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We have used the Anderson model to describe the modifications in the energy spectrum and 
phase diagram of nonmagnetic dielectrics due to doping with magnetic impurities. The ground state 
was derived from the Green's functions averaged over ensembles of impurities randomly 
distributed through the host lattice in the Hartree-Fock approximation with the Femi energy 
determined self-consistently. Narrow, continuous impurity bands are generated with a 
high density of states, which are spin-degenerate only when the impurity atoms form a 
paramagnetic. An important point is that high-concentration peaks due to localized states belong 
to these bands. The positions of the impurity bands, and their density of states and 
population are strong functions of the impurity concentration. When there is one electron per 
impurity, a magnetic insulating state is formed at low concentrations, although there is 
another solution, which describes a paramagnetic metal. As the impurity concentration increases, 
the material sequentially transforms to two conducting phases, one of which is magnetic 
and the other paramagnetic, with a gradual transition between them. O 1996 American Institute 
of Physics. [S 1063-7761 (96)02504-81 

1. INTRODUCTION 

Presently quantum phase transitions are defined as trans- 
formations taking place at low temperatures when fluctua- 
tions which control the critical behavior of the system are not 
of thermal, but of quantum origin.' These phase transitions 
are classified in two ~ a t e ~ o r i e s . ' ~  In the first category, 
changes in the lattice due to a structural phase transition split 
energy bands that may lead to a metal-insulator transition in 
a solid. The second category includes purely electronic tran- 
sitions. These transitions are usually described either by a 
model with a fixed crystal lattice or by a model with disor- 
der. The latter case is known as the Anderson tran~ition.~ 

The Hubbard and Anderson lattice models are most of- 
ten used to study strongly correlated electron systems."7 In 
these models the structure of the electron energy bands is 
controlled by the lattice of the host material, and impurities 
only change their energies and populations, and hence the 
Fenni energy. As the occupation of the bands is varied, an 
insulator-metal transition takes place. This process is classi- 
fied as the Mott-Hubbard transition. 

Naturally, the role of impurities is not limited to chang- 
ing the total number of carriers in the system. The perturba- 
tions due to impurities may notably change the electronic 
spectrum of the crystal. The combined effect of disorder and 
strong correlations among electrons on the phase diagram 
was studied by several researchers using lattice models?-" 
Some parameters of the model were treated as random inde- 
pendent variables. 

Formation of impurity bands in the energy gap of a di- 
electric doped with transitional metal atoms from extended 
and localized states was also studied.12 The model Hamil- 
tonian took into account potential scattering of band elec- 
trons from impurities randomly distributed through the lat- 
tice and hybridization between band states of the dielectric 

spectrum and d-orbitals initially constructed in the dielectric 
gap. For some parameters of the attracting impurity poten- 
tials, the scattering from them leads to a formation of tails in 
the density of states. It was found that a narrow, continuous 
band of impurity states could be generated in the gap. This 
band with a high density of states resulted from hybridiza- 
tion, which led to virtual electronic transitions among impu- 
rity states, such as transitions from an initial impurity level to 
an extended band state, then to another impurity, to a band 
state, etc. An important point is that the peak of localized 
states due to a high concentration of impurities is within the 
band. It was demonstrated that when there is one electron per 
impurity atom, the nonmagnetic solution described a state 
with metallic conductivity. 

One peculiar feature of oxide dielectrics doped with 
transitional metals is the strong dependence of the high- 
energy section of the electron spectrum in the gap on the 
impurity concentration detected in  experiment^.'^-'^ A nec- 
essary condition of a transition from the insulator to metal is 
the emergence of a finite density of states in the middle of 
the dielectric gap.'s In this case the Fermi level, whose po- 
sition is weakly affected by the doping, is in the middle of 
the gap, and the population function of the states formed in 
the gap apparently has a Fermi character. The data about the 
quasiparticle spectrum in this band indicate that its states are 
constructed from those of the host material. 

In this paper we will discuss a model which in a sense is 
intermediate between the lattice and disorder models. The 
main purpose of our study was to investigate the features of 
the insulator-metal transition described above in terms of 
formation of impurity bands from both localized and ex- 
tended states in strongly correlated systems. We have studied 
how the band structure of a dielectric doped with magnetic 
impurities is modified and what is the phase diagram of the 
system as a function of the impurity concentration. The sys- 
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tem ground state was derived from Green's functions aver- 
aged over configurations of impurities randomly distributed 
through the dielectric lattice using the Hartree-Fock ap- 
proximation and self-consistent determination of the Fermi 
energy. We have found that the self-consistent locations of 
spin-polarized impurity bands in the dielectric gap and their 
densities of state and population functions strongly depend 
on the impurity concentration. Strictly speaking, this depen- 
dence controls the collapse of magnetic ordering and phase 
transitions from magnetic insulator to magnetic metal and 
then to paramagnetic metal as the impurity concentration in- 
creases. 

Using this approach, we have studied a simple model of 
a strongly correlated system which is a proper dielectric 
doped with a magnetic impurity. Therefore we will not apply 
our results to specific materials. We will demonstrate, how- 
ever, that the model yields certain general results that may be 
employed in interpreting experimental data. 

2. MODEL 

We use a model in which a nondegenerate level EO of an 
impurity atom is initially located in the middle of the dielec- 
tric gap. For simplicity, we limit our calculations to the 
single-band approximation for a nonmagnetic dielectric. In 
our model, this limitation is not essential for the final results, 
and the technique can be easily generalized to investigate the 
case of several bands and degenerate impurity levels.19 Prop- 
erties of nonmagnetic dielectrics doped with transitional met- 
als are often described in terms of the Anderson Hamil- 
tonian, which we write in the form 

where aku and dp are usual annihilation operators, o is the 
spin index, k is the wave vector of an electron in the band 
state with the energy ek,  j is the impurity atom number, 
Vkj is the hybridization matrix element, and U is the constant 
of interaction between d-electrons in the impurity atom. 

The equation with the Hamiltonian in Eq. (1) was solved 
for in the self-consistent Hartree-Fock approximation using 
the Green's functions averaged over the ensembles of impu- 
rity atoms randomly distributed through the lattice and occu- 
pying equivalent sites or interstitial positions in the host lat- 
tice. To this end, we introduced a modified resonant level for 
states with the spin a, i.e., 

and a single-particle effective Hamiltonian 

+ vj kd>ku19 (3) 

Since the impurity atoms occupy equivalent positions in 
the lattice, the averaged self-consistent filling factors are in- 
dependent of j and determined by the following formula: 

where EF is the self-consistent Fermi energy of the system 
and G:d is the matrix element of the one-particle Green's 
function diagonal with respect to j in the unperturbed ortho- 
normal basis of wave functions. Since this matrix element is 
also independent of the impurity number, j, we use the index 
d in Eq. (4). 

The Fermi energy is a function of the number of elec- 
trons donated by one impurity. In the case of one electron 
per impurity, we have the following equation valid at zero 
temperature: 

Here Ni ,  is the impurity concentration, G& is the matrix 
element of the one-particle Green's function diagonal with 
respect to k, and GU(O) is the unperturbed Green's function. 
Accordingly, G~~O'(E)  = (E  - ek)- l ,  G;$O)(E) = ( E  - E ; ) - ' ,  

and E = E + ~ O + .  
If the Green's function is known, Eqs. (4) and (5) com- 

pletely determine the set of plausible states of the system for 
an arbitrary impurity concentration. This set of solutions can 
be classified as magnetic states with (ndTU) # (nd,-u) and 
nonmagnetic states in which (nd,,)=(nd,-,) holds. As will 
be shown below, the latter states correspond to a paramag- 
netic metal. Since the Hartree-Fock procedure is variational, 
the real state of the system for a given impurity concentra- 
tion is found by minimizing the total energy of the system. 
To this end, we introduce the variation of the total energy per 
impurity atom: 

where ESpi is the energy of a band electron in the undoped 
host material. In treating Eq. (6) one should keep in mind 
that if the Fermi level coincides with the S-function of the 
density of localized states, the contribution of these states to 
the total energy is determined by the product of the energy of 
the ordinary pole G:d (see below) by their self-consistent 
filling factor, which is determined by the solution of the sys- 
tem in Eq. (5) and two equations in (4) for various a. The 
one-particle Green's function is derived from Eqs. (2) and 
(3), as described in the next section. 

3. EXPRESSIONS FOR DIAGONAL MATRIX ELEMENTS OF 
THE SELF-ENERGY PART 

In the studied ensemble of impurities, the hybridization 
matrix element is 

where Rj is the position of the jth impurity and R is the 
dielectric volume. 

The diagonal matrix elements of G can be expressed as 
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where X u  is the self-energy part. 
From Eqs. (2) and (3) we derive 

XV. Gu(0)v . V.k+. . . 
~ 1 %  %% k2J2 12 (9) 

Similarly we find 

Here we use the notation 

Given Eq. (7), in calculating the sums over j in Eqs. (9) 
and (10) we should average the result over a random distri- 
butions of impurities. To this end, we must calculate the 
following sth moments: 

where ( . . . ), denotes averaging over all possible configu- 
rations of the impurity ensemble. In order to calculate diag- 
onal matrix elements of the self-energy part averaged over 
all configurations, we use the Matsubara technique originally 
designed for a l l ~ ~ s . ~ ~ . ~ '  

After straightforward but lengthy calculations, we derive 
from Eq. (9) 

Accordingly, Eq. (10) is transformed with due account of Eq. 
(1 1) to 

where 

In Eqs. (11)-(13) we use the notations 

s;(E,N~,) = ( 1 - G$O)G$O)N. , m l ~ J 2 ) - 1 ,  

and c = Ni, IN,, N, is the density of sites (interstitial posi- 
tions) in the dielectric lattice. 

In real situations we have c e  1. From Eqs. (12)-(14) 
one can derive limitations on the impurity concentration un- 
der which only the first terms of the series for Z &  and Zzd  
need be retained. In this case Eq. (8) determines the diagonal 
matrix elements of G('). 

The exact Green's function for the effective Hamiltonian 
(3), certainly satisfies Levinson's theorem, which can be for- 
mulated for states with a fixed spin as 

Equation (15) signifies that the total number of electronic 
states for the Hamiltonian (3) is the same as that for the 
unperturbed Hamiltonian. 

In order to check whether the higher-order terms in Eqs. 
(12) and (13) may be omitted and hence the calculated diag- 
onal matrix elements of the Green's function GU(')(s) are 
correct, we use the condition 

for two fixed spin projections and a fixed impurity concen- 
tration. 

4. DETAILS OF CALCULATIONS USING THE ONE-BAND 
DIELECTRIC MODEL 

In our calculations, we took the "semielliptic" model of 
a symmetrical band (for definiteness, the valence band) with 
a width 2Db,  the total number of states with a particular spin 
projection N,/2, and the density of states with a fixed spin 

Then we assume that Vkd does not change with k. After 
substituting the summation over k with the integration with 
respect to sk and taking into account Eq. (16), we obtain 
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FIG. 1. Diagram of density of states in the 
paramagnetic metallic state. 'Ihe curve E:-" 
shows the change in the density of states per 
impurity, Apa,(s). The system parameters 
are N , = O . O ~ ~  -3 ,  Db= 1.5 eV, e0=2 eV, 
x=0.03. Vw . N:~= 1.5 eV, and U=0.5 eV. 

Energy, eV 

N ~ ~ G $ " ) (  w ) v i d  where the positions of the simple poles, wg , are the roots of 
z;p(o) = 

1 - T G $ O ' V ~ P ( ~ ) -  iP::l(o)l' 
(17) the equation 

82"(0)= ~ V ~ P ( O ~ )  - ipEt)(ou)).  (18) 

Here we use the notation mu- o - N h ~ z J O ) ~ i d  and 

lolsDb 

~ i ~ n ( o ) ( o ~ - D ; ) " ~ ,  lol>Db.  

(19) 

In the general case, the poles of ~ k q j ' )  and G;J1) may be both 
in the initial valence band and in the dielectric gap. 

Finally, the density of state with a fixed spin defined as 

is expressed as 

where 

and the root with Im(1 + t /  t )  '" 0 should be chosen. 
The density of localized states with a fixed spin, defined 

as 

In order to clearly demonstrate the effect of impurities 
on the density of states in the valence band, we introduce the 
variation in the density of states per impurity atom: 

where plxt is defined by Eq. (20). 
It is convenient to normalize the density of both local- 

ized and extended states generated in the dielectric gap to the 
concentration Nim of impurity atoms: 

u u 
Pext PIOC 

P , " , ~ ( E ) = - ,  P & ( E ) =  -. 
Nim Nim 

In what follows we characterize the impurity ensemble 
in terms of the relative impurity concentration defined as 
x= NimIN,.  The magnetic ordering parameter is the mag- 
netic moment per impurity atom (in Bohr magnetons pB). 

1 
pi&= - Im G S 1 ) ( o ) ,  5. RESULTS AND DISCUSSION 

has the form 

P L ( ~ )  =Nim 

First of all, we note that in the case of one electron per 

1 Im z;ii)(o) impurity discussed in this paper, there is a solution which 
- - describes a paramagnetic metallic state, in addition to the 

rr (w-eE-Re  X 2 ' ) ) 2 + ( ~ m  ~ 2 ' ) ) ~ '  magnetic insulating state realized at a low impurity concen- 

I w ~ J Q D ~  tration. Energy bands of the conducting state at x=0.03 are 
shown in Fig. 1. In this case we have 

I: ( ~ : = ~ ~ ) - ' @ w - w g ) ,  (nd, + ,) = (nd,- ,) = 0.575, so the electron extended states 
m Ill are spin degenerate. The Fermi energy in this state is 

, Im"l>Db, EF=2.659. The curve E ! ~  in Fig. 1 shows the variation in 
(21) the density of states with a fixed spin in the valence band per 
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impurity. Note the tail of the density of states p,",. below the 
bottom of the valence band at - 1.5 eV. At x = 0.03 the tail 
extends = 15 meV from the bottom, but both its range and 
the number of states in it grow with the impurity concentra- 
tion. A similar effect takes place in the case of magnetic 
ordering. We have investigated tails of the density of states 
due to potential scattering earlier,12 so we do not discuss 
these states in this paper. 

The function EbPM versus the energy is highly suscep- 
tible to the parameters of the problem. But the general trend 
with different sets of parameters is that the change in the 
total number of states with a fixed spin in the valence band 
(taking the tail into account) per impurity atom, i.e., 

is negative. At x= 0.03 we have b N ( E f M )  = - 0.135. 
The curve LfM in Fig. 1 shows the normalized density of 

localized states in the region of the initial valence band. 
These states are due to the hybridization between the band 
states and d-orbitals of the impurity atoms. It is well known 
that they are generated by the Anderson Hamiltonian even 
with one impurity atom.lg The total number of localized 
states is ~ ( ~ : ~ ) = 0 . 1 3 4  per spin per one impurity atom. 

The density of electron states deep inside the dielectric 
gap is also shown in Fig. 1. It contains two 6-functions for 
localized states. The first one, labeled, by DoPM, corresponds 
to the simple pole of GLY, whose position coincides with the 
renormalized resonant level E: determined by Eq. (2). At 
x= 0.03 the nonmagnetic solution yields (nd,+,)=0.575 and 
e:=2.287. The amplitude of this pole can be easily derived 
from Eq. (22): 

The total number of localized states DoPM per spin is 
N(DiM)=5.660-  Being below the Fermi level, all 
these states are fully occupied. 

In the nonmagnetic case, the position of the second or- 
dinary pole of G;j1)  labeled by D i M  in Fig. 1 coincides with 
the self-consistent Fermi level of the system, E F .  This pole 
is located near the middle of the narrow band of continuous 
states of a high density, E ; ~ ,  due to the poles of G ~ ) ( E ) .  
This location of the pole D i M  inside the band E i M  is a 
common feature of band patterns at Vkd=O, irrespective of 
other parameters. The total number of localized states DEM 
per spin per impurity atom is N(DCM) = 0.80, and their self- 
consistent filling factor per spin is 0.375. 

The band E i M  is generated only when the hybridization 
matrix elements Vkd are nonzero. This band of extended 
states is caused by the motion of charge carriers across a 
random ensemble of impurities (hence across the crystal) due 
to the virtual electronic transitions from the initial impurity 
atom to a band state, then to another impurity, to another 
band state and so on. In the pattern of energy bands given in 
Fig. 1 the width of the band E i M  is Ag=27 meV, and the 

total number of states per spin per impurity is 
N(EiM)=0.135.  From these figures we derive the average 
density of states in this band: 

The Fermi level is located inside the band E i M  and de- 
termines the filling factor of this band of extended states 
equal to 0.44. The transport characteristics of this conducting 
state are unusual since the density of unoccupied localized 
states on the Fermi level is high (as was noted above, the 
filling factor of D : ~  states is 0.375). But in this paper we 
will not dwell on this topic. 

The band pattern modified by doping also includes a 
band of localized states L i M  around the renormalized reso- 
nant d-level shown in Fig. 1. In the case under discussion, 
the total number of these localized states per spin per impu- 
rity is N ( L ~ ~ )  = 0.933. and, being below the Fermi 
level, all these states are occupied. 

Note that in the modified band structure shown in Fig. 1 
Levinson's theorem is satisfied with an accuracy 
yu=0.9. 

In the paramagnetic metallic state the variation in the 
total energy per impurity is bEPM=-0 .250  eV at 
x=0.03. This parameter is higher than in the case of the 
magnetic insulator, AEM'= -0.321 eV. Since we have used 
the variational procedure, at the impurity concentration cor- 
responding to x=0.03 the magnetic insulating state is real- 
ized. Then the self-consistent filling factors are (nd,+u)= 1 
and (nd,-,)=0.116 (the case of the symmetrical solution 
with a+ - a is not of interest). As a result of the inequality 
between the filling factors, the initially spin degenerate va- 
lence band is modified by being split into two spin-polarized 
bands of extended states whose spectrum is determined by 
poles of ~ 2 ' ) .  The energies of these two subbands are al- 
most equal. Two spin-polarized bands of localized states are 
also generated in the valence band. The density of states in 
these bands is similar to that shown in Fig. 1 ,  so they are not 
plotted in Fig. 2. We quote only the variations in the total 
numbers of states in these bands at x=0.03: 
AN(E?+,) = -0.160, AN(E?-,)= -0.1 16, N ( L ~ + , )  
= 0.159, N ( L ~ < , )  = 0.1 16. Hence it follows that the total 
magnetic moment in these bands per impurity is 0.8.  
Bohr magneton. 

The impurity bands in the magnetic insulating state in 
the dielectric gap at x= 0.03 are shown in Fig. 2. Their origin 
is similar to that of the bands in Fig. 1. But unlike the case of 
paramagnetic metal, they are spin-split, and the subbands 
with different spin projections are labelled by the index a in 
the diagram. The Fermi energy in this case is EF=2.5 eV, 
which corresponds to the 8-peak of localized states D::,. 
The total numbers of states in the bands, D:!,, and D::, 
(the latter is fully occupied), depends only on the impurity 
concentration x and is determined by Eq. (23). The filling 
factor in the D:;, band is much less than unity and equals 
0.344- The following occupied bands are located be- 
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low the Fermi level: the band of localized states L?+? with 
a total number of states per impurity of 0.128.10- ; the 
band of extended states E?+, with a total number of states 
per impurity of 0.160, and a 8-peak of localized states 
D:,'+, with a total number of states per impurity of 0.772 in 
the middle of the previous band. 

Figure 2 shows that a gap of 13 meV separates the lo- 
calized states D:!, on the Fermi level from the empty band 
of localized electron states LEU with a total number of 
states per impurity atom of 0.730. Across a gap of 
0.334 eV above this band, there is a spin-polarized band of 
extended states EF-, with a total number of states per im- 
purity of 0.116 and a &peak of localized states D:,"_,, 
which has 0.820 states per impurity, in the middle of the 
extended band. At x = 0.03, the total magnetic moment per 
impurity in the magnetic insulating state is M = 1 ,UB. The 
calculation accuracy for the states with spin + a  is worse: 
y+u=0.7.10-5. 

The self-consistent positions of the impurity bands gen- 
erated in the dielectric gap, and their densities of states and 
filling factors strongly depend on the impurity concentration. 
In the long run this dependence controls the phase transitions 
taking place in the system as the impurity concentration is 
increased. The transformation of impurity bands due to the 
magnetic insulator-magnetic metal transition is shown in 
Fig. 3. It shows only the high-energy section of the spectrum 
with four impurity bands around the Fermi level at three 
impurity concentrations (the intermediate insulating state is 
illustrated by Fig. 2). In the insulating state the gap between 
the top of the full band of extended states EF+, and the 

Energy, eV 

FIG. 2. Diagram of bauds in the dielectric gap 
in the magnetic insulating state. The lower index 
I? a indicates spin splitting of impurity bands. 
The system parameters are the same as in Fig. 1. 

partially filled band of localized states D:!, drops with x,  
as seen in Figs. 2 and 3a. The positions of EF and D:!, are 
constant till the localized states with the spin + a  are full and 
(nd,+ ,) = 1. When the band EF+, shifts towards EF , it 
overlaps with the partially filled D::, band at x-0.04, as 
shown in Fig. 3b. At x=  0.044 (Fig. 3c) the Fermi level is in 
the band of extended states E::, and near the peak of 
D;,y, , SO the system transforms to a magnetic metal with a 
magnetic moment per impurity of 0 . 8 3 9 ~ ~ .  We assume that 
the impurity concentration corresponding to the insulator- 
metal transition is determined by the overlap between the 
extended and localized bands. The pattern of other impurity 
bands in the metallic state, except those shown in Fig. 3c, is 
similar to that of the insulating state given in Fig. 2. 

At each impurity concentration given in Fig. 3 there is 
also a solution describing a paramagnetic conducting state. 
Its band pattern is similar to that shown in Fig. 1, but this 
state is not realized at these concentrations because of the 
minimum energy condition. In what follows, only the energy 
of this state will be given in this concentration range. 

At higher x there are two solutions for the system, 
namely the magnetic and paramagnetic metallic states. The 
transformation of impurity bands around the Fermi level due 
to the transition from the magnetic to paramagnetic metal is 
shown in Fig. 4. As x increases, the Fermi level, which con- 
trols the density of free carriers with the spin + a in the band 
E:?,, becomes closer to the level D:,",, in the middle of 
this band. As long as the states E:!, are occupied, carriers 
with spin -a are localized, and the charge transport in the 

FIG. 3. Transformation of impurity bands as a 
function of impurity concentration around the 
magnetic insulator-magnetic metal transition. 
The system parameters, except x, are the same 
as in Fig. 1: a) insulating state; b) point of tran- 
sition from magnetic insulator to magnetic 
metal; c) conducting state. 
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band of extended states E:?, leads to the transport of spin 
+a. You can see in Fig. 4a that the Fermi energy at 
x= 0.1 is determined by the states D:,",, , whose self- 
consistent filling factor is smaller than unity, namely 0.822. 
The localized states D:!, and L:?, are totally occupied. 
The magnetic moment per impurity atom decrease as a func- 
tion of x to 0 . 6 1 9 , ~ ~  at x=0.1. In this case 
y+u= 1.2. is the maximum value. 

At higher x the spin* subbands of extended states, 
E ~ Q  and E:?,, become closer. At x = 0.1 the gap between 
them is 156 meV (Fig. 4a), whereas at x= 0.05 it equals 277 
meV. The overlap of these spin subbands at x = 0.2 is shown 
in Fig. 4b. The dashed line in this diagram shows the bands 
E i M  and DEM of the paramagnetic metal at the same con- 
centration. The nonmagnetic state is not realized because its 
energy AEPM= -0.363 eV is higher than that of the mag- 
netic state, AEMM= -0.371 eV. The band E:!, is not oc- 
cupied since it is higher than the Fermi level pinned to the 
level D:,:,, whose filling factor is 0.488. At x=0.2 the 
magnetic moment per impurity atom is 0 . 3 3 1 , ~ ~  and the 
accuracy is y= - 1.3. 

The situation when the band E:?, is partially filled at 
x=0.25 is shown in Fig. 4c. The self-consistent filling fac- 
tors of the states in the magnetic metal are close: 
(nd +,) = 0.65 1 and (nd,- ,) = 0.503. The filling factor of the 

M'M 
,,+, band monotonically drops with x and equals 0.285 at 

x=0.25. In this case the magnetic moment per impurity 
atom is 0 . 2 0 3 , ~ ~  with spin-polarized bands around the va- 

AE, eV a 

Energy, eV 

FIG. 4. Transformation of impurity bands 
around the point of transition from the mag- 
netic metallic to paramagnetic metallic state. 
Only the bands near the Fermi level are 
shown. 'lhe system parameters, except x ,  
are the same as in Fig. 1: a) x= 0.10; b) 
x= 0.20; c) x= 0.25. 

lence band and in the original dielectric gap taken into ac- 
count. In the paramagnetic metal we have 
(nd +,) = (nd,- ,)  =0.553 and the filling factor of states in 
DL' band per spin per impurity atom is considerably 
smaller, namely 4.41 - The overlap between spin sub- 
bands of extended states, E:?, and EEM,, increases with 
x; as a result, first the filling factor of the subband E:?, 
grows, since it includes the Fermi level controlled by the 
level D:,:, , and then the states D:,!, are occupied at the 
expense of D:,:, . Consequently the magnetic ordering in 
the system vanishes and the modified density of states be- 
comes spin-degenerate. 

At x = 0.25 the variation in the total energy per impurity 
in the magnetized state, AEMM= -0.387 eV, is slightly 
lower than in the paramagnetic state, AEPM= -0.385 eV, 
whose density of states around the Fermi level is shown in 
Fig. 4b by the dashed line. The accuracy is 
y = - 0.85. At x =  0.27 the energies of the magnetic 
and nonmagnetic states are equal, AEPM= -0.393 (in this 
calculation we have y = - 1.2. lod2). The bands E:?,, 
E:?,, and EgPM almost coincide. Therefore we estimate the 
impurity concentration of the transitions from the magnetic 
to paramagnetic metal at x=0.27. At larger x there is only 
one solution describing the paramagnetic state whose pattern 
of energy bands is similar to that shown in Fig. 1. 

The resulting phase diagram, energies of states calcu- 
lated by solving Eqs. (2)-(6) versus impurity concentration, 
and the magnetic-order parameter versus impurity concentra- 

FIG. 5. (a) Phase diagram of the system and 
energies of paramagnetic metallic (curve I), 
magnetic insulating (curve 2) and magnetic me- 
tallic (curve 3) states versus dative impurity 
concentration. (b) Magnetic-order parameter 
and self-consistent Fermi energy versus impu- 
rity concentration. 

764 JETP 82 (4), April 1996 A. I. Agafonov and E. A. Manykin 764 



tion are plotted in Fig. 5. The curve 2,3 in Fig. 5a shows the 
energy of the ground state versus impurity concentration. Its 
low-concentration portion 2 corresponds to the magnetic in- 
sulating state, in which dEM' rises with x ,  whereas EF and 
magnetic moment are constant (Fig. 5b). At an impurity con- 
centrations higher than 0.04, i.e., after the magnetic 
insulator-magnetic metal transition, both AEMM (curve 3 in 
Fig. 5a) and magnetic moment of the metallic state (Fig. 5b) 
decrease with x .  The abrupt change in the magnetic moment 
above x=0.04 is due to the filling of the density-of-states 
8-peak in D:?, (Fig. 3b and c). At higher impurity concen- 
trations the magnetic moment drops to zero and the curve of 
the energy of the paramagnetic state (curve 1 in Fig. 5a) 
converges with that for the magnetized state, A E ~ ~  (curve 3 
in Fig. 5a), so the phase transition between them is continu- 
ous. At ~ 2 0 . 2 7  there is only one solution describing a para- 
magnetic metallic state. Note that throughout the concentra- 
tion range the Fermi energy varies within lo%, as can be 
seen in Fig. 5b. 

6. CONCLUSION 

We summarize as follows. First, unusual transport prop- 
erties of the system in the conducting state may be expected. 
In ordinary metals, scattering of electrons, for example, by 
phonons leads to transitions to states of the continuous spec- 
trum near the Fermi level. In our case there is a high density 
of vacant localized states near the Fermi level (the peak of 
D L M ) .  Therefore the scattering of electrons should transfer 
them not only to extended ( E : ~ ) ,  but also to localized states 
so that they no longer contribute to the conductivity. This 
should affect, for example, the temperature dependence of 
the conductivity. 

Second, optical transitions between the valence band and 
impurity or between impurity bands in the insulating state 
should generate optical bands of peculiar shapes due to the 
narrow empty band of localized states D:!, (in reality it has 
a finite width) in the middle of the wider empty band of 
extended states E ~ , .  Given the simple relation between 
the dipole correlator and optical band shape, we should ex- 
pect that the narrow band due to the localized states will be 
determined by a slow dipole decay, and the spectrum due to 

EF-, by a fast dipole decay. As a result, a coherent optical 
response (like the photon echo) may be detected in dielec- 
trics doped with rare-earth metals. Under an external electric 
field, the coherent optical response should lead to a photo- 
conductivity due to the band of extended states, which is a 
nonexponential function of temperature. 

Third, the density of extended states in E , , ,  bands is 
very high. The estimates were given above. In the conduct- 
ing state the Fermi level is in this band. The search for a 
superconducting transition related to impurity bands in such 
materials is a matter for further study. 

We express our gratitude to the International Science 
Foundation (Grant MFD300) for partial financial support of 
this work. 

'N. F. Mott. Metal-Insulator Transitions, Taylor and Francis, London 
(1990). 

'D. Belitz and T. R. Kirkpatrick. Rev. Mod. Phys. 66, 261 (1994). 
3 ~ .  Z; Kuchinskii, M. V. Sadovskii, V. G. Suvomv, and M. A. Arkabaev, 
Zh. Eksp. Teor. Fiz. l(n. 2027 (1995) [JETP 80. 1122 (1995)l. 

4 ~ .  Ammon, M. Tmyer, and H. Tsunetsugu, Phys. Rev. B 52,629 (1995). 
'R. Preuss, W. Hanke, and W. Linden, Phys. Rev. Lett. 75, 1344 (1995). 
6 ~ ~ .  A. Izyumov, B. M. Letfulov, and E. V. Shipitsyn, Zh. Eksp. Teor. Fin. 

105, 1357 (1994) [JEW 79, 731 (1994)l. 
'A. N. Andriotis, E. N. Economou, Q. Li, and C. V. Soukoulis. Phys. Rev. 
B 47,9208 (1993). 

'M. A. Tusch and D. E. Logan, Phys. Rev. B 48, 14843 (1993). 
'D. Domingues and C. Wiecko, Phys. Rev. B 47, 10888 (1993). 

'OC. Dasgupta and J. W. Halley, Phys. Rev. B 47, 1126 (1993). 
"M. Milovanovic, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett. 63, 82 

(1989). 
1 2 ~ .  I. Agafonov and E. A. Manykin, Phys. Rev. B 52, 14571 (1995). 
1 3 ~ .  Eskes, M. B. J. Meinders, and G. A. Sawatzky, Phys. Rev. Lett. 67 

1035 (1991). 
1 4 ~ .  Kumagai, T. Suzuki, Y. Taguchi et al., Phys. Rev. B 48,7636 (1993). 
"H. Ohta, T. Takahashi et al., Phys. Rev. B 39,7354 (1989). 
16s. W. Robey, L. T. Hudson, C. Eylem, and B. Eichom, Phys. Rev. B 48, 

562 (1995). 
1 7 ~ .  Takagi, T. Ido. S. Ishibashi, M. Uota, and S. Uchida, Phys. Rev. B 40, 

2254 (1989). 
"G. M. Eliashberg, in Physical Properties of High Temperature Supercon- 

ductors, ed. by D. M. Ginsberg, World Scientific, Singapore (1989). 
19F. D. M. Haldane and P. W. Anderson, Phys. Rev. 13.2553 (1976). 

Yonezawa and T. Matsubara, Prog. Iheor. Phys. 35, 357 (1966). 
"J. Moneske, J. Kortus, and W. Cordts, Phys. Rev. B 47,9377 (1993). 

Translation provided by the Russian Editorial office. 

765 JETP 82 (4), April 1996 A. I. Agafonov and E. A. Manykin 765 


