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The macroscopic quantum tunneling of a domain wall in weak ferromagnets is investigated 
theoretically using a simplified description of domain-wall dynamics. An expression for the 
tunneling rate in the WKB approximation is obtained for the case of a Hamiltonian which 
is not quadratic with respect to the momentum. The equations of motion along the instanton 
trajectory are solved analytically for any form of the external potential. Experimental 
results are discussed and interpreted. O 1996 American Institute of Physics. [S1063- 
776 1 (96)02604-21 

1. INTRODUCTION 

The macroscopic quantum tunneling of magnetization is 
presently a subject of active investigation. In theoretical 
studies of this phenomenon in small it was pre- 
dicted that the quantum behavior of the magnetization should 
be observed more easily in antiferromagnetic particles than 
in ferromagnetic particles. Barbara and chudnovsky2 showed 
that the Gamow constant B in the formula for the tunneling 
rate r = A  exp(-B) in the case of small antiferromagnetic 
particles should be approximately two orders of magnitude 
smaller than the corresponding constant B for similar ferro- 
magnetic particles. Thus, the temperature of the transition 
from a thermally activated process to a quantum regime is 
also two orders of magnitude higher for antiferromagnets. 

The macroscopic tunneling of domain walls has attracted 
great attention. The tunneling of domain walls has hitherto 
been investigated theoretically only for the case of 
fe r r~ma~nets .~  Consideration of weakly ferromagnetic mate- 
rials has another advantage: there are already well developed 
appro ache^"^ which enable us to describe domain-wall dy- 
namics at rates of motion on the order of 16-lo6 cmls and 
thus make it possible to investigate the process of the tun- 
neling of a domain wall through a fairly high, but very nar- 
row barrier. 

One experimental manifestation of the macroscopic 
quantum tunneling of magnetization is that the rate of the 
magnetization relaxation processes does not decrease to zero 
when the temperahire is lowered, but maintains a finite 
value, which does not depend on the temperature. Similar 
variation of the relaxation rate has been observed for many 
magnetic materials (see Refs. 8 and 9 and the review in Ref. 
lo), and, in particular, for samples of terbium orthoferrite,6." 
which is a weak fenornagnet at the temperature of the ex- 
periments. In these experiments behavior of the magnetiza- 
tion relaxation rate which is typical of macroscopic quantum 
tunneling was detected, but the results were analyzed using 
the theory of magnetization tunneling in small antiferromag- 
netic particles, which led to definite difficulties (we shall 
discuss the problem of interpreting the experimental results 
below). Here it should be noted that the techniques in Ref. 3 
cannot be applied to such an analysis due to the serious dif- 

ferences between domain-wall motion in ferromagnetic and 
weakly ferromagnetic materials. 

The description of the tunneling of a domain wall is a 
complicated theoretical problem: a domain wall is a two- 
dimensional system with an infinite number of degrees of 
freedom even on large (in comparison with its thickness A) 
scales. In addition, a description of tunneling through a de- 
fect must clearly contain information on the defect itself. If 
we take into account the enormous variety of defects in real 
samples, devising an exact theory for each type of defect 
does not seem wise at the present time. It would be natural to 
use a phenomenological approach to overcome such prob- 
lems. Thus, a model has been constructed for tunneling 
through defects of a specific type, which is characterized by 
a set of semiphenomenological parameters: the width along 
the x axis, the characteristic transverse dimensions, the den- 
sity of the defects in the sample, etc. 

As we have already mentioned, one macroscopic mani- 
festation of the influence of defects on the motion of domain 
walls is the magnetic aftereffect, or, stated differently, the 
finite magnetic viscosity. The aftereffect has been analyzed 
in samples with a comparatively small defect density (which 
is often achieved in high-quality samples) using a familiar 
concept in physics, in which the movement of a domain wall 
takes place in the form of fluctuational (thermally activated 
at high temperatures and quantum at low temperatures) 
movements of individual small elements of the wa1112 (a 
similar model has also been employed to analyze the viscous 
flow of the magnetic flux in s~perconductors.'~). Thus, our 
treatment is naturally associated with the small element of 
the domain wall which participates directly in the tunneling 
process. Of course, the motion of this element lags behind 
the motion of the other elements not immobilized by the 
defect, and the wall bends in the region of the defect. How- 
ever, when the radius of curvature is much greater than the 
thickness of the domain wall, the corresponding energy only 
has the character of a correction, and to describe the dynam- 
ics it is sufficient to treat the domain wall as a flat structure 
(this approximation is discussed in greater detail in the re- 
view in Ref. 14). Although this model, as noted above, offers 
only a semiphenomenological approach to interpreting the 
interaction of a domain wall with a defect, it is powerful and 
allows phenomena to be described faithfully over a broad 
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netism vector m and the antiferromagnetism vector 1. The 
thermodynamic potential @(l ,m)  has the form'5 

FIG. 1. Left-hand figure - plot of the potential energy U ( x )  of a domain 
wall; right-hand figure - corresponding plot of the magnetic field H ( x ) .  A 
defect creates a potential well for the domain wall, as a result of which the 
domain wall is immobilized by the defect. As long as the external field 
H, does not reach the value H ,  , the potential U ( x )  will have a local meta- 
stable minimum at xol . 

range of temperatures (in both the thermal-activation region 
and in quantum to compare different materials, 
etc. 

Thus, by treating a domain wall as a flat structure not 
only for simplicity, but also with some justification, we can 
concentrate on the investigation of the indisputably impor- 
tant question of the relationship between the characteristics 
of macroscopic quantum tunneling and the nonlinear dy- 
namic properties of the domain wall itself (which have been 
investigated quite thoroughly7). 

In this paper we shall use a path-integral method for 
these purposes, which permits a simple and elegant transition 
from a classical to a quantum description. It should be noted 
that this is the simplest method in the present case; the only 
possible alternative would involve a Hamiltonian formula- 
tion, the construction of pairs of canonically conjugate op- 
erators, etc., which are complicated tasks in themselves. 

Thus, we consider the following model (Fig. 1): a 180- 
degree domain wall, which, for simplicity, we shall regard as 
a flat membrane immobilized by the potential of a defect. We 
apply an external driving field to the sample. Even if the field 
is not strong enough to completely overcome the potential 
barrier created by the potential of the defect, a position of the 
domain wall to the left of the defect (more precisely, to the 
left of the point xoz) is energetically more favorable than a 
position in the local minimum at xo, , where it rests initially, 
being immobilized by the defect. At zero temperature there 
are no thermal fluctuations, and, therefore, the motion of the 
domain wall will obey only the laws of quantum mechanics, 
which predict a nonzero probability for the wall to tunnel 
through the barrier. 

2. DESCRIPTION OF THE MODEL. LAGRANGlAN FOR A 
DOMAIN WALL 

Let us consider a weak ferromagnet of orthorhombic 
symmetry (like terbium orthoferrite, TbFe03). We describe 
it in the two-sublattice approximation using the ferromag- 

Here J is the homogeneous exchange constant, A is the in- 
homogeneous exchange constant, K,,  and Kab are the anisot- 
ropy constants, H is the external field, and d l  and d3 are the 
Dzyaloshinskii antisymmetric exchange constants. Minimiz- 
ing the thermodynamic potential of the system @(l,m) with 
respect to m with consideration of the relations 

we obtain @ in the form (see, for example, Refs. 4, 5, and 
15) 

where xL=Mo12HE is the transverse susceptibility, and 
M: and M: are quantities equal to the components of the 
ferromagnetism vector in the r4(Gx AyFz) and 
T2(FxC,Gz) phases. One of two possible types of domain 
walls appears, depending on the relationship between the an- 
isotropy constants K,, and K a b .  They are characterized by 
the rotation of 1 either in the a c  plane (an ac-type domain 
wall, when Ka,<Kab holds) or in the a b  plane (an 
ab-type domain wall, when Kab<K,, holds). As the tem- 
perature decreases, terbium orthoferrite undergoes several 
spin-reorientation phase transitions, but at the temperatures 
at which the measurements in Ref. 11 were carried out, the 
vector I lies in the a c  plane. Thus, we shall restrict ourselves 
to the case of an ac-type domain wall, as the type most 
closely corresponding to the experiment. 

Let us consider a flat ac-type domain wall perpendicular 
to the a axis (the x axis). When the wall is stationary, the 
vectors 1 and m turn in the a c  plane. From a rigorous stand- 
point, when the wall moves, the vectors 1 and m depart from 
that plane. However, (see Ref. 4) for H =S 200 Oe the angle of 
departure from the a c  plane is less than 0.1' and can be 
neglected. 

We introduce a spherical coordinate system such that 

l,= sin 8 cos 4, l y=  sin 8 sin 4, I ,=  cos 8. 

The dynamics will be described using the Lagrangian formu- 
lation. The bulk Lagrangian density for the system under 
consideration has the form (see, for example, Ref. 7 and the 
literature cited therein) 

The motion of a domain wall in a weak ferromagnet can 
be described using soliton perturbation theory, which was 
described, for example, in Ref. 16 and has been successfully 
applied to the detailed description of domain-wall 
dynamics.'7 In this case the solution for the free steady 
motion of a domain wall (boundary) moving with a velocity 
v without dissipation in the absence of an external field is 
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taken as the zeroth approximation. As was stated above, in 
the spherical coordinate system qb=O holds for a flat 
ac-type domain wall. The solution for the polar angle 8 can 
easily be obtained. We introduce the similarity variable 

x-vt 
,$= - 

A ' 

Here Ao= J A I ( K , , + ~ ~ H ~ )  is the width of the stationary 
domain wall and c =  ya is the limiting velocity of the 
domain wall, which coincides with the velocity of the spin 
waves. Then the Euler Lagrange equation takes the form 

8'&.= -sin 8 cos 8. 

A set of solutions of this equation in the form of an isolated 
domain wall is well known, and we take the solution in the 
form 

Oo= - ~ / 2 +  2 arctan ef. 

In our description the external forces acting on the wall are 
treated as small perturbations. In first order they result in 
modulation of the velocity and the position of the center of 
the wall, the modulation rate being of the same order as the 
perturbation. We are interested only in the position of the 
wall (in front of or behind the barrier); therefore, we can 
move over to a description of the domain-wall dynamics in 
terms of the position of the center of the wall and its 
velocity?16 Since we obtain corrections to these quantities in 
first-order perturbation theory, for the distribution of 8 we 
can restrict ourselves to the zeroth approximation OO. Thus, 
we go over to a concise description of the domain wall using 
the substitution 

where 

and xo(t) is the coordinate of the center of the domain wall. 
We assume that the external field is directed along the c axis: 

H=(O, 0, H). 

Integrating fhe bulk Lagrangian density over x in the range 
[ - D,D] (D is the domain diameter, D a b ) ,  we obtain the 
Lagrangian for a unit of the wall surface: 

L= -rnc2J--u(xo). (1) 

Here v = i o ,  mc2= ~ I / A ( K , , + ~ , H ~ ,  and 
U(xo) = - I 2  ~ ~ H ( x ~ ) d x ~ ,  where H(xo) is the total exter- 
nal field acting on the wall, which includes the external driv- 
ing field and the effective field created by the defect. 

Since we are considering an absolutely flat wall, on 
whose surface all points are equivalent, it is simple to obtain 
the Lagrangian: it is only necessary to multiply the surface 
Lagrangian density by the area of the wall. We shall hence- 
forth assume that all such quantities (Lagrangians, Hamilto- 
nians, etc.) are for a unit area of the domain wall unless 
otherwise specified. 

3. WKB APPROXIMATION FOR THE TUNNELING RATE: 
FORMULATION IN TERMS OF PATH INTEGRALS 

We consider the evolution of a quantum-mechanical sys- 
tem described by the Lagrangian (I), which is found at the 
time to in a lowest-energy state (roughly speaking, it is sta- 
tionary) at the metastable minimum xo, of the potential 
U(xo). Thus, in our problem it is convenient to use the ap- 
proach developed in the problem of the decay of a meta- 
stable vacuum.I7 Since a vacuum decays, its formally calcu- 
lated energy has an imaginary part, which is proportional to 
the tunneling rate. The energy of a vacuum state (including 
its imaginary part) can easily be found by means of func- 
tional integration in Euclidean space-time (i.e., after the re- 
placement t = i 7). A program of action was proposed in this 
form in Refs. 17 and 18. 

Now we set about carrying out this program. From the 
Lagrangian description of a domain wall we go over to the 
Hamiltonian formalism. It should be stressed that the La- 
grangian (1) has the same form as the Lagrangian for classi- 
cal relativistic particle motion in an external field U(xo). 
The corresponding Hamiltonian is well known: 

where the canonical momentum is 

The amplitude of the transition in imaginary time from the 
state Ix) to the state l y )  is usually represented in the form of 
a functional integral with respect to the Wiener m e a s ~ r e ' ~ . ~ ~  

where 

is the Euclidean action, i.e., the action in the imaginary time 
T= -it. However, this form of the integral is applicable 
only for Hamiltonians which are quadratic with respect to the 
momentum (see, for example, Ref. 21), and since we have a 
pseudorelativistic Hamiltonian, we must start from the very 
beginning, i.e., we must start out from the Hamiltonian form 
of the functional integral for the transition amplitude: 

To calculate the integral (4), we use the WKB approxima- 
tion. Expanding the functional 
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with accuracy to the second order with respect to the varia- 
tions Sq and Sp (and, accordingly, to second order in h), we 
obtain a Gaussian integral, which is easily calculated by the 
Laplace method.19 

The stationary points of the functional S[p,q] corre- 
spond to the classical trajectories xo and po (in imaginary 
time), where the first variations of S[p,q] with respect to 
Sq and Sp are equal to zero: 

ido+ a u ( ~ , ) l a ~ , =  0. (34  

The integral (4) is now rewritten in the form 

D5D7 
p(x,y)=exp(- q) ( ( exp 

5'4-xol V'P-Po. 

Here Scl(x,y) is the action on the classical trajectory which 
begins at the point xo=x at r = 0  and ends at the point 
x0=y at r=T: 

and 

where 

Although the integral (6) has a Gaussian form, the integra- 
tion over p does not bring it into the standard form; the norm 
in the finite-dimensional approximation has the form 

1 
E = TIN. 

This difficulty is easily avoided by performing the substitu- 
tion 

e= [ i i - ( ~ ~ ) ] ~ d ~ ~ .  I,' 
Then (6) is rewritten in the form 

where 

and the integration over 7 brings the integral into the stan- 
dard form 

with ordinary Wiener normalization. 
Now we can use the approach proposed in Refs. 17 and 

18. Motion in the imaginary time r in the potential U is 
equivalent to motion in real time in the reversed potential 
U--, - U .  To calculate the ground-state energy, we must find 
the amplitude p(x,y) for x= y =xol and T-tm. These con- 
ditions are satisfied by two classical trajectories: the trajec- 
tory q=xol and the trajectory q=xht ,  which begins at the 
point xol for r--t - m ,  passes the point xo2 at r= 0, and ends 
at the point xol for r-+ +m (it is called the instanton trajec- 
tory). The tunneling rate is equal to the ratio between the 
values of the integral (9) on the trajectories q=xo, and 
q = xb, (this is because the trajectory q =xol detennines the 
normalization of the functional integral; for further details 
see Ref. 17). Selecting the arbitrary additive constant in the 
potential U such that U(xol)= -mc2 (the action on the tra- 
jectory xo=xol is then equal to zero), for the tunneling rate 
in the WKB approximation we obtain the expression 

where Sbt is the value of the function Scl on the instanton 
trajectory and A, is the surface area of the tunneling element 
of the domain wall. To calculate the pre-exponential factor 
A we must find the values of the Gaussian functional integral 

on trajectories close to q s x o l  and q =xi,, to within a nor- 
malizing factor common to both trajectories. For greater clar- 
ity in the ensuing calculations we go over to the variable r in 
the integral (12): 

The exponent in (13) is the scalar product 5- ~ 5 ,  where the 
Sturm-Liouville operator has the form 

Expanding 5 in the complete set of the orthonormalized 
eigenfunctions pk of W, we can bring the scalar product in 
the exponent into the form 
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where the hk are the eigenvalues corresponding to the func- 
tions Pk, and the Ck are expansion coefficients (which are 
the integration variables in each integral). In this case the 
functional integral (13) breaks down into a product of Gauss- 
ian integrals, and integrating over Ck with the measure 

we can take the integral (12). Here we obtain the product of 
the eigenvalues hk , i.e, the determinant of the operator W, to 
within the normalizing factor N. However, caution must be 
exercised here: on the instanton trajectory the operator w has 
a zeroth eigenvalue, which corresponds to the eigenfunction 

Using dC1 = & d ~  and integrating with respect to C1, we 
obtain (to within the normalizing factor N) 

where det' indicates that the zeroth eigenvalue should be 
discarded. Calculating Y on the trajectory q=xol,  for the 
factor A =y  [qrxol]/yha we obtain (compare Ref. 17) 

where 

The equations of domain-wall motion on the instanton 
trajectory are assigned by (5a) and (5b), which are rewritten 
in the form 

The first integral, i.e., the energy, has the form 

At the point xol the velocity vanishes; therefore, the potential 
U must be replaced by fi= U-mc2 [we assume 
U(xol) = 0] , and then from (17) we obtain the quadrature for 
%st( 7) : 

where the sign is chosen in accordance with the direction of 
motion. 

The expression for Sh, can be obtained in the same 
manner: 

Here it must be taken into account that the results (18) 
and (19) have meaning only under the condition 

max u(x)<mc2; 
X E [XOZ .~011 

otherwise, because of (17), the instanton solution will not 
exist, and the tunneling rate in the WKB approximation will 
be equal to zero. Actually, of course, a domain wall can still 
tunnel in this case, but the rate of the process will be of the 
next order with respect to h ,  i.e., the tunneling will be sup- 
pressed to a considerable degree. 

4. COMPARISON WITH EXPERIMENT. INFLUENCE OF 
DISSIPATION 

For a comparison with the experimental results pre- 
sented in Ref. 11, the potential of the defect must be speci- 
fied. Let us use the simplest potential as a model: we assume 
that the height of the potential barrier is low and that the total 
field acting on the domain wall between the points xol and 
xo2 can be represented in the form 

where H, is the coercive force of the defect, a and b are, 
respectively, its width and the position of its center, Ho is the 
external field (in our case Ho<O, i.e., the domain wall moves 
from right to left, Fig. 1). Since the height of the barrier is 
low, we restrict ourselves to the case of u e m c 2 .  We then 
have 

We select the normalization of the potential and the position 
of the origin of coordinates along the x axis so that xol= 0 
and U(xol) = 0. Then, from (20) we obtain 

and 

The calculation of B gives 

B I A , - - ( 1 6 / h ) a J w ( l  + H ~ ~ H , ) ~ ' ~ ,  

where A, is the area of the tunneling element of the domain 
wall. Table I in Ref. 11 presents the values of B for four 
different values of the external field H. After constructing 
the dependence of B ~ / ~  on H ,  we can evaluate H, from the 
slope of the straight line obtained. A least-squares approxi- 
mation gives H,=600 Oe. How does this value relate to the 
other data? 

770 JETP 82 (4). April 1996 V. V. Dobrovitskii and A. K. Zvezdin 770 



Since Zhang et al.." presented only the value of the an- 
isotropy constant 

for the theoretical evaluations we use the typical parameters 
of a terbium orthoferrite sample: 

whence we have 

A ~ =  cm, ao=mc2= 4 K z 0 . 4  erg/cm2. 

Let us consider a nonmagnetic inclusion (defect) with an 
area A, and a length d. If the demagnetization poles are 
neglected, the decrease in the energy of a domain wall con- 
taining this nonmagnetic inclusion will be equal to the sum 
of the changes in the exchange energy and the anisotropy 
energy. The energy minimum of the domain wall is achieved 
when the defect is located at the middle of the thickness of 
the wall. Then the change in the surface energy density of the 
domain wall gives us the maximum height uEL of the po- 
tential barrier for a vanishing external field. Calculating it 
under the condition d e A o  (then a must have a value of the 
order of the wall thickness Ao), we obtain 

On the other hand, from (21) we can also find that this quan- 
tity equals 

u ~ ~ = ~ M ~ H ~ ~ .  

Hence we can obtain d=  10 A. 
The value of A, can be calculated from the condition 

B = 30. In this case we obtain 

On the other hand, Zhang et al.," presented values of the 
energy U of the potential barrier for different fields. An ex- 
ternal field Ho= -75 Oe scarcely lowers the barrier (since 
HoIH, is small in this case). Since uEL is equal to UIA,, 
we can obtain A, by another method. In this case 

which agrees quite well with the value (22), if we take into 
account the relative crudeness of our model potential. Next, 
we evaluate the volume of the tunneling element of the do- 
main wall V: 

Since the width of the barrier a=Ao= 100 A, we have 

As we see, the three independent evaluations of A, associ- 
ated with different tunneling characteristics give fairly close 
values. 

Several remarks should be made here. Zhang et al.," 
interpreted their results using the theory of magnetization 

tunneling in small antiferromagnetic particles. After obtain- 
ing a value V - 8  x lo4 A3 for the volume of the tunneling 
element of the domain wall, they naturally considered it un- 
justifiably small and found it difficult to identify the type of 
defect immobilizing the wall. However, in the case of the 
tunneling of a domain wall, the quantity which they evalu- 
ated is not the volume of the tunneling element, but the vol- 
ume of the defect (in the case of a strictly single-domain 
particle, in which a domain wall does not form even during 
magnetization reversal, both quantities coincide and are 
equal to the volume of the particle). The fundamental differ- 
ence between these cases is that when d e A o  holds the width 
of the barrier equals Ao, rather than d. 

5. CONCLUSIONS 

The macroscopic quantum tunneling of a domain wall in 
a weak ferromagnet has been investigated theoretically. Al- 
though the Hamiltonian describing the motion of the domain 
wall is not quadratic with respect to the momentum, a for- 
malism similar to Ref. 17, which is based on functional in- 
tegration, can be developed in the WKB approximation. The 
equations of motion for the instanton trajectory have been 
solved in quadratures for any form of the potential barrier, 
whence it is easy to obtain the quadrature for the action on 
the instanton trajectory. Thus, the most important exponen- 
tial term in the expression for the tunneling rate can be writ- 
ten out in the fonn of a one-dimensional integral. An expres- 
sion for the pre-exponential factor has been obtained in the 
form of the ratio between the determinants of two second- 
order elliptic operators. An analysis of the experimental data 
shows that the theory gives reasonable values for different 
characteristics of the process of the macroscopic tunneling of 
a domain wall. 
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