinates of the jth proton in the nucleus P with 
respect to its center of mass, Rl are coordinates of the center 
of mass of the lth lattice nucleus, and pkl are coordinates of 
the kth electron in the lth lattice atom with respect to the 
center of mass of the lth nucleus. By performing the Fourier 
transform with respect to the spatial coordinates, one can 
separate the variables of the electronic subsystem of the crys- 
tal. Assuming that in the crystal Hamiltonian the contribu- 
tions of the phonon and electron subsystems have already 
been separated, we repeat the calculations discussed in Sec. 
3. As a result, we find out that the integrand in Eq. (17) 
should be multiplied by the factor 

where Fo(q) and Co(q) are Fourier transforms of the 
screened and "bare" Coulomb potentials, 

is the Fourier transform of the correlator of electron density 
fluctuations in the crystal, re(q)  is the Fourier transform of 
the electron density operator, 10) is the wave function of the 
ground state of the electron subsystem in the target. In cal- 
culating this correlator, it is convenient to separate the con- 
tributions of valence electrons and electrons of inner 
 shell^.^^,^^ 

Thus, by introducing these two correlators within the 
framework of the proposed technique, we have separated two 
effects on the motion of the propagating nucleus caused by 
the lattice nuclei: a) shaping of the center-of-mass motion 
described by the function fp ; b) the effect on the shape of 
the resonance line described by the function KT. We have 
demonstrated that conventional simple equations based on 
the method of equivalent photons and on the assumption that 
thermal motion of lattice nuclei is uncorrelated have a very 
limited domain of application. Namely, they yield correct 
results only when excited states have a long lifetime (in com- 
parison to the typical times tT-filkBO- 10- 13- 10- l4 s and 
t* - filAE- 10-16- 10- l7 s, where AE is the energy differ- 
ence between the levels of transverse motion in the channel). 
These equations may be useful in analyzing excitation of 
isomer states which are interesting as a possible route toward 
building y-lasers.".'2 

Let us briefly discuss limitations on experiments with 
resonant Coulomb excitation of nuclei due to energy losses 
of a charged particle to a target. First of all, note that in the 
channelling mode the average energy loss and its spread are 
several times lower than in an amorphous In order 
to estimate whether the parameters of a resonance in u, (E)  
can be derived from experimental data, let us assume that 

this is possible when the width of a resonance is comparable 
to the spread of the energy loss of a particle propagating 
through a target. Using the data by Esbensen et al.,29 we 
have the following distribution of the loss rate for the " ~ i  
nucleus with an energy of 1.6 GeVInucleon: from 2.4 
MeVImm on the channel axis to 5.0 MeVImm near the chan- 
nel wall in a germanium target. For a target thickness of 0.1 
mm, the spread of the energy loss is less than 250 keV. 
Therefore, energy losses of particles propagating in the target 
do not contribute significant uncertainties to the width of the 
expected resonance in the spectrum of the neutron-rich " ~ i  
nucleus derived from experimental data (an estimate of the 
width of this resonance yields 100-200 k e ~ ) . ~ ' . ~ '  Thinner 
targets and more intense beams of monochromatic charged 
particles are required for studies of narrow resonances 
through their direct excitation. When isomer states are popu- 
lated by preliminary eltcitation to broader levels of higher 
energies,12 the effect of energy losses from beam particles is 
not important. A consistent theoretical analysis of this mul- 
tistage process, however, demands a more general formalism 
than that proposed in this paper. 

The case of excited states with short lifetimes in com- 
parison to tT and t* deserves a separate consideration. Inves- 
tigation of the Coulon~b dissociation of exotic nuclei like 
" ~ i ,  " ~ e ,  1 4 ~ e ,  etc. interacting with lattice nuclei in the 
channelling mode allows one to exclude almost completely 
the purely nuclear mechanism with its inherent 
uncertainties.I0 Even when heavy nuclei collide and the Cou- 
lomb mechanism of excitation dominates, additional compli- 
cations emerge since contributions due to multiquantum ex- 
citations of intermediate states should be separated.32 
Experiments with neutron-rich nuclei propagating in chan- 
nels of crystalline targets are apparently free from these com- 
plications. On the other hand, some estimates33 suggest that 
the efficiency of the Coulomb excitation in the channelling 
mode is a factor of 0.1- 0.01 lower than in traditional experi- 
ments, i.e., the excitation cross section may be several tens 
of millibam, whereas in traditional experiment these cross 
sections are 1-2 b. Investigation of structure and interactions 
of such exotic objects as neutron-rich nuclei also present 
some interest from a more general viewpoint as an example 
of a weakly bound system in a strong external 
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